Mechanical and Tribological Performance of Epoxy Composites Reinforced with YSZ Waste Ceramics for Sustainable Green Engineering Applications
Abstract
:1. Introduction
2. Material Preparation and Experimental Details
2.1. Material Selection
2.2. Composite Fabrication
2.3. Experimental Setup and Procedure
3. Results and Discussion
3.1. Tensile Results
3.2. Tribological Results
3.3. Sustainability Aspects and Potential for Real-World Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aoki-Suzuki, C.; Dente, S.M.R.; Hashimoto, S. Assessing economy-wide eco-efficiency of materials produced in Japan. Resour. Conserv. Recycl. 2023, 194, 106981. [Google Scholar] [CrossRef]
- Shalwan, A.; Alajmi, A.; Yousif, B. Theoretical Study of the Effect of Fibre Porosity on the Heat Conductivity of Reinforced Gypsum Composite Material. Polymers 2022, 14, 3973. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.; Agunsoye, J.; Hassan, S.; Kana, M.Z. Epoxy resin based composites, mechanical and tribological properties: A review. Tribol. Ind. 2015, 37, 500. [Google Scholar]
- Mahamude, A.S.F.; Harun, W.S.W.; Kadirgama, K.; Farhana, K.; Ramasamy, D.; Samylingam, L.; Aslfattahi, N. Thermal performance of nanomaterial in solar collector: State-of-play for graphene. J. Energy Storage 2021, 42, 103022. [Google Scholar] [CrossRef]
- Hegab, H.; Khanna, N.; Monib, N.; Salem, A. Design for sustainable additive manufacturing: A review. Sustain. Mater. Technol. 2023, 35, e00576. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Khan, S.; Suman, R. Sustainability 4.0 and its applications in the field of manufacturing. Internet Things Cyber-Phys. Syst. 2022, 2, 82–90. [Google Scholar] [CrossRef]
- Ramadan, M.; Reda, R. Cnts, Al2O3 and SiO2 reinforced epoxy: Tribological properties of polymer nanocomposites. Tribol. Ind. 2017, 39, 357. [Google Scholar] [CrossRef]
- Samylingam, I.; Kadirgama, K.; Aslfattahi, N.; Samylingam, L.; Ramasamy, D.; Harun, W.; Samykano, M.; Saidur, R. Review on thermal energy storage and eutectic nitrate salt melting point. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1078, 012034. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, W.; Pi, Y.; Zhang, Y.; Chen, Y.; Zhang, L. Study on preparation of glass-ceramics from multiple solid waste and coupling mechanism of heavy metals. Ceram. Int. 2022, 48, 36166–36177. [Google Scholar] [CrossRef]
- Er, Y.; Sutcu, M.; Gencel, O.; Totiç, E.; Erdogmus, E.; Cay, V.V.; Munir, M.J.; Kazmi, S.M.S. Recycling of metallurgical wastes in ceramics: A sustainable approach. Constr. Build. Mater. 2022, 349, 128713. [Google Scholar] [CrossRef]
- Xia, F.; Cui, S.; Pu, X. Performance study of foam ceramics prepared by direct foaming method using red mud and K-feldspar washed waste. Ceram. Int. 2022, 48, 5197–5203. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Olalusi, O.B.; Babagbale, D.P. Production of lightweight mortar using recycled waste papers and pulverized ceramics: Mechanical and microscale properties. J. Build. Eng. 2021, 39, 102233. [Google Scholar] [CrossRef]
- Pommer, V.; Vejmelková, E.; Černý, R.; Keppert, M. Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceram. Int. 2021, 47, 31574–31582. [Google Scholar] [CrossRef]
