Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: A Green and Sustainable Protein-Rich Supplement
Abstract
:1. Introduction
2. Nutritional Composition of A. platensis
2.1. Macronutrient Composition
2.1.1. Protein and Amino Acid Composition
2.1.2. Lipids and Carbohydrates
2.2. Micronutrients
Vitamins and Minerals
3. Production of Bioactive Peptides/Process and Screening of Bioactive Peptides
3.1. Enzyme Hydrolysis
3.2. Membrane Filtration
3.3. Chromatographic Techniques
4. Health-Promoting Effect of A. platensis-Derived Peptides
4.1. Antihypertensive Activity
Peptide Source | Preparation Method | Purification and Identification Method | Purified Peptide Sequence | Bioactivity | References |
---|---|---|---|---|---|
A. platensis platensis protein. | Hydrolysis by (trypsin, alcalase, pepsin, papain and protamex) | Ultrafiltration, gel column chromatography and MALDI-TOF-MS |
| Antiobesity activity | [91] |
A. platensis platensis protein | Hydrolysis by thermolysin | Ultrafiltration (3 kDa), SEC-HPLC, ESI-Q-TOF |
| In-vitro ACE inhibitory activity | [92] |
A. platensis maxima | Hydrolysis by Trypsin, α-chymotrypsin and pepsin | Ultrafiltration (10, 5, 3 kDa) Anion-exchange chromatography, Gel-permeation chromatography, RP-HPLC, Q-TOF/MS |
| Anti-inflammatory | [56] |
A. platensis maxima | Trypsin, α-chymotrypsin and pepsin | Ultrafiltration (<3 kDa), Gel-permeation chromatography, Q-TOF/MS |
| Anti-atherosclerotic Antiallergic | [56] |
A. platensis platensis | Pepsin | Ion exchange chromatography and gel filtration. |
| In-vivo ACE inhibitory activity | [93] |
A. platensis platensis | Alcalase | Gel-permeation chromatography, RP-HPLC, (MALDI-TOF MS) |
| In-vivo ACE inhibitory activity | [77] |
A. platensis platensis | Papain | Gel-permeation chromatography, RP-HPLC, (MALDI-TOF MS) |
| In-vitro ACE inhibitory activity | [90] |
A. platensis platensis | Alcalase, flavourzyme | Ultrafiltration (<3 kDa), (SDS-PAGE), MALDI TOF/TOF |
| Iron-chelating | [78] |
A. platensis platensis | Alcalse, papain, pepsin | - | - | In- vitro ACE inhibitory activity | [30] |
Arthrospira platensis | - | MALDI-TOF MS |
| Cytotoxicity Against cancer cell | [94] |
A. platensis platensis | Thermolysin | LC/MS | Peptide sequence not identified | In- vitro ACE inhibitory activity | [80] |
A. platensis platensis | Papain | Ultrafiltration (1 and 5 kDa) |
| Invivo Antihypertensive activity | [81] |
A. platensis platensis | Peptides produced during ultrasound-assisted protein extraction | LC-ESI-MS/MS |
| In vitro: α-amylase, α-glucosidaseDPP-IV inhibition | [45] |
A. platensis platensis | Hydrolysis by Pepsin | Ultrafiltration (3 kDa, 10 kDa), MALDI-TOF-MS |
| In vitro antioxidant activity | [95] |
A. platensis Platensis protein | Hydrolysis by pepsin and trypsin | LC-ESI-MS/MS | Sequence of peptide was not identified | In vitro activity of Angiotension converting enzyme and DPP-IV | [88] |
A. platensis Platensis | Alkaline protease and papain | Sephadex G-25 chromatography, (RP-HPLC), and Superdex 75 10/300 GL chromatography, (LC-MS/MS |
| Antibacterial activity | [61] |
A. platensis Platensis protein | Trypsin | Ultrafiltration (10, 5, 3 kDa), MALDI-TOF-TOF/MS |
| Anti-oxidant, Hemolysis inhibition, Collagen-stimulating activities | [96] |
A. platensis Platensis extract | Fermentation by Thermus thermophilus HB27, and Saccha romyces cerevisiae CH006 | DEAE-52 cellulose column chromatography, UPLC-MS/MS, |
