A Two-Way Street: How Are Yeasts Impacted by Pesticides and How Can They Help Solve Agrochemical Contamination Problems?
Abstract
:1. Introduction
2. The Contribution of Soil Yeasts to Plant Health
3. The Ecological Importance of Yeasts Beyond Soil
4. Impacts of Pesticides on Yeast Microbiota
5. Yeasts as Potential Bioremediators
6. Engineering Yeasts for Pesticide Degradation
7. Yeasts for Sustainable Agriculture: Challenges and Avenues
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide Residues in European Agricultural Soils—A Hidden Reality Unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Szpyrka, E.; Książek-Trela, P.; Bielak, E.; Słowik-Borowiec, M. The Influence of Commercial Yeast Preparations on the Degradation of Herbicide Mixtures in the Soil and the Effect on the Shell Pea (Pisum sativum L.) Cultivation. J. Soil. Sci. Plant Nutr. 2024, 24, 2509–2519. [Google Scholar] [CrossRef]
- Fenner, E.D.; Scapini, T.; da Costa Diniz, M.; Giehl, A.; Treichel, H.; Álvarez-Pérez, S.; Alves, S.L. Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J. Fungi 2022, 8, 984. [Google Scholar] [CrossRef]
- Giehl, A.; dos Santos, A.A.; Cadamuro, R.D.; Tadioto, V.; Guterres, I.Z.; Prá Zuchi, I.D.; Minussi, G.d.A.; Fongaro, G.; Silva, I.T.; Alves, S.L. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. Plants 2023, 12, 2688. [Google Scholar] [CrossRef]
- Alves, S.L., Jr.; Treichel, H.; Basso, T.O.; Stambuk, B.U. Are Yeasts “Humanity’s Best Friends”? In Yeasts: From Nature to Bioprocesses; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; pp. 431–458. [Google Scholar]
- Baeshen, N.A.; Baeshen, M.N.; Sheikh, A.; Bora, R.S.; Ahmed, M.M.M.; Ramadan, H.A.I.; Saini, K.S.; Redwan, E.M. Cell Factories for Insulin Production. Microb. Cell Fact. 2014, 13, 141. [Google Scholar] [CrossRef]
- Stȩpień, P.P.; Brousseau, R.; Wu, R.; Narang, S.; Thomas, D.Y. Synthesis of a Human Insulin Gene VI. Expression of the Synthetic Proinsulin Gene in Yeast. Gene 1983, 24, 289–297. [Google Scholar] [CrossRef]
- De Oliveira, V.H.; Ullah, I.; Dunwell, J.M.; Tibbett, M. Bioremediation Potential of Cd by Transgenic Yeast Expressing a Metallothionein Gene from Populus trichocarpa. Ecotoxicol. Environ. Saf. 2020, 202, 110917. [Google Scholar] [CrossRef]
- Achilles, K.A.; Camargo, A.F.; Reichert Júnior, F.W.; Lerin, L.; Scapini, T.; Stefanski, F.S.; Dalastra, C.; Treichel, H.; Mossi, A.J. Improvement of Organic Agriculture with Growth-Promoting and Biocontrol Yeasts. In Yeasts: From Nature to Bioprocesses; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; pp. 378–395. [Google Scholar]
- Schaeffer, R.N.; Mei, Y.Z.; Andicoechea, J.; Manson, J.S.; Irwin, R.E. Consequences of a Nectar Yeast for Pollinator Preference and Performance. Funct. Ecol. 2017, 31, 613–621. [Google Scholar] [CrossRef]
- Anderson, T.-H. Microbial Eco-Physiological Indicators to Assess Soil Quality. Agric. Ecosyst. Environ. 2003, 98, 285–293. [Google Scholar] [CrossRef]
- Botha, A. The Importance and Ecology of Yeasts in Soil. Soil Biol. Biochem. 2011, 43, 1–8. [Google Scholar] [CrossRef]
- Ramya, P.; Gomathi, V.; Devi, R.P.; Balachandar, D. Pichia kudriavzevii—A potential soil yeast candidate for improving soil physical, chemical and biological properties. Arch. Microbiol. 2021, 203, 4619–4628. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasilia, Brazil, 2018; ISBN 9788570358004. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos (accessed on 10 September 2024).