- Zhang, G.-Y.; Lin, R.-S.; Wang, X.-Y. Effect of waste oyster shell powder on the properties of alkali-activated slag–waste ceramic geopolymers. J. Mater. Res. Technol. 2023, 22, 1768–1780. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Li, J.; Li, L.-X.; Xu, H.-M.; Han, C.; Liu, M.-Q.; Xiang, J.; Shen, X.-Q.; Jing, M.-X. Boosting lithium-ion transport capability of LAGP/PPO composite solid electrolyte via component regulation from ‘Ceramics-in-Polymer’ to ‘Polymer-in-Ceramics’. Ceram. Int. 2022, 48, 25949–25957. [Google Scholar] [CrossRef]
- Shinyjoy, E.; Ramya, S.; Saravanakumar, P.; Manoravi, P.; Kavitha, L.; Gopi, D. Chapter 28—Naturally derived ceramics–polymer composite for biomedical applications. In Advances in Biomedical Polymers and Composites; Pal, K., Verma, S., Datta, P., Barui, A., Hashmi, S.A.R., Srivastava, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 711–743. [Google Scholar]
- Zhao, S.; Chen, J.; Yang, F.; Chen, G.; Zhang, L.; Yang, Z. Microstructural evolution of polymer derived SiC ceramics and SiC/SiC composite under 1.8MeV electron irradiation. J. Nucl. Mater. 2023, 580, 154408. [Google Scholar] [CrossRef]
- Robinson, J.L.; Brudnicki, P.; Lu, H.H. 1.21 Polymer-Bioactive Ceramic Composites. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 460–477. [Google Scholar]
- Yousif, B.F. Editorial for SI: Materials, design and tribology. Mater. Des. 2013, 48, 1. [Google Scholar] [CrossRef]
- Yousif, B.F. Design of newly fabricated tribological machine for wear and frictional experiments under dry/wet condition. Mater. Des. 2013, 48, 2–13. [Google Scholar] [CrossRef]
- Katiyar, J.K.; Ruggiero, A.; Rao, T.; Davim, J.P. Industrial Tribology: Sustainable Machinery and Industry 4.0; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kumar, R.; Samykano, M.; Pandey, A.; Kadirgama, K.; Tyagi, V. A comparative study on thermophysical properties of functionalized and non-functionalized Multi-Walled Carbon Nano Tubes (MWCNTs) enhanced salt hydrate phase change material. Sol. Energy Mater. Sol. Cells 2022, 240, 111697. [Google Scholar]
- Samylingam, L.; Aslfattahi, N.; Kok, C.K.; Kadirgama, K.; Sazali, N.; Liew, K.W.; Schmirler, M.; Ramasamy, D.; Harun, W.S.W.; Samykano, M. Enhancing Lubrication Efficiency and Wear Resistance in Mechanical Systems through the Application of Nanofluids: A Comprehensive Review. J. Adv. Res. Micro Nano Eng. 2024, 16, 1–18. [Google Scholar] [CrossRef]
- Panchal, M.; Minugu, O.P.; Gujjala, R.; Ojha, S.; Mallampati Chowdary, S.; Mohammad, A. Study of environmental behavior and its effect on solid particle erosion behavior of hierarchical porous activated carbon-epoxy composite. Polym. Compos. 2022, 43, 2276–2287. [Google Scholar] [CrossRef]
- Shiv, J.K.; Kumar, K.; Jayapalan, S. Recent advances in polymer using metal oxides nanocomposite and its hybrid fillers for tribological application. Adv. Mater. Process. Technol. 2023, 1–12. [Google Scholar] [CrossRef]
- Amurin, L.G.; Felisberto, M.D.; Ferreira, F.L.; Soraes, P.H.; Oliveira, P.N.; Santos, B.F.; Valeriano, J.C.; de Miranda, D.C.; Silva, G.G. Multifunctionality in ultra high molecular weight polyethylene nanocomposites with reduced graphene oxide: Hardness, impact and tribological properties. Polymer 2022, 240, 124475. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, J.; You, Z.; Ran, X.; Liu, Y.; Li, S.; Li, S. Effect of TiO2 content on the microstructure and mechanical and wear properties of yttria-stabilized zirconia ceramics prepared by pressureless sintering. Mater. Res. Express 2020, 6, 125211. [Google Scholar] [CrossRef]