| Antioxidant activity | [3] |
A. platensis Platensis protein | Trypsin | Ultrafiltration |
| Bone regeneration/osteogenic | [97] |
A. platensis Platensis protein | Trypsin, alcalase and papain | Ultrafiltration (10, 5, 3 kDa), gel filtration, MALDI-TOF-MS |
| Activity against cancer cells, | [98] |
A. platensis platensis protein (SPP) and A. platensis platensis protein hydrolysate (SPPH) | Pepsin | Molecular weight by HPLC | Sequence of peptide was not identified | Anti-obesity activity | [99] |
A. platensis platensis | - | UHPLC UV-MS/MS. |
| Ant-hypertensive acitivity | [100] |
A. platensis platensis protein | Pepsin, trypsin, and chymotrypsin | Ultrafiltration (3, 5, 10 kDa), gel filtration chromatography, MALDI-TOF-MS |
| Inhibitory activity on HT-29 cancer cells | [68] |
A. platensis maxima | Trypsin, a-chymotrypsin, and pepsin | Ultrafiltration (3, 5, 10 kDa), gel filtration chromatography, RP-HPLC |
| Anti-inflammatory activity | [56] |
A. platensis platensis | Pepsin, α-chymotrypsin, and trypsin | Ultrafiltration (5,10 kDa), fast protein liquid, MALDI-TOF-TOF/MS chromatography, RP-HPLC |
| ACE inhibitory activity | [101] |
4.2. Antioxidant Peptides
4.3. Anti-Diabetic Peptides
4.4. Anti-Cancer Peptides
4.5. Anti-Microbial and Antifungal Peptides
4.6. Anti-Obesity
5. Conclusions
Future Trends
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef]
- Ovando, C.A.; Carvalho, J.C.d.; Vinícius de Melo Pereira, G.; Jacques, P.; Soccol, V.T.; Soccol, C.R. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev. Int. 2018, 34, 34–51. [Google Scholar] [CrossRef]
- Wei, Y.-F.; Wang, J.-Q.; Luo, Y.-J.; Zhao, X.-F.; Zou, L.-H.; Qiu, X.-F.; Nie, S.-P.; Liu, H.-Y. Isolation, purification and characterization of antioxidant peptides from Spirulina platensis extracts co-fermentation with Thermus thermophilus HB27 and Saccharomyces cerevisiae CH006. LWT 2024, 205, 116497. [Google Scholar]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the food and functional food industries. Food Res. Int. 2020, 137, 109356. [Google Scholar]
- Costa, J.A.V.; Freitas, B.C.B.; Rosa, G.M.; Moraes, L.; Morais, M.G.; Mitchell, B.G. Operational and economic aspects of Spirulina-based biorefinery. Bioresour. Technol. 2019, 292, 121946. [Google Scholar]
- Novoveská, L.; Zapata, A.K.; Zabolotney, J.B.; Atwood, M.C.; Sundstrom, E.R. Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Res. 2016, 18, 86–94. [Google Scholar] [CrossRef]
- De Oliveira, T.T.B.; dos Reis, I.M.; de Souza, M.B.; da Silva Bispo, E.; Maciel, L.F.; Druzian, J.I.; Tavares, P.P.L.G.; de Oliveira Cerqueira, A.; Morte, E.d.S.B.; Glória, M.B.A. Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT 2021, 148, 111674. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar]
- Méndez-Vilas, A. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center Badajoz: Badajoz, Spain, 2011; Volume 1. [Google Scholar]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Res. 2019, 41, 101566. [Google Scholar]
- Belay, A. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J. Am. Nutraceutical Assoc. 2002, 5, 27–48. [Google Scholar]
- Saadi, S.; Saari, N.; Anwar, F.; Hamid, A.A.; Ghazali, H.M. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef] [PubMed]
