Synergistic Impact of Magnets and Fins in Solar Desalination: Energetic, Exergetic, Economic, and Environmental Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. Experimental Procedure
2.3. Uncertainty Analysis
3. Performance Indices
3.1. Energy Analysis
3.2. Exergy Analysis
3.3. Economic Analysis
- my = distill water produced annually (L/m2)
- md = mean daily fresh water (L/m2)
- Nd = number of sunny days in a year
3.4. Environmental Analysis
4. Results and Discussion
5. Conclusions and Future Scope
5.1. Conclusions
- The PFS produced 20%, 15%, and 16% more distillate at water depths of 1 cm, 2 cm, and 3 cm, respectively, than the TCFS, owing to the combined effects of magnetism and the larger heat absorption area.
- At a water depth of 1 cm, the PFS achieved the highest efficiency in energy and exergy, with 30.49% and 8.85%, respectively, while the TCFS achieved 25.23% and 6.22%. These measures demonstrate how water depth and design significantly influence solar still performance.
- The PFS setup proved more economically viable, with a 20.9% lower cost per liter of distilled water compared with the TCFS.
- The PFS showed a considerable reduction in CO2 emissions, with a possible revenue creation of USD 1234.98 through carbon credits, emphasizing its environmental benefits.
- The environmental impact assessment showed a significant reduction in CO2 emissions, which might result in potential revenues of around USD 1234.98 through the purchase of carbon credits. This demonstrates the solar distillation systems’ economic and environmental potential.
- This study only considers water depths of 1 cm, 2 cm, and 3 cm. This range might not cover all possible operational scenarios. Testing additional depths could provide a more comprehensive understanding of the system’s performance.
5.2. Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaviti, A.K.; Ram, A.S.; Thakur, A.K. Influence of fully submerged permanent magnets in the evaluation of heat transfer and performance analysis of single slope glass solar still. Proc. Inst. Mech. Eng. Part A J. Power Energy 2022, 236, 109–123. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Ram, A.S.; Kumari, A.A.; Hussain, S. A brief review on high-performance nano materials in solar desalination. Mater. Today Proc. 2021, 44, 282–288. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Ram, A.S.; Kumari, A.A.; Hussain, S. Development of hierarchical structures for enhanced solar desalination. Mater. Today Proc. 2021, 44, 315–320. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Akkala, S.R.; Sikarwar, V.S.; Sai Snehith, P.; Mahesh, M. Camphor-Soothed Banana Stem Biowaste in the Productivity and Sustainability of Solar-Powered Desalination. Appl. Sci. 2023, 13, 1652. [Google Scholar] [CrossRef]
- Pansal, K.; Ramani, B.; kumar Sadasivuni, K.; Panchal, H.; Manokar, M.; Sathyamurthy, R.; Kabeel, A.E.; Suresh, M.; Israr, M. Use of solar photovoltaic with active solar still to improve distillate output: A review. Groundw. Sustain. Dev. 2020, 10, 100341. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Kabeel, A.E.; Abdelgaied, M.; Shmouty, A.R. Enhancing the hemispherical solar distiller performance using internal reflectors and El Oued sand grains as energy storage mediums. Environ. Sci. Pollut. Res. 2022, 29, 21451–21464. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Akkala, S.R.; Ali, M.A.; Anusha, P.; Sikarwar, V.S. Performance Improvement of Solar Desalination System Based on CeO2-MWCNT Hybrid Nanofluid. Sustainability 2023, 15, 4268. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Arjunan, T.V.; Pitchandi, P.; Senthilkumar, P. Active solar distillation—A detailed review. Renew. Sustain. Energy Rev. 2010, 14, 1503–1526. [Google Scholar] [CrossRef]