- Moreira, G.A.M. Diversidade e Ecologia de Leveduras em Solos Brasileiros. Ph.D. Thesis, University of Brasilia, Brasilia, Brazil, 2019. [Google Scholar]
- Álvarez-Pérez, S. Ecology: Yeasts on Their Natural Environment. In Yeasts: From Nature to Bioprocesses; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; pp. 27–57. [Google Scholar]
- Fernandez-San Millan, A.; Farran, I.; Larraya, L.; Ancin, M.; Arregui, L.M.; Veramendi, J. Plant Growth-Promoting Traits of Yeasts Isolated from Spanish Vineyards: Benefits for Seedling Development. Microbiol. Res. 2020, 237, 126480. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.C.O.; Safar, S.V.B.; Marques, A.R.; Medeiros, A.O.; Santos, A.R.O.; Carvalho, C.; Lachance, M.-A.; Sampaio, J.P.; Rosa, C.A. The Diversity and Extracellular Enzymatic Activities of Yeasts Isolated from Water Tanks of Vriesea minarum, an Endangered Bromeliad Species in Brazil, and the Description of Occultifur Brasiliensis f.a., sp. Nov. Antonie Leeuwenhoek 2015, 107, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Bright, J.P.; Karunanadham, K.; Maheshwari, H.S.; Karuppiah, E.A.A.; Thankappan, S.; Nataraj, R.; Pandian, D.; Ameen, F.; Poczai, P.; Sayyed, R.Z. Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.). Sustainability 2022, 14, 4618. [Google Scholar] [CrossRef]
- Sarabia, M.; Jakobsen, I.; Grønlund, M.; Carreon-Abud, Y.; Larsen, J. Rhizosphere Yeasts Improve P Uptake of a Maize Arbuscular Mycorrhizal Association. Appl. Soil Ecol. 2018, 125, 18–25. [Google Scholar] [CrossRef]
- Marques, A.R.; Resende, A.A.; Gomes, F.C.O.; Santos, A.R.O.; Rosa, C.A.; Duarte, A.A.; de Lemos-Filho, J.P.; dos Santos, V.L. Plant Growth–Promoting Traits of Yeasts Isolated from the Tank Bromeliad Vriesea minarum L.B. Smith and the Effectiveness of Carlosrosaea vrieseae for Promoting Bromeliad Growth. Braz. J. Microbiol. 2021, 52, 1417–1429. [Google Scholar] [CrossRef]
- Nutaratat, P.; Srisuk, N.; Arunrattiyakorn, P.; Limtong, S. Plant Growth-Promoting Traits of Epiphytic and Endophytic Yeasts Isolated from Rice and Sugar Cane Leaves in Thailand. Fungal Biol. 2014, 118, 683–694. [Google Scholar] [CrossRef]
- Kumla, J.; Nundaeng, S.; Suwannarach, N.; Lumyong, S. Evaluation of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea (Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorganisms 2020, 8, 1168. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Cornejo, P.; Kannan, V.R. Evaluation of the Production of Exopolysaccharide by Plant Growth Promoting Yeast Rhodotorula sp. Strain CAH2 under Abiotic Stress Conditions. Int. J. Biol. Macromol. 2019, 121, 55–62. [Google Scholar] [CrossRef]
- Sun, P.-F.; Fang, W.-T.; Shin, L.-Y.; Wei, J.-Y.; Fu, S.-F.; Chou, J.-Y. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L. PLoS ONE 2014, 9, e114196. [Google Scholar] [CrossRef]
- Ramos-Garza, J.; Bustamante-Brito, R.; Ángeles de Paz, G.; Medina-Canales, M.G.; Vásquez-Murrieta, M.S.; Wang, E.T.; Rodríguez-Tovar, A.V. Isolation and Characterization of Yeasts Associated with Plants Growing in Heavy-Metal- and Arsenic-Contaminated Soils. Can. J. Microbiol. 2016, 62, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Radić, D.; Karličić, V.; Đorđević, J.; Jovičić-Petrović, J.; Kljujev, I.; Lalević, B.; Raičević, V. Soil Yeasts Promoting Plant Growth: Benefits for the Development of Common Wheat and White Mustard. Zemdirb. Agric. 2022, 109, 27–34. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B.; Wang, Q.; Hou, J.; Wu, L.; Wood, J.L.; Luo, Y.; Franks, A.E. Characteristics of Metal-Tolerant Plant Growth-Promoting Yeast (Cryptococcus sp. NSE1) and Its Influence on Cd Hyperaccumulator Sedum Plumbizincicola. Environ. Sci. Pollut. Res. 2016, 23, 18621–18629. [Google Scholar] [CrossRef]
- Fu, S.-F.; Sun, P.-F.; Lu, H.-Y.; Wei, J.-Y.; Xiao, H.-S.; Fang, W.-T.; Cheng, B.-Y.; Chou, J.-Y. Plant Growth-Promoting Traits of Yeasts Isolated from the Phyllosphere and Rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016, 120, 433–448. [Google Scholar] [CrossRef]