- Akbarbaglu, Z.; Ayaseh, A.; Ghanbarzadeh, B.; Sarabandi, K. Biological stabilization of Arthrospira bioactive-peptides within biopolymers: Functional food formulation; bitterness-masking and nutritional aspects. LWT 2024, 191, 115653. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Toalá, J.; Hernández-Mendoza, A.; González-Córdova, A.; Vallejo-Cordoba, B.; Liceaga, A. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Mauri, L.; Aristoy, M.C.; Toldrá, F.; Mora, L. Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. J. Funct. Foods 2020, 69, 103956. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Al-Dalali, S.; Lu, D.; Yang, F.; Li, J.; Wu, D.; Li, R.; Wang, J.; Liu, D. Process optimization and identification of antioxidant peptides from enzymatic hydrolysate of bovine bone extract, a potential source in cultured meat. Front. Sustain. Food Syst. 2024, 7, 1345833. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef]
- Apone, F.; Barbulova, A.; Colucci, M.G. Plant and microalgae derived peptides are advantageously employed as bioactive compounds in cosmetics. Front. Plant Sci. 2019, 10, 756. [Google Scholar] [CrossRef]
- Lafarga, T.; Sánchez-Zurano, A.; Villaró, S.; Morillas-España, A.; Acién, G. Industrial production of spirulina as a protein source for bioactive peptide generation. Trends Food Sci. Technol. 2021, 116, 176–185. [Google Scholar] [CrossRef]
- Montalvo, G.E.B.; Vandenberghe, L.P.d.S.; Soccol, V.T.; Carvalho, J.C.d.; Soccol, C.R. The antihypertensive, antimicrobial and anticancer peptides from Arthrospira with therapeutic potential: A mini review. Curr. Mol. Med. 2020, 20, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Koli, D.K.; Rudra, S.G.; Bhowmik, A.; Pabbi, S. Nutritional, functional, textural and sensory evaluation of Spirulina enriched green pasta: A potential dietary and health supplement. Foods 2022, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, D.S.; Kapanoor, S.S.; Girigouda, K.; Kote, N.V.; Mulimani, V.H. Reduction of flatus-inducing factors in soymilk by immobilized α-galactosidase. Biotechnol. Appl. Biochem. 2006, 45, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Shahzad, S.; Batool, Z.; Sadir, S.; Liaquat, L.; Tabassum, S.; Perveen, T. Spirulina platensis reduces the schizophrenic-like symptoms in rat model by restoring altered APO-E and RTN-4 protein expression in prefrontal cortex. Life Sci. 2021, 277, 119417. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.d.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The true value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef]
- Villaró, S.; Jiménez-Márquez, S.; Musari, E.; Bermejo, R.; Lafarga, T. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res. Int. 2023, 163, 112270. [Google Scholar] [CrossRef]
- Priyanka, S.; Varsha, R.; Verma, R.; Ayenampudi, S.B. Spirulina: A spotlight on its nutraceutical properties and food processing applications. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e4785. [Google Scholar] [CrossRef]
- El-Moataaz, S.; Ismael, H.; Aborhyem, S. Assessment of chemical composition of Spirulina platensis and its effect on fasting blood glucose and lipid profile in diabetic Rats. J. High Inst. Public Health 2019, 49, 199–211. [Google Scholar] [CrossRef]
- Fortuin, J.; Hellebois, T.; Iken, M.; Shaplov, A.S.; Fogliano, V.; Soukoulis, C. Stabilising and functional effects of Spirulina (Arthrospira platensis) protein isolate on encapsulated Lacticaseibacillus rhamnosus GG during processing, storage and gastrointestinal digestion. Food Hydrocoll. 2024, 149, 109519. [Google Scholar] [CrossRef]