- Mohamed, A.F.; Hegazi, A.A.; Sultan, G.I.; El-Said, E.M.S. Augmented heat and mass transfer effect on performance of a solar still using porous absorber: Experimental investigation and exergetic analysis. Appl. Therm. Eng. 2019, 150, 1206–1215. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Kabeel, A.E.; Abdelgaied, M.; Driss, Z. Productivity enhancement of traditional solar still by using sandbags of El Oued, Algeria. Heat Transf. 2021, 50, 768–783. [Google Scholar] [CrossRef]
- Panchal, H.N. Life cycle cost analysis of a double-effect solar still. Int. J. Ambient. Energy 2016, 38, 395–399. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelaziz, G.B.; El-Said, E.M.S. Experimental investigation of a solar still with composite material heat storage: Energy, exergy and economic analysis. J. Clean. Prod. 2019, 231, 21–34. [Google Scholar] [CrossRef]
- Abu-Hijleh, B.; Rababa’h, H.M. Experimental study of a solar still with sponge cubes in basin. Energy Convers. Manag. 2003, 44, 1411–1418. [Google Scholar] [CrossRef]
- Natarajan, S.K.; Suraparaju, S.K.; Elavarasan, R.M.; Pugazhendhi, R.; Hossain, E. An experimental study on eco-friendly and cost-effective natural materials for productivity enhancement of single slope solar still. Environ. Sci. Pollut. Res. 2022, 29, 1917–1936. [Google Scholar] [CrossRef]
- Arjunan, T.V.; Aybar, H.S.; Sadagopan, P.; Chandran, B.S.; Neelakrishnan, S.; Nedunchezhian, N. The Effect of Energy Storage Materials on the Performance of a Simple Solar Still. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 131–141. [Google Scholar] [CrossRef]
- Sathyamurthy, R.; Mageshbabu, D.; Madhu, B.; Manokar, A.M.; Prasad, A.R.; Sudhakar, M. Influence of fins on the absorber plate of tubular solar still- An experimental study. Mater. Today Proc. 2021, 46, 3270–3274. [Google Scholar] [CrossRef]
- Khalili, M.; Taheri, M.; Nourali, A. Metal fins efficacy on stepped solar still performance: An experimental study. Desalination 2023, 563, 116706. [Google Scholar] [CrossRef]
- Panchal, H.; Sadasivuni, K.K.; Suresh, M.; Yadav, S.; Brahmbhatt, S. Performance analysis of evacuated tubes coupled solar still with double basin solar still and solid fins. Int. J. Ambient. Energy 2018, 41, 1031–1037. [Google Scholar] [CrossRef]
- Velmurugan, V.; Gopalakrishnan, M.; Raghu, R.; Srithar, K. Single basin solar still with fin for enhancing productivity. Energy Convers. Manag. 2008, 49, 2602–2608. [Google Scholar] [CrossRef]
- Manokar, A.M.; Winston, D.P. Experimental Analysis of Single Basin Single Slope Finned Acrylic Solar Still. Mater. Today Proc. 2017, 4, 7234–7239. [Google Scholar] [CrossRef]
- Singh, R.P.; Xu, H.; Kaushik, S.C.; Rakshit, D.; Romagnoli, A. Effective utilization of natural convection via novel fin design & influence of enhanced viscosity due to carbon nano-particles in a solar cooling thermal storage system. Sol. Energy 2019, 183, 105–119. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Teja, M.; Madhukar, O.; Teja, P.B.; Aashish, V.; Gupta, G.S.; Sivaram, A.; Sikarwar, V.S. Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins. Energies 2023, 16, 6606. [Google Scholar] [CrossRef]
- Rabhi, K.; Nciri, R.; Nasri, F.; Ali, C.; Bacha, H.B. Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser. Desalination 2017, 416, 86–93. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Naike, V.R.; Ram, A.S.; Hussain, S.; Kumari, A.A. Energy and exergy analysis of double slope solar still with aluminium truncated conic fins. Mater. Today Proc. 2021, 45, 5387–5394. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Mary, B.; Ram, A.S.; Kumari, A.A. Influence of aluminium parabolic fins as energy absorption material in the solar distillation system. Mater. Today Proc. 2021, 44, 2521–2525. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Naike, V.R.; Ram, A.S.; Thakur, A.K. Energy and exergy analysis of a truncated and parabolic finned double slope solar stills. Int. J. Ambient. Energy 2021, 43, 6210–6223. [Google Scholar] [CrossRef]
- Effects of Magnetic Field on Evaporation of Distilled Water. Available online: https://www.researchgate.net/publication/295723761_Effects_of_magnetic_field_on_evaporation_of_distilled_water (accessed on 15 May 2024).