- He, Y.; Zhang, S.; He, Y.; Song, R.; Zhang, Z.; Liu, B.; Li, H.; Shangguan, J. Effects of yttrium-stabilized zirconia (different yttrium content) doping on the structure, corrosion resistance and wear resistance of Ni-P electroless coating. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130059. [Google Scholar] [CrossRef]
- Jadhav, P.M.; Kumar Reddy, N.S. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 346, 012007. [Google Scholar] [CrossRef]
- Ramachandran, K.; Ramasamy, D.; Samykano, M.; Samylingam, L.; Tarlochan, F.; Najafi, G. Evaluation of specific heat capacity and density for cellulose nanocrystal-based nanofluid. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 51, 169–186. [Google Scholar]
- Samykano, M.; Kananathan, J.; Kadirgama, K.; Amirruddin, A.; Ramasamy, D.; Samylingam, L. Characterisation, Performance and Optimisation of Nanocellulose Metalworking Fluid (MWF) for Green Machining Process. Int. J. Automot. Mech. Eng. 2021, 18, 9188–9207. [Google Scholar] [CrossRef]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM G99; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 2023.
- Ahmed, F.; Khanam, A.; Samylingam, L.; Aslfattahi, N.; Saidur, R. Assessment of thermo-hydraulic performance of MXene-based nanofluid as coolant in a dimpled channel: A numerical approach. J. Therm. Anal. Calorim. 2022, 147, 12669–12692. [Google Scholar] [CrossRef]
- Rangaswamy, H.; Chandrashekarappa, M.P.G.; Pimenov, D.Y.; Giasin, K.; Wojciechowski, S. Experimental investigation and optimization of compression moulding parameters for MWCNT/glass/kevlar/epoxy composites on mechanical and tribological properties. J. Mater. Res. Technol. 2021, 15, 327–341. [Google Scholar] [CrossRef]
- Tavadi, A.R.; Nagabhushana, N.; Vivek Bhandarkar, V.; Jagadeesha, T.; Kerur, M.R.; Rudresha, S.; Durga Prasad, C.; Rajesh Kannan, A.; Mohan, D.G. Investigation on mechanical and sliding wear behavior of pongamia-oil-cake/basalt fiber-reinforced epoxy hybrid composites. Arab. J. Sci. Eng. 2024, 49, 2311–2325. [Google Scholar] [CrossRef]
- Punj, S.; Singh, J.; Singh, K. Ceramic biomaterials: Properties, state of the art and future prospectives. Ceram. Int. 2021, 47, 28059–28074. [Google Scholar] [CrossRef]
- El-Dieb, A.S.; Kanaan, D.M. Ceramic waste powder an alternative cement replacement–Characterization and evaluation. Sustain. Mater. Technol. 2018, 17, e00063. [Google Scholar] [CrossRef]
- Andreola, F.; Barbieri, L.; Lancellotti, I.; Leonelli, C.; Manfredini, T. Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceram. Int. 2016, 42, 13333–13338. [Google Scholar] [CrossRef]
- Ritchie, R.O. Toughening materials: Enhancing resistance to fracture. Philos. Trans. R. Soc. A 2021, 379, 20200437. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Zhou, X.-P. Fracture process zone (FPZ) in quasi-brittle materials: Review and new insights from flawed granite subjected to uniaxial stress. Eng. Fract. Mech. 2022, 274, 108795. [Google Scholar] [CrossRef]