- Morist, A.; Montesinos, J.; Cusido, J.; Godia, F. Recovery and treatment of Spirulina platensis cells cultured in a continuous photobioreactor to be used as food. Process Biochem. 2001, 37, 535–547. [Google Scholar] [CrossRef]
- Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresour. Technol. 2019, 275, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Aouir, A.; Amiali, M.; Bitam, A.; Benchabane, A.; Raghavan, V.G. Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. J. Food Meas. Charact. 2017, 11, 913–923. [Google Scholar] [CrossRef]
- Menegotto, A.L.L.; de Souza, L.E.S.; Colla, L.M.; Costa, J.A.V.; Sehn, E.; Bittencourt, P.R.S.; de Moraes Flores, É.L.; Canan, C.; Colla, E. Investigation of techno-functional and physicochemical properties of Spirulina platensis protein concentrate for food enrichment. LWT 2019, 114, 108267. [Google Scholar] [CrossRef]
- Barros de Medeiros, V.P.; da Costa, W.K.A.; da Silva, R.T.; Pimentel, T.C.; Magnani, M. Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. Crit. Rev. Food Sci. Nutr. 2022, 62, 4929–4950. [Google Scholar] [CrossRef]
- Li, Y.; Lammi, C.; Boschin, G.; Arnoldi, A.; Aiello, G. Recent advances in microalgae peptides: Cardiovascular health benefits and analysis. J. Agric. Food Chem. 2019, 67, 11825–11838. [Google Scholar] [CrossRef]
- Begum, N.; Raza, A.; Song, H.; Iftikhar, M.; Zhang, Y.; Zhang, L.; Liu, P. Fractionation and identification of flavor peptides from bovine bone extract after enzymatic hydrolysis and Maillard reaction by consecutive chromatography. J. Food Process. Preserv. 2021, 45, e15778. [Google Scholar] [CrossRef]
- ElFar, O.A.; Billa, N.; Lim, H.R.; Chew, K.W.; Cheah, W.Y.; Munawaroh, H.S.H.; Balakrishnan, D.; Show, P.L. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered 2022, 13, 14681–14718. [Google Scholar] [CrossRef]
- Arrari, F.; Jabri, M.-A.; Ayari, A.; Dakhli, N.; Fayala, C.B.; Boubaker, S.; Sebai, H. Amino acid HPLC-FLD analysis of spirulina and its protective mechanism against the combination of obesity and colitis in wistar rats. Heliyon 2024, 10, e30103. [Google Scholar] [CrossRef] [PubMed]
- Deasy, L.; Indah, R.; Rugaiyah, A.; Asma, A. Nutritional analysis of Spirulina sp. to promote as superfood candidate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012031. [Google Scholar]
- Bohórquez-Medina, S.L.; Bohórquez-Medina, A.L.; Zapata, V.A.B.; Ignacio-Cconchoy, F.L.; Toro-Huamanchumo, C.J.; Bendezu-Quispe, G.; Pacheco-Mendoza, J.; Hernandez, A.V. Impact of spirulina supplementation on obesity-related metabolic disorders: A systematic review and meta-analysis of randomized controlled trials. NFS J. 2021, 25, 21–30. [Google Scholar] [CrossRef]
- Hu, S.; Fan, X.; Qi, P.; Zhang, X. Identification of anti-diabetes peptides from Spirulina platensis. J. Funct. Foods 2019, 56, 333–341. [Google Scholar] [CrossRef]
- Colla, L.M.; Furlong, E.B.; Costa, J.A.V. Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes. Braz. Arch. Biol. Technol. 2007, 50, 161–167. [Google Scholar] [CrossRef]
- Souiy, Z.; Zakhama, N.; Cheraief, I.; Hammami, M. Nutritional, physical, microbial, and sensory characteristics of gluten-and sugar-free cereal bar enriched with spirulina and flavored with neroli essential oil. LWT 2022, 169, 113955. [Google Scholar] [CrossRef]
- Hynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. J. Pharm. Biomed. Anal. 2018, 148, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Monteverde, D.; Gómez-Consarnau, L.; Suffridge, C.; Sañudo-Wilhelmy, S.A. Life’s utilization of B vitamins on early Earth. Geobiology 2017, 15, 3–18. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Tanioka, Y.; Bito, T. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. J. Agric. Food Chem. 2013, 61, 6769–6775. [Google Scholar] [CrossRef]
- Park, W.S.; Kim, H.-J.; Li, M.; Lim, D.H.; Kim, J.; Kwak, S.-S.; Kang, C.-M.; Ferruzzi, M.G.; Ahn, M.-J. Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities. Molecules 2018, 23, 2065. [Google Scholar] [CrossRef]
- Masuda, K.; Chitundu, M. Multiple micronutrient supplementation using spirulina platensis and infant growth, morbidity, and motor development: Evidence from a randomized trial in Zambia. PLoS ONE 2019, 14, e0211693. [Google Scholar] [CrossRef]
- Rao, P.S.; Mantri, V.A.; Ganesan, K. Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem. 2007, 102, 215–218. [Google Scholar] [CrossRef]
- Carcea, M.; Sorto, M.; Batello, C.; Narducci, V.; Aguzzi, A.; Azzini, E.; Fantauzzi, P.; Finotti, E.; Gabrielli, P.; Galli, V. Nutritional characterization of traditional and improved dihé, alimentary blue-green algae from the lake Chad region in Africa. LWT-Food Sci. Technol. 2015, 62, 753–763. [Google Scholar] [CrossRef]
- Naseem, S.; Rizwan, M.; Durrani, A.I.; Munawar, A.; Gillani, S.R. Innovations in cell lysis strategies and efficient protein extraction from blue food (Seaweed). Sustain. Chem. Pharm. 2024, 39, 101586. [Google Scholar] [CrossRef]
- Vo, T.-S.; Ryu, B.; Kim, S.-K. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J. Funct. Foods 2013, 5, 1336–1346. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol. Prog. 2013, 29, 1230–1238. [Google Scholar] [CrossRef]
- Sridhar, K.; Inbaraj, B.S.; Chen, B.-H. Recent developments on production, purification and biological activity of marine peptides. Food Res. Int. 2021, 147, 110468. [Google Scholar] [CrossRef]
- Fan, X.; Bai, L.; Zhu, L.; Yang, L.; Zhang, X. Marine algae-derived bioactive peptides for human nutrition and health. J. Agric. Food Chem. 2014, 62, 9211–9222. [Google Scholar] [CrossRef]
- Begum, N.; Raza, A.; Song, H.; Zhang, Y.; Zhang, L.; Liu, P. Effect of thermal treatment on aroma generation from bovine bone marrow extract during enzymatic hydrolysis. J. Food Process. Preserv. 2019, 43, e14105. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, R.; Li, Q.; Li, B. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur. Food Res. Technol. 2016, 242, 685–692. [Google Scholar] [CrossRef]
- Ejike, C.E.; Collins, S.A.; Balasuriya, N.; Swanson, A.K.; Mason, B.; Udenigwe, C.C. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci. Technol. 2017, 59, 30–36. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Nasri, M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci. Technol. 2019, 88, 543–557. [Google Scholar] [CrossRef]
- Slizyte, R.; Rommi, K.; Mozuraityte, R.; Eck, P.; Five, K.; Rustad, T. Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnol. Rep. 2016, 11, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, S.; Cui, P.; Bao, Z.; Liu, K.; Jiang, P.; Zhu, B.; Sun, N. Antarctic krill derived peptide as a nanocarrier of iron through the gastrointestinal tract. Food Biosci. 2020, 36, 100657. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Bai, X.; Fu, P. In silico and in vitro assessment of bioactive peptides from Arthrospira platensis phycobiliproteins for DPP-IV inhibitory activity, ACE inhibitory activity, and antioxidant activity. J. Appl. Phycol. 2022, 34, 1497–1511. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J. Sci. Food Agric. 2017, 97, 918–922. [Google Scholar] [CrossRef]