- Braus, G.H. Aromatic Amino Acid Biosynthesis in the Yeast Saccharomyces Cerevisiae: A Model System for the Regulation of a Eukaryotic Biosynthetic Pathway. Microbiol. Rev. 1991, 55, 349–370. [Google Scholar] [CrossRef]
- Gómez-Arreaza, A.; Acosta, H.; Quiñones, W.; Concepción, J.L.; Michels, P.A.M.; Avilán, L. Extracellular Functions of Glycolytic Enzymes of Parasites: Unpredicted Use of Ancient Proteins. Mol. Biochem. Parasitol. 2014, 193, 75–81. [Google Scholar] [CrossRef]
- Lee, J.W.; Yook, S.; Koh, H.; Rao, C.V.; Jin, Y.-S. Engineering Xylose Metabolism in Yeasts to Produce Biofuels and Chemicals. Curr. Opin. Biotechnol. 2021, 67, 15–25. [Google Scholar] [CrossRef]
- Rao, R.P.; Hunter, A.; Kashpur, O.; Normanly, J. Aberrant Synthesis of Indole-3-Acetic Acid in Saccharomyces cerevisiae Triggers Morphogenic Transition, a Virulence Trait of Pathogenic Fungi. Genetics 2010, 185, 211–220. [Google Scholar] [CrossRef]
- Toyn, J.H.; Gunyuzlu, P.; White, W.H.; Thompson, L.A.; Hollis, G.F. A Counterselection for the Tryptophan Pathway in Yeast: 5-Fluoroanthranilic Acid Resistance. Yeast 2000, 16, 553–560. [Google Scholar] [CrossRef]
- Tzin, V.; Galili, G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. Arab. Book 2010, 8, e0132. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Khunnamwong, P.; Lertwattanasakul, N.; Jindamorakot, S.; Suwannarach, N.; Matsui, K.; Limtong, S. Evaluation of Antagonistic Activity and Mechanisms of Endophytic Yeasts against Pathogenic Fungi Causing Economic Crop Diseases. Folia Microbiol. 2020, 65, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Chen, O.; Yi, L.; Deng, L.; Ruan, C.; Zeng, K. Screening Antagonistic Yeasts against Citrus Green Mold and the Possible Biocontrol Mechanisms of Pichia galeiformis. J. Sci. Food Agric. 2020, 100, 3812–3821. [Google Scholar] [CrossRef]
- Cabañas, C.M.; Hernández, A.; Martínez, A.; Tejero, P.; Vázquez-Hernández, M.; Martín, A.; Ruiz-Moyano, S. Control of Penicillium Glabrum by Indigenous Antagonistic Yeast from Vineyards. Foods 2020, 9, 1864. [Google Scholar] [CrossRef]
- Abdel-Kareem, M.M.; Zohri, A.-N.A.; Nasr, S.A.E.E. Novel Marine Yeast Strains as Plant Growth-Promoting Agents Improve Defense in Wheat (Triticum aestivum) against Fusarium oxysporum. J. Plant Dis. Prot. 2021, 128, 973–988. [Google Scholar] [CrossRef]
- Lara-Capistran, L.; Zulueta-Rodriguez, R.; Castellanos-Cervantes, T.; Reyes-Perez, J.J.; Preciado-Rangel, P.; Hernandez-Montiel, L.G. Efficiency of Marine Bacteria and Yeasts on the Biocontrol Activity of Pythium Ultimum in Ancho-Type Pepper Seedlings. Agronomy 2020, 10, 408. [Google Scholar] [CrossRef]
- Ferraz, L.P.; Cunha, T.; da Silva, A.C.; Kupper, K.C. Biocontrol Ability and Putative Mode of Action of Yeasts against Geotrichum Citri-Aurantii in Citrus Fruit. Microbiol. Res. 2016, 188, 72–79. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible Coatings Incorporating Pomegranate Peel Extract and Biocontrol Yeast to Reduce Penicillium digitatum Postharvest Decay of Oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef]
- Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F. Volatile Organic Compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae Inhibit Growth of Decay Causing Fungi and Control Postharvest Diseases of Strawberries. Int. J. Food Microbiol. 2018, 265, 18–22. [Google Scholar] [CrossRef]
- Grzegorczyk, M.; Żarowska, B.; Restuccia, C.; Cirvilleri, G. Postharvest Biocontrol Ability of Killer Yeasts against Monilinia fructigena and Monilinia fructicola on Stone Fruit. Food Microbiol. 2017, 61, 93–101. [Google Scholar] [CrossRef]