- Ghazal, A.A. The Process of Maintenance and Assessment of The Universal Testing Material Machine H50KS. J Mater Sci Appl 2020, 4, 1–12. [Google Scholar]
- Ganguly, D.; Bera, A.; Hore, R.; Khanra, S.; Maji, P.K.; Kotnees, D.K.; Chattopadhyay, S. Coining the attributes of nano to micro dual hybrid silica-ceramic waste filler based green HNBR composites for triple percolation: Mechanical properties, thermal, and electrical conductivity. Chem. Eng. J. Adv. 2022, 11, 100338. [Google Scholar] [CrossRef]
- Ray, D.; Bhattacharya, D.; Mohanty, A.K.; Drzal, L.T.; Misra, M. Static and dynamic mechanical properties of vinylester resin matrix composites filled with fly ash. Macromol. Mater. Eng. 2006, 291, 784–792. [Google Scholar] [CrossRef]
- Talreja, R.; Waas, A.M. Concepts and definitions related to mechanical behavior of fiber reinforced composite materials. Compos. Sci. Technol. 2022, 217, 109081. [Google Scholar] [CrossRef]
- Anamalai, K.; Samylingam, L.; Kadirgama, K.; Samykano, M.; Najafi, G.; Ramasamy, D.; Rahman, M. Multi-objective optimization on the machining parameters for bio-inspired nanocoolant. J. Therm. Anal. Calorim. 2019, 135, 1533–1544. [Google Scholar] [CrossRef]
- Samsudin, S.S.; Abdul Majid, M.S.; Mohd Jamir, M.R.; Osman, A.F.; Jaafar, M.; Alshahrani, H.A. Physical, thermal transport, and compressive properties of epoxy composite filled with graphitic-and ceramic-based thermally conductive nanofillers. Polymers 2022, 14, 1014. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Khedr, M.; Elsheikh, A.H.; Liu, J.; Zeng, Y.; Sebae, T.A.; Abd El-Baky, M.A.; Darwish, M.A.; Daoush, W.M.; Li, X. Influence of nanoparticles addition on the fatigue failure behavior of metal matrix composites: Comprehensive review. Eng. Fail. Anal. 2023, 155, 107751. [Google Scholar] [CrossRef]
- Liu, M.; Li, X. Mechanical properties measurement of materials and devices at micro-and nano-scale by optical methods: A review. Opt. Lasers Eng. 2022, 150, 106853. [Google Scholar] [CrossRef]
- Mukherjee, G. Matrices for Composite Materials: Polymers, Metals, Ceramics, and Cements. In Toughened Composites; CRC Press: Boca Raton, FL, USA, 2022; pp. 81–99. [Google Scholar]
- Pesode, P.; Barve, S. Comparison and performance of α, α + β and β titanium alloys for biomedical applications. Surf. Rev. Lett. 2023, 30, 2330012. [Google Scholar] [CrossRef]
- Eaki, M.; Kadirgama, K.; Abou El Hossein, K.; Samylingam, L.; Kok, C. Enhancing Machining performance in Stainless Steel Machining using MXene Coolant: A Detailed Examination. Int. J. Automot. Mech. Eng. 2024, 21, 10993–11009. [Google Scholar] [CrossRef]
- Venturini, A.B.; Prochnow, C.; Pereira, G.K.; Segala, R.D.; Kleverlaan, C.J.; Valandro, L.F. Fatigue performance of adhesively cemented glass-, hybrid-and resin-ceramic materials for CAD/CAM monolithic restorations. Dent. Mater. 2019, 35, 534–542. [Google Scholar] [CrossRef]
- Kadirgama, K.; Samylingam, L.; Aslfattahi, N.; Samykano, M.; Ramasamy, D.; Saidur, R. Experimental investigation on the optical and stability of aqueous ethylene glycol/mxene as a promising nanofluid for solar energy harvesting. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1062, 012022. [Google Scholar] [CrossRef]
- Gonçalves, P.T.; Arteiro, A.; Rocha, N.; Pina, L. Numerical analysis of micro-residual stresses in a carbon/epoxy polymer matrix composite during curing process. Polymers 2022, 14, 2653. [Google Scholar] [CrossRef]