- Szcześ, A.; Chibowski, E.; Hołysz, L.; Rafalski, P. Effects of static magnetic field on water at kinetic condition. Chem. Eng. Process. Process Intensif. 2011, 50, 124–127. [Google Scholar] [CrossRef]
- Mehdizadeh Youshanlouei, M.; Yekani Motlagh, S.; Soltanipour, H. The effect of magnetic field on the performance improvement of a conventional solar still: A numerical study. Environ. Sci. Pollut. Res. Int. 2021, 28, 31778–31791. [Google Scholar] [CrossRef]
- Dhivagar, R.; Mohanraj, M. Performance improvements of single slope solar still using graphite plate fins and magnets. Environ. Sci. Pollut. Res. Int. 2021, 28, 20499–20516. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Akkala, S.R.; Sikarwar, V.S. Productivity enhancement of stepped solar still by loading with magnets and suspended micro charcoal powder. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–19. [Google Scholar] [CrossRef]
- Suraparaju, S.K.; Natarajan, S.K. Productivity enhancement of single-slope solar still with novel bottom finned absorber basin inserted in phase change material (PCM): Techno-economic and enviro-economic analysis. Environ. Sci. Pollut. Res. 2021, 28, 45985–46006. [Google Scholar] [CrossRef]
- Modi, K.V.; Modi, J.G. Performance of single-slope double-basin solar stills with small pile of wick materials. Appl. Therm. Eng. 2019, 149, 723–730. [Google Scholar] [CrossRef]
- Dhivagar, R.; Mohanraj, M.; Belyayev, Y. Performance analysis of crushed gravel sand heat storage and biomass evaporator-assisted single slope solar still. Environ. Sci. Pollut. Res. 2021, 28, 65610–65620. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Shaik, N.; Kumar, V.; Kumar, M. Thermal efficiency enhancement of solar still using fins with PCM. In Thermal Energy Systems: Design, Computational Techniques, and Applications; CRC Press: Boca Raton, FL, USA, 2023; pp. 141–153. [Google Scholar] [CrossRef]
- Dwivedi, V.K.; Tiwari, G.N. Thermal modeling and carbon credit earned of a double slope passive solar still. Desalination Water Treat. 2010, 13, 400–410. [Google Scholar] [CrossRef]
- Chibowski, E.; Szcześ, A.; Hołysz, L. Influence of magnetic field on evaporation rate and surface tension of water. Colloids Interfaces 2018, 2, 68. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Yin, D.C.; Cao, H.L.; Shi, J.Y.; Zhang, C.Y.; Liu, Y.M.; Huang, H.H.; Liu, Y.; Wang, Y.; Guo, W.H.; et al. Evaporation rate of water as a function of a magnetic field and field gradient. Int. J. Mol. Sci. 2012, 13, 16916–16928. [Google Scholar] [CrossRef] [PubMed]
S.no. | Device | Precision | Range |
---|---|---|---|
1 | Pyranometer | ±5 W/m2 | 0–2000 W/m2 |
2 | Thermocouple | ±1 °C | 100–500 °C |
3 | Anemometer | ±0.5 m/s | 0–30 m/s |
Parameters | USD ($) |
---|---|
Total Cost (P) | 133.68 |
Capital Recovery Factor (CRF) | 0.1468 |
Fixed Annual Cost (FAC) | 19.62 |
Salvage Value (S) | 26.74 |
Sinking Fund Factor (SFF) | 0.0268 |
Annual Salvage Value (ASV) | 0.72 |
Annual Maintenance Operational Cost (AMC) | 2.94 |
AC (Annual Cost) | 21.85 |
M (Average Annual Productivity) in Liters per m2 | 783 |
CPL (Cost of distilled water Per Liter) | 0.028 |
Experimental Conditions at Different Depths of Water | Cost per Liter (USD) |
---|---|
PFS at 1 cm | 0.028 |
TCFS at 1 cm | 0.034 |
PFS at 2 cm | 0.029 |
TCFS at 2 cm | 0.033 |
PFS at 3 cm | 0.044 |
TCFS at 3 cm | 0.052 |
Material | Mass (kg) | Energy Density (kWh/kg) | Product (kWh) |
---|---|---|---|
Wood | 11.12 | 16 | 177.92 |
Thermocol | 1.5 | 0.15 | 0.225 |
Aluminum | 3.7 | 8.61 | 31.857 |
Glass | 4.55 | 2.5 | 11.375 |
Pipe | 0.184 | 21 | 3.864 |
Black paint | 0.2 | 25 | 5 |
Magnets | 1.2 | 10 | 12 |
Total | 22.454 | 83.26 | 242.241 |
Environment | Value |
---|---|
CO2 emission per year (kgs) | 25.51 |
CO2 mitigation (tons) | 20.85 |
Carbon credit ($) | 1234.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviti, A.K.; Siva Prasad, M.; Naga Teja, V.B.V.; Sikarwar, V.S. Synergistic Impact of Magnets and Fins in Solar Desalination: Energetic, Exergetic, Economic, and Environmental Analysis. Processes 2024, 12, 2554. https://doi.org/10.3390/pr12112554
Kaviti AK, Siva Prasad M, Naga Teja VBV, Sikarwar VS. Synergistic Impact of Magnets and Fins in Solar Desalination: Energetic, Exergetic, Economic, and Environmental Analysis. Processes. 2024; 12(11):2554. https://doi.org/10.3390/pr12112554
Chicago/Turabian StyleKaviti, Ajay Kumar, M. Siva Prasad, V. Bhanu Venkata Naga Teja, and Vineet Singh Sikarwar. 2024. "Synergistic Impact of Magnets and Fins in Solar Desalination: Energetic, Exergetic, Economic, and Environmental Analysis" Processes 12, no. 11: 2554. https://doi.org/10.3390/pr12112554
APA StyleKaviti, A. K., Siva Prasad, M., Naga Teja, V. B. V., & Sikarwar, V. S. (2024). Synergistic Impact of Magnets and Fins in Solar Desalination: Energetic, Exergetic, Economic, and Environmental Analysis. Processes, 12(11), 2554. https://doi.org/10.3390/pr12112554