- Golubev, W.I.; Kulakovskaya, T.V.; Shashkov, A.S.; Kulakovskaya, E.V.; Golubev, N.V. Antifungal Cellobiose Lipid Secreted by the Epiphytic Yeast Pseudozyma graminicola. Microbiology 2008, 77, 171–175. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Sui, Y. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa. Front. Microbiol. 2017, 8, e02021. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, G.Q.; Zhang, J.; Yang, L.; Che, H.J.; Jiang, D.H.; Huang, H.C. Control of Postharvest Botrytis Fruit Rot of Strawberry by Volatile Organic Compounds of Candida intermedia. Phytopathology 2011, 101, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile Organic Compounds Produced by Antarctic Strains of Candida sake Play a Role in the Control of Postharvest Pathogens of Apples. Biol. Control. 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Chen, P.-H.; Chen, R.-Y.; Chou, J.-Y. Screening and Evaluation of Yeast Antagonists for Biological Control of Botrytis cinerea on Strawberry Fruits. Mycobiology 2018, 46, 33–46. [Google Scholar] [CrossRef]
- Silva, T.M.; Stets, M.I.; Mazzetto, A.M.; Andrade, F.D.; Pileggi, S.A.V.; Fávero, P.R.; Cantú, M.D.; Carrilho, E.; Carneiro, P.I.B.; Pileggi, M. Degradation of 2,4-D Herbicide by Microorganisms Isolated from Brazilian Contaminated Soil. Braz. J. Microbiol. 2007, 38, 522–525. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.-H.; Kim, K.M.; Ryu, C.-M. Foliar Application of the Leaf-Colonizing Yeast Pseudozyma Churashimaensis elicits Systemic Defense of Pepper against Bacterial and Viral Pathogens. Sci. Rep. 2017, 7, 39432. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Zhang, B. Induced Resistance in Peach Fruit as Treated by Pichia guilliermondii and Their Possible Mechanism. Int. J. Food Prop. 2020, 23, 34–51. [Google Scholar] [CrossRef]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Synthesis of Mannose-Rich Exopolysaccharide by Rhodotorula Glutinis 16P Co-Cultured with Yeast or Bacteria. Z. Naturforschung C 2000, 55, 540–545. [Google Scholar] [CrossRef]
- Grigorova, D.; Simova, E.; Pavlova, K.; Frengova, G.; Beshkova, D. Polysaccharides Production by Yeast in Whey Ultrafiltrate. Biotechnol. Biotechnol. Equip. 1994, 8, 31–37. [Google Scholar] [CrossRef]
- Vogel, H.; Shukla, S.P.; Engl, T.; Weiss, B.; Fischer, R.; Steiger, S.; Heckel, D.G.; Kaltenpoth, M.; Vilcinskas, A. The Digestive and Defensive Basis of Carcass Utilization by the Burying Beetle and Its Microbiota. Nat. Commun. 2017, 8, 15186. [Google Scholar] [CrossRef] [PubMed]
- Varotto Boccazzi, I.; Ottoboni, M.; Martin, E.; Comandatore, F.; Vallone, L.; Spranghers, T.; Eeckhout, M.; Mereghetti, V.; Pinotti, L.; Epis, S. A Survey of the Mycobiota Associated with Larvae of the Black Soldier Fly (Hermetia illucens) Reared for Feed Production. PLoS ONE 2017, 12, e0182533. [Google Scholar] [CrossRef] [PubMed]
- Al Naggar, Y.; Singavarapu, B.; Paxton, R.J.; Wubet, T. Bees under Interactive Stressors: The Novel Insecticides Flupyradifurone and Sulfoxaflor along with the Fungicide Azoxystrobin Disrupt the Gut Microbiota of Honey Bees and Increase Opportunistic Bacterial Pathogens. Sci. Total Environ. 2022, 849, 157941. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Keesey, I.W.; Hansson, B.S.; Knaden, M. Gut Microbiota Affects Development and Olfactory Behavior in Drosophila melanogaster. J. Exp. Biol. 2019, 222, jeb192500. [Google Scholar] [CrossRef]
- De Lima Targino, H.M.; Silva, V.S.L.; Escobar, I.E.C.; Ribeiro, P.R.d.A.; Gava, C.A.T.; Fernandes-Júnior, P.I. Maize-Associated Meyerozyma from the Brazilian Semiarid Region Are Effective Plant Growth-Promoting Yeasts. Rhizosphere 2022, 22, 100538. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Larraya, L.; Farran, I.; Ancin, M.; Veramendi, J. Successful Biocontrol of Major Postharvest and Soil-Borne Plant Pathogenic Fungi by Antagonistic Yeasts. Biol. Control. 2021, 160, 104683. [Google Scholar] [CrossRef]
- FAO. FAOSAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 15 September 2024).
- Goulart, A.C.P.; Nunes, J.C.d.S. Evolução e Cenário Atual Do Tratamento de Sementes de Soja Com Fungicidas No Brasil; Embrapa: Brasilia, Brazil, 2021. [Google Scholar]
- International Herbicide-Resistant Weed Database. Most Recent Cases of Herbicide Resistant Weeds Entered into the Database. Available online: https://www.weedscience.com/Pages/RecentCases.aspx/ (accessed on 31 July 2024).