- Fernandes de Castro, E.; Bomfim Azevedo, V.L.; Nima, G.; Scopin de Andrade, O.; dos Santos Dias, C.T.; Giannini, M. Adhesion, Mechanical Properties, and Microstructure of Resin-matrix CAD-CAM Ceramics. J. Adhes. Dent. 2020, 22, 421–431. [Google Scholar]
- Bapat, R.A.; Yang, H.J.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Arora, S.; Rawal, S.; Kesharwani, P. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Adv. 2022, 12, 12773–12793. [Google Scholar] [CrossRef]
- Chandra, K.S.; Sarkar, D. Ceramic Coatings. In Ceramic Processing; CRC Press: Boca Raton, FL, USA, 2019; pp. 133–166. [Google Scholar]
- Hisham, S.; Kadirgama, K.; Alotaibi, J.G.; Alajmi, A.E.; Ramasamy, D.; Sazali, N.; Kamarulzaman, M.K.; Yusaf, T.; Samylingam, L.; Aslfattahi, N. Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability. Tribol. Int. 2024, 194, 109506. [Google Scholar] [CrossRef]
- Samylingam, L.; Anamalai, K.; Kadirgama, K.; Samykano, M.; Ramasamy, D.; Noor, M.; Najafi, G.; Rahman, M.; Xian, H.W.; Sidik, N.A.C. Thermal analysis of cellulose nanocrystal-ethylene glycol nanofluid coolant. Int. J. Heat Mass Transf. 2018, 127, 173–181. [Google Scholar] [CrossRef]
- Kadirgama, K.; Noor, M.; Rahman, M.; Rejab, M.; Haron, C.; Abou-El-Hossein, K.A. Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method. Eng. Technol. Horiz. 2020, 33, 77–83. [Google Scholar]
- Zhai, W.; Bai, L.; Zhou, R.; Fan, X.; Kang, G.; Liu, Y.; Zhou, K. Recent progress on wear-resistant materials: Designs, properties, and applications. Adv. Sci. 2021, 8, 2003739. [Google Scholar] [CrossRef]
- Kadirgama, K.; Noor, M.; Rahman, M. Optimization of surface roughness in end milling using potential support vector machine. Arab. J. Sci. Eng. 2012, 37, 2269–2275. [Google Scholar] [CrossRef]
- Singh, J. Fabrication characteristics and tribological behavior of Al/SiC/Gr hybrid aluminum matrix composites: A review. Friction 2016, 4, 191–207. [Google Scholar] [CrossRef]
- Cui, S.; Liu, Y.; Wang, T.; Tieu, K.; Wang, L.; Zeng, D.; Li, Z.; Li, W. Tribological behavior comparisons of high chromium stainless and mild steels against high-speed steel and ceramics at high temperatures. Friction 2022, 10, 436–453. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B.F. Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater. Des. 2014, 59, 264–273. [Google Scholar] [CrossRef]
- Yousif, B.F. 12—Tribological properties of biomass-based composites. In Lignocellulosic Fibre and Biomass-Based Composite Materials; Jawaid, M., Md Tahir, P., Saba, N., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 225–257. [Google Scholar]
- Albdiry, M.T.; Yousif, B.F. Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes. Mater. Des. 2013, 48, 68–76. [Google Scholar] [CrossRef]
- Alsaeed, T.; Yousif, B.F.; Ku, H. The potential of using date palm fibres as reinforcement for polymeric composites. Mater. Des. 2013, 43, 177–184. [Google Scholar] [CrossRef]
- Rahman, M.; Ibrahim, T.K.; Kadirgama, K.; Mamat, R.; Bakar, R.A. Influence of operation conditions and ambient temperature on performance of gas turbine power plant. Adv. Mater. Res. 2011, 189, 3007–3013. [Google Scholar] [CrossRef]