- Guo, L.; Li, R.; Chen, W.; Dong, F.; Zheng, Y.; Li, Y. The Interaction Effects of Pesticides with Saccharomyces cerevisiae and Their Fate during Wine-Making Process. Chemosphere 2023, 328, 138577. [Google Scholar] [CrossRef]
- Wachowska, U.; Irzykowski, W.; Jędryczka, M. Agrochemicals: Effect on Genetic Resistance in Yeasts Colonizing Winter Wheat Kernels. Ecotoxicol. Env. Saf. 2018, 162, 77–84. [Google Scholar] [CrossRef]
- Čuš, F.; Raspor, P. The Effect of Pyrimethanil on the Growth of Wine Yeasts. Lett. Appl. Microbiol. 2008, 47, 54–59. [Google Scholar] [CrossRef]
- Viegas, C.A.; Cabral, M.G.; Teixeira, M.C.; Neumann, G.; Heipieper, H.J.; Sá-Correia, I. Yeast Adaptation to 2,4-Dichlorophenoxyacetic Acid Involves Increased Membrane Fatty Acid Saturation Degree and Decreased OLE1 Transcription. Biochem. Biophys. Res. Commun. 2005, 330, 271–278. [Google Scholar] [CrossRef]
- Marchi, G.; Carvalho, E.; Tadeu, S.M.; Guimarães, G. Documentos 227 Herbicidas: Mecanismos de Ação e Uso Empresa Brasileira de Pesquisa Agropecuária Embrapa Cerrados Ministério Da Agricultura, Pecuária e Abastecimento; Embrapa: Brasilia, Brazil, 2008. [Google Scholar]
- Cabral, M.G.; Viegas, C.A.; Teixeira, M.C.; Sá-Correia, I. Toxicity of Chlorinated Phenoxyacetic Acid Herbicides in the Experimental Eukaryotic Model Saccharomyces Cerevisiae: Role of PH and of Growth Phase and Size of the Yeast Cell Population. Chemosphere 2003, 51, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Telo, J.P.; Duarte, N.F.; Sá-Correia, I. The Herbicide 2,4-Dichlorophenoxyacetic Acid Induces the Generation of Free-Radicals and Associated Oxidative Stress Responses in Yeast. Biochem. Biophys. Res. Commun. 2004, 324, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Barney, J.B.; Winans, M.J.; Blackwood, C.B.; Pupo, A.; Gallagher, J.E.G. The Yeast Atlas of Appalachia: Species and Phenotypic Diversity of Herbicide Resistance in Wild Yeast. Diversity 2020, 12, 139. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Environmental and Health Effects of the Herbicide Glyphosate. Sci. Total Environ. 2018, 616, 255–268. [Google Scholar] [CrossRef]
- Braconi, D.; Possenti, S.; Laschi, M.; Geminiani, M.; Lusini, P.; Bernardini, G.; Santucci, A. Oxidative Damage Mediated by Herbicides on Yeast Cells. J. Agric. Food Chem. 2008, 56, 3836–3845. [Google Scholar] [CrossRef]
- Ravishankar, A.; Cumming, J.R.; Gallagher, J.E.G. Mitochondrial Metabolism Is Central for Response and Resistance of Saccharomyces cerevisiae to Exposure to a Glyphosate-Based Herbicide. Environ. Pollut. 2020, 262, 114359. [Google Scholar] [CrossRef]
- Lescano, M.; Fussoni, N.; Vidal, E.; Zalazar, C. Biodegradation of Pesticide-Contaminated Wastewaters from a Formulation Plant Employing a Pilot Scale Biobed. Sci. Total Environ. 2022, 807, 150758. [Google Scholar] [CrossRef]
- Stoyanova, K.; Gerginova, M.; Peneva, N.; Dincheva, I.; Alexieva, Z. Biodegradation and Utilization of the Pesticides Glyphosate and Carbofuran by Two Yeast Strains. Processes 2023, 11, 3343. [Google Scholar] [CrossRef]
- Gil, F.N.; Gonçalves, A.C.; Becker, J.D.; Viegas, C.A. Comparative Analysis of Transcriptomic Responses to Sub-Lethal Levels of Six Environmentally Relevant Pesticides in Saccharomyces cerevisiae. Ecotoxicology 2018, 27, 871–889. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Fernandes, A.R.; Mira, N.P.; Becker, J.D.; Sá-Correia, I. Early Transcriptional Response of Saccharomyces cerevisiae to Stress Imposed by the Herbicide 2,4-Dichlorophenoxyacetic Acid. FEMS Yeast Res. 2006, 6, 230–248. [Google Scholar] [CrossRef]
- National Library of Medicine Pub Chem: Explore Chemistry. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 10 July 2024).
- Kumar, A.; Trefault, N.; Olaniran, A.O. Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid: Insight into the Enzymes and Catabolic Genes Involved, Their Regulation and Biotechnological Implications. Crit. Rev. Microbiol. 2016, 42, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Patriarcheas, D.; Momtareen, T.; Gallagher, J.E.G. Yeast of Eden: Microbial Resistance to Glyphosate from a Yeast Perspective. Curr. Genet. 2023, 69, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, W.-J.; Huang, Y.; Li, J.; Zhong, J.; Zhang, W.; Zou, Y.; Mishra, S.; Bhatt, P.; Chen, S. Insights into the Microbial Degradation and Resistance Mechanisms of Glyphosate. Environ. Res. 2022, 215, 114153. [Google Scholar] [CrossRef]
- Ariffin, F.; Rahman, S.A. Biodegradation of Carbofuran; A Review. J. Environ. Microbiol. Toxicol. 2020, 8, 50–57. [Google Scholar] [CrossRef]
- Kocárek, M.; Artikov, H.; Vorisek, K.; Boruvka, L. Pendimethalin Degradation in Soil and Its Interaction with Soil Microorganisms. Soil Water Res. 2016, 11, 213–219. [Google Scholar] [CrossRef]
- Han, Y.; Tang, Z.; Bao, H.; Wu, D.; Deng, X.; Guo, G.; Ye, B.-C.; Dai, B. Degradation of Pendimethalin by the Yeast YC2 and Determination of Its Two Main Metabolites. RSC Adv. 2019, 9, 491–497. [Google Scholar] [CrossRef]
- Abigail, E.A.; Abdul Salam, J.; Das, N. Atrazine Degradation in Liquid Culture and Soil by a Novel Yeast Pichia kudriavzevii Strain Atz-EN-01 and Its Potential Application for Bioremediation. J. Appl. Pharm. Sci. 2013, 3, 35–43. [Google Scholar]
- Zaharia, M.; Jurcoane, S.; Maftei, D.; Pui, A.; Dumitras-Hutanu, C.A.; Gradinaru, R. Yeast Biodegradation of Some Pesticide Dinitrophenols. Rom. Biotechnol. Lett. 2013, 18, 8151. [Google Scholar]
- Bobate, S.; Bokade, P.; Bajaj, A. Engineered Yeasts as Biocatalysts for Pesticide Degradation. In Advances in Yeast Biotechnology for Biofuels and Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; pp. 449–474. [Google Scholar]
- Marraffini, L.A. CRISPR-Cas Immunity in Prokaryotes. Nature 2015, 526, 55–61. [Google Scholar] [CrossRef]
- Nambiar, T.S.; Baudrier, L.; Billon, P.; Ciccia, A. CRISPR-Based Genome Editing through the Lens of DNA Repair. Mol. Cell 2022, 82, 348–388. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Shen, W.; Yang, H.; Chen, X. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges. Int. J. Mol. Sci. 2023, 24, 15310. [Google Scholar] [CrossRef] [PubMed]
- Pacesa, M.; Pelea, O.; Jinek, M. Past, Present, and Future of CRISPR Genome Editing Technologies. Cell 2024, 187, 1076–1100. [Google Scholar] [CrossRef]
- Imaishi, H.; Matumoto, S. Isolation and Functional Characterization in Yeast of CYP72A18, a Rice Cytochrome P450 That Catalyzes (ω-1)-Hydroxylation of the Herbicide Pelargonic Acid. Pestic. Biochem. Physiol. 2007, 88, 71–77. [Google Scholar] [CrossRef]
- Shiota, N.; Kodama, S.; Inui, H.; Ohkawa, H. Expression of Human Cytochromes P450 1A1 and P450 1A2 as Fused Enzymes with Yeast NADPH-Cytochrome P450 Oxidoreductase in Transgenic Tobacco Plants. Biosci. Biotechnol. Biochem. 2000, 64, 2025–2033. [Google Scholar] [CrossRef]
- Hayashi, E.; Fuzimoto, K.; Imaishi, H. Expression of Arabidopsis Thaliana Cytochrome P450 Monooxygenase, CYP71A12, in Yeast Catalyzes the Metabolism of Herbicide Pyrazoxyfen. Plant Biotechnol. 2007, 24, 393–396. [Google Scholar] [CrossRef]
- Mi, H.; Zhou, Q.; Li, G.; Tao, Y.; Wang, A.; Wang, P.; Yang, T.; Zhu, J.; Li, Y.; Wei, C.; et al. Molecular Responses Reveal That Two Glutathione S-Transferase CsGSTU8s Contribute to Detoxification of Glyphosate in Tea Plants (Camellia sinensis). Int. J. Biol. Macromol. 2024, 277, 134304. [Google Scholar] [CrossRef]