- Fouly, A.; Alkalla, M.G. Effect of low nanosized alumina loading fraction on the physicomechanical and tribological behavior of epoxy. Tribol. Int. 2020, 152, 106550. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Heidarpour, A.; Jamshidi, R.; Bayat, O. Tribological behavior of epoxy composites filled with nanodiamond and Ti3AlC2TiC particles: A comparative study. Ceram. Int. 2019, 45, 9106–9113. [Google Scholar] [CrossRef]
- Yin, F.-l.; Ji, H.; Nie, S.-l. Tribological behavior of various ceramic materials sliding against CF/PTFE/graphite-filled PEEK under seawater lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 1729–1742. [Google Scholar] [CrossRef]
- Nirmal, U.; Yousif, B.; Rilling, D.; Brevern, P. Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear 2010, 268, 1354–1370. [Google Scholar] [CrossRef]
- Narish, S.; Yousif, B.; Rilling, D. Adhesive wear of thermoplastic composite based on kenaf fibres. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011, 225, 101–109. [Google Scholar] [CrossRef]
- Muthusamy, Y.; Kadirgama, K.; Rahman, M.; Ramasamy, D.; Sharma, K. Wear analysis when machining AISI 304 with ethylene glycol/TiO2 nanoparticle-based coolant. Int. J. Adv. Manuf. Technol. 2016, 82, 327–340. [Google Scholar] [CrossRef]
- Kadirgama, K.; Anamalai, K.; Ramachandran, K.; Ramasamy, D.; Samykano, M.; Kottasamy, A.; Lingenthiran; Rahman, M. Thermal analysis of SUS 304 stainless steel using ethylene glycol/nanocellulose-based nanofluid coolant. Int. J. Adv. Manuf. Technol. 2018, 97, 2061–2076. [Google Scholar] [CrossRef]
- Engels, T. 8—Thermoset adhesives: Epoxy resins, acrylates and polyurethanes. In Thermosets; Guo, Q., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 228–253. [Google Scholar]
- Pujar, V.; Devarajaiah, R.M.; Suresha, B.; Bharat, V. A review on mechanical and wear properties of fiber-reinforced thermoset composites with ceramic and lubricating fillers. Mater. Today Proc. 2021, 46, 7701–7710. [Google Scholar] [CrossRef]
- Samylingam, I.; Kadirgama, K.; Samylingam, L.; Aslfattahi, N.; Ramasamy, D.; Sazali, N.; Harun, W.S.W.; Kok, C.K. Review of Ti3C2Tx MXene Nanofluids: Synthesis, Characterization, and Applications. Eng. Technol. Appl. Sci. Res. 2024, 14, 14708–14712. [Google Scholar] [CrossRef]
- Alotaibi, J.G.; Eid Alajmi, A.; Mehoub, G.A.; Yousif, B.F. Epoxy and polyester composites’ characteristics under tribological loading conditions. Polymers 2021, 13, 2230. [Google Scholar] [CrossRef]
- Eayal Awwad, K.; Yousif, B.; Fallahnezhad, K.; Saleh, K.; Zeng, X. Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites. Friction 2021, 9, 856–875. [Google Scholar] [CrossRef]
- Upadhyay, P.; Rajput, V.; Singh Rajput, P.; Mishra, V.; Ahmad Khan, I.; Jha, A.; Agrawal, A. Physical, mechanical and sliding wear behaviour of epoxy composites filled with micro-sized marble dust composites. Mater. Today Proc. 2023, in press. [CrossRef]
- Sandanamsamy, L.; Harun, W.; Ishak, I.; Romlay, F.; Kadirgama, K.; Ramasamy, D.; Idris, S.; Tsumori, F. A comprehensive review on fused deposition modelling of polylactic acid. Prog. Addit. Manuf. 2023, 8, 775–799. [Google Scholar] [CrossRef]