- Kuroda, K.; Ueda, M. Cell Surface Engineering of Yeast for Applications in White Biotechnology. Biotechnol. Lett. 2011, 33, 1–9. [Google Scholar] [CrossRef]
- Ye, M.; Ye, Y.; Du, Z.; Chen, G. Cell-Surface Engineering of Yeasts for Whole-Cell Biocatalysts. Bioprocess. Biosyst. Eng. 2021, 44, 1003–1019. [Google Scholar] [CrossRef]
- Takayama, K.; Suye, S.-I.; Kuroda, K.; Ueda, M.; Kitaguchi, T.; Tsuchiyama, K.; Fukuda, T.; Chen, W.; Mulchandani, A. Surface Display of Organophosphorus Hydrolase on Saccharomyces cerevisiae. Biotechnol. Prog. 2006, 22, 939–943. [Google Scholar] [CrossRef]
- Fukuda, T.; Tsuchiyama, K.; Makishima, H.; Takayama, K.; Mulchandani, A.; Kuroda, K.; Ueda, M.; Suye, S. Improvement in Organophosphorus Hydrolase Activity of Cell Surface-Engineered Yeast Strain Using Flo1p Anchor System. Biotechnol. Lett. 2010, 32, 655–659. [Google Scholar] [CrossRef]
- Rezende, C.C.; Silva, M.A.; Frasca, L.L.d.M.; Faria, D.R.; Filippi, M.C.C.; Lanna, A.C.; Nascente, A.S. Microrganismos Multifuncionais: Utilização Na Agricultura. Res. Soc. Dev. 2021, 10, e50810212725. [Google Scholar] [CrossRef]
- Gabardo, G.; Da Silva, H.L.; Clock, D.C. “On Farm” Production of Microorganisms in Brazil. Sci. Agrar. Parana. 2021, 20, 312–318. [Google Scholar] [CrossRef]
Yeast Species | Physiological Process | References |
---|---|---|
Aureobasidium pullulans, Myriangiales sp., Occultifur brasiliensis, Candida silvae, Cryptococcus podzolicus | Nitrogen and carbon availability | [18] |
Pichia kudriavzevii, Issatchenkia terricola | Phosphorus availability, IAA 1 production | [19] |
Cryptococcus flavus, Candida railenensis | Phosphorus availability | [20] |
Meyerozyma guilliermondii, Candida zemplinina, Candida pimensis, Lachancea lanzarotensis, Rhodotorula mucilaginosa | IAA 1 production | [17] |
Kazachstania rupicola, Rhodosporidium diabovatum, Saccharomyces cerevisiae | IAA 1 production | [21] |
Hannaella sinensis, Cryptococcus flavus, Rhodosporidium paludigenum, Torulaspora globosa | IAA 1, NH3, and siderophore production | [22] |
Papiliotrema laurentii, Wickerhamomyces anomalus | IAA 1 and NH3 production, calcium and zinc solubilization | [23] |
Rhodotorula mucilaginosa | IAA 1 and siderophore production, phosphorus solubilization | [24] |
Cryptococcus flavus, Hannaella coprosmaensis, Pseudozyma aphidis, Sporisorium reilianum, Ustilago esculenta | IAA 1 production | [25] |
Rhodotorula mucilaginosa, Cystobasidium sloffiae | IAA 1 production | [26] |
Schwanniomyces occidentalis, Cyberlindnera saturnus, Candida tropicalis | NH3 production, phosphorus and zinc solubilization | [27] |
Cryptococcus sp. | Phosphorus solubilization | [28] |
Aureobasidium pullulans, Candida sp., Dothideomycetes sp., Galactomyces candidum, Hanseniaspora uvarum, Meyerozyma caribbica, Barnettozyma californica, Pseudozyma aphidis | IAA 1 and NH3 production, phosphorus and zinc solubilization | [29] |
Yeast Species | Pathogen | Yeast Antagonist Action | References |
---|---|---|---|
Papiliotrema laurentii | Pythium ultimum | β-1,3-glucanase production | [41] |
Rhodotorula minuta, Candida azyma, Aureobasidium pullulans | Georichum citri-aurantii | Competition for nutrients, β-1,3-glucanase, chitinase, killer activity | [42] |
Wickerhamomyces anomalus | Rhizoctonia solani, Curvularia lunata, Fusarium moniliforme | Production of VOCs, β-1,3-glucanase, and chitinase | [37] |
Wickerhamomyces anomalus | Penicillium digitatum | β-glucanase production | [43] |
Wickerhamomyces anomalus, Metschnikowia pulcherrima, Saccharomyces cerevisiae | Botrytis cinerea | VOC production | [44] |
Debaryomyces hansenii and Wickerhamomyces anomalus | Monilinia fructigena, Monilinia fructicola | Hydrolytic enzymes, killer Toxins, and VOCs | [45] |