- Samylingam, L.; Aslfattahi, N.; Kok, C.K.; Kadirgama, K.; Sazali, N.; Schmirler, M.; Ramasamy, D.; Harun, W.S.W.; Samykano, M.; Veerendra, A. Green Engineering with Nanofluids: Elevating Energy Efficiency and Sustainability. J. Adv. Res. Micro Nano Eng. 2024, 16, 19–34. [Google Scholar] [CrossRef]
- Sondh, S.; Upadhyay, D.S.; Patel, S.; Patel, R.N. Strategic approach towards sustainability by promoting circular economy-based municipal solid waste management system-A review. Sustain. Chem. Pharm. 2024, 37, 101337. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, R.K.; Shukla, S.S.; Gidwani, B. Ceramic Fillers, Fibers, and Acrylics. In Magnetic Polymer Composites and Their Emerging Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 289–313. [Google Scholar]
- Ghandvar, H.; Farahany, S.; Bakar, T.A.A. A novel method to enhance the performance of an ex-situ Al/Si-YSZ metal matrix composite. J. Alloys Compd. 2020, 823, 153673. [Google Scholar] [CrossRef]
Experiment | Parameter | Value/Setting |
---|---|---|
Tensile Test | Standard Test Technique | ASTM D638 |
Loading Rate | 2 mm/min | |
Number of Repeated Tests | 4 | |
Tribological Experiment | Composite Composition | Epoxy composites containing 0–40% ceramic |
Testing Configuration | Block on Ring | |
Applied Load | 30 N | |
Sliding Speed | 3 m/s | |
Sliding Distance Range | 2 km to 11 km | |
Surface Roughness, Ra | Below 1 µm | |
Counterface Material | Stainless steel |
IR (Frequency, cm−1) | Ceramic/Epoxy Composites |
---|---|
Germinal -OH vibration | 3741.90 cm−1, 3834.49 cm−1 |
Free -OH vibration | 3675–3670 cm−1 |
Out-of-phase OH tensile vibration of adjacent SiOH groups in inter-molecular cyclic configuration | 3650 cm−1 |
In-phase OH tensile vibration of adjacent SiOH groups in inter-molecular cyclic configuration | 3620 cm−1 |
-OH vibration on ZrCO2 surface | 3403 cm−1 |
-OH tensile vibration in SiO2H intra-molecular cyclic configuration | 2360.87 cm−1 |
C=O stretching; -O-C(O)-NH- | 1697.36 cm−1 |
-C=C- stretching | 1519.91 cm−1 |
-CH2-, -CH3- asymmetric stretching | 2927 cm−1, 2968 cm−1 |
-CH2-, -CH3- symmetric stretching | 2856 cm−1, 2873 cm−1 |
Si-O-Si, siloxane | 1115 cm−1 |
Zr-O-Si | 958 cm−1 |
Zr-O-Zr | 749 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaeed, T.; Alajmi, A.E.; Alotaibi, J.G.; Ganthavee, V.; Yousif, B.F. Mechanical and Tribological Performance of Epoxy Composites Reinforced with YSZ Waste Ceramics for Sustainable Green Engineering Applications. Processes 2024, 12, 2609. https://doi.org/10.3390/pr12112609
Alsaeed T, Alajmi AE, Alotaibi JG, Ganthavee V, Yousif BF. Mechanical and Tribological Performance of Epoxy Composites Reinforced with YSZ Waste Ceramics for Sustainable Green Engineering Applications. Processes. 2024; 12(11):2609. https://doi.org/10.3390/pr12112609
Chicago/Turabian StyleAlsaeed, Talal, Ayedh Eid Alajmi, Jasem Ghanem Alotaibi, Voravich Ganthavee, and Belal F. Yousif. 2024. "Mechanical and Tribological Performance of Epoxy Composites Reinforced with YSZ Waste Ceramics for Sustainable Green Engineering Applications" Processes 12, no. 11: 2609. https://doi.org/10.3390/pr12112609
APA StyleAlsaeed, T., Alajmi, A. E., Alotaibi, J. G., Ganthavee, V., & Yousif, B. F. (2024). Mechanical and Tribological Performance of Epoxy Composites Reinforced with YSZ Waste Ceramics for Sustainable Green Engineering Applications. Processes, 12(11), 2609. https://doi.org/10.3390/pr12112609