Pichia galeiformis | Penicillium digitatum | Competition for space and nutrients, VOC production | [38] |
Pseudozyma graminicola | Bullera hannae, Cryptococcus nemorosus, Dacrymyces stillatus, Neovossia setariae, Sporobolomyces singularis | Cellobiose lipid production | [46] |
Candida diversa | Botrytis cinerea | Affect spore germination and germ tube | [47] |
Candida intermedia | Botrytis cinerea | VOC production | [48] |
Candida sake | Penicillium expansum | VOC production | [49] |
Galactomyces candidum | Botrytis cinerea | VOC production | [50] |
Agrochemical | Yeast | Degradation | Action Mechanism | Degradation Conditions | Resulting Metabolites | References |
---|---|---|---|---|---|---|
Glyphosate | Candida tropicalis and Trichosporon cutaneum | 76% (C. tropicalis) and 58% (T. cutaneum) in 192 h | Conversion of glyphosate into methylglycine and glycine | Use of glyphosate as a carbon source | Methylglycine, glycine | [77] |
Carbofuran | C. tropicalis and T. cutaneum | Almost 100% (T. cutaneum) and 23.4% (C. tropicalis) in 192 h | Biotransformation of carbofuran to carbofuran-7-phenol and pyruvate | Normal growth on rich medium; significant reduction on minimal medium | Carbofuran-7-phenol pyruvic acid | [77] |
Pendimethalin | Clavispora lusitaniae | 74% in 8 days | Oxidation of amine groups | Optimal pH between 4.5 and 5, with maximum degradation at 30 °C | 1,2-dimethyl-3,5-dinitro-4-N(buta-1,3-dien 2-yl)-dinitrobenzenamine-N-oxide and 1,2-dimethyl-3,5-dinitro-4-N(prop-1-en-2-yl)-dinitrobenzenamine-N oxide | [86] |
Atrazine | Pichia kudriavzevii | 100% in 7 days | Dechlorination and hydrolysis | pH 7.0, temperature 30 °C, inoculum size 3% (v/v) and shaking at 120 rpm | hydroxyatrazine, N-isopropylamylidene, and cyanuric acid | [87] |
Dinitrophenol (DNOC, DNG, DNPED, Dinocap) | Saccharomyces cerevisiae | In 1 week: partial degradation for DNOC and Dinocap; DNPED completely degraded. Pesticide concentration: 10−3 M. | Not specified | Yeast suspensions at 5 g/L for 1 week in a batch system | Not specified | [88] |
Fluazifop-P-butyl | Saccharomyces cerevisiae, Yarrowia lipolytica and Debaryomyces hansenii | Up to 71.2% in 7 days | Not specified | Horticultural soil, temperature at 21 °C, and humidity between 70 and 71%. | Not specified | [2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pritsch, E.J.P.; Schutz, D.; de Oliveira, C.G.; Camargo, A.F.; Cabrera, L.C.; dos Santos, A.A.; Mossi, A.J.; Treichel, H.; Alves, S.L., Jr. A Two-Way Street: How Are Yeasts Impacted by Pesticides and How Can They Help Solve Agrochemical Contamination Problems? Processes 2024, 12, 2555. https://doi.org/10.3390/pr12112555
Pritsch EJP, Schutz D, de Oliveira CG, Camargo AF, Cabrera LC, dos Santos AA, Mossi AJ, Treichel H, Alves SL Jr. A Two-Way Street: How Are Yeasts Impacted by Pesticides and How Can They Help Solve Agrochemical Contamination Problems? Processes. 2024; 12(11):2555. https://doi.org/10.3390/pr12112555
Chicago/Turabian StylePritsch, Eduardo J. P., Danielli Schutz, Camila G. de Oliveira, Aline F. Camargo, Liziara C. Cabrera, Angela A. dos Santos, Altemir J. Mossi, Helen Treichel, and Sérgio L. Alves, Jr. 2024. "A Two-Way Street: How Are Yeasts Impacted by Pesticides and How Can They Help Solve Agrochemical Contamination Problems?" Processes 12, no. 11: 2555. https://doi.org/10.3390/pr12112555
APA StylePritsch, E. J. P., Schutz, D., de Oliveira, C. G., Camargo, A. F., Cabrera, L. C., dos Santos, A. A., Mossi, A. J., Treichel, H., & Alves, S. L., Jr. (2024). A Two-Way Street: How Are Yeasts Impacted by Pesticides and How Can They Help Solve Agrochemical Contamination Problems? Processes, 12(11), 2555. https://doi.org/10.3390/pr12112555