- Oh, R.; Lee, M.J.; Kim, Y.-O.; Nam, B.-H.; Kong, H.J.; Kim, J.-W.; Park, J.-y.; Seo, J.-K.; Kim, D.-G. Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus. Fish Shellfish Immunol. 2020, 99, 342–352. [Google Scholar] [CrossRef]
- Hu, X.; Yang, X.; Wang, T.; Li, L.; Wu, Y.; Zhou, Y.; You, L. Purification and identification of antioxidant peptides from round scad (Decapterus maruadsi) hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. Toxicol. 2020, 135, 110882. [Google Scholar] [CrossRef]
- Arumugam, V.; Venkatesan, M.; Ramachandran, S.; Sundaresan, U. Bioactive peptides from marine ascidians and future drug development—A review. Int. J. Pept. Res. Ther. 2018, 24, 13–18. [Google Scholar] [CrossRef]
- Coskun, O. Separation techniques: Chromatography. North. Clin. Istanb. 2016, 3, 156. [Google Scholar] [PubMed]
- Wang, K.; Siddanakoppalu, P.N.; Ahmed, I.; Pavase, T.R.; Lin, H.; Li, Z. Purification and identification of anti-allergic peptide from Atlantic Salmon (Salmo salar) byproduct enzymatic hydrolysates. J. Funct. Foods 2020, 72, 104084. [Google Scholar] [CrossRef]
- Abuine, R.; Rathnayake, A.U.; Byun, H.-G. Biological activity of peptides purified from fish skin hydrolysates. Fish. Aquat. Sci. 2019, 22, 10. [Google Scholar] [CrossRef]
- Jo, C.; Khan, F.F.; Khan, M.I.; Iqbal, J. Marine bioactive peptides: Types, structures, and physiological functions. Food Rev. Int. 2017, 33, 44–61. [Google Scholar] [CrossRef]
- Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom. 2014, 4, 58–69. [Google Scholar] [CrossRef]
- Lu, J.; Ren, D.-F.; Xue, Y.-L.; Sawano, Y.; Miyakawa, T.; Tanokura, M. Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis. J. Agric. Food Chem. 2010, 58, 7166–7171. [Google Scholar] [CrossRef]
- Kim, N.-H.; Jung, S.-H.; Kim, J.; Kim, S.-H.; Ahn, H.-J.; Song, K.B. Purification of an iron-chelating peptide from spirulina protein hydrolysates. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 91–95. [Google Scholar] [CrossRef]
- Lafarga, T.; Álvarez, C.; Hayes, M. Bioactive peptides derived from bovine and porcine co-products: A review. J. Food Biochem. 2017, 41, e12418. [Google Scholar] [CrossRef]
- Anekthanakul, K.; Senachak, J.; Hongsthong, A.; Charoonratana, T.; Ruengjitchatchawalya, M. Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1. Peptides 2019, 118, 170107. [Google Scholar] [CrossRef]
- Pan, H.; She, X.; Wu, H.; Ma, J.; Ren, D.; Lu, J. Long-term regulation of the local renin–angiotensin system in the myocardium of spontaneously hypertensive rats by feeding bioactive peptides derived from Spirulina platensis. J. Agric. Food Chem. 2015, 63, 7765–7774. [Google Scholar] [CrossRef]
- Miczke, A.; Szulińska, M.; Hansdorfer-Korzon, R.; Kręgielska-Narożna, M.; Suliburska, J.; Walkowiak, J.; Bogdański, P. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: A doubleblind, placebo-controlled, randomized trial. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 150–156. [Google Scholar] [PubMed]
- Lee, E.H.; Park, J.-E.; Choi, Y.-J.; Huh, K.-B.; Kim, W.-Y. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr. Res. Pract. 2008, 2, 295–300. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to various food (s)/food constituent (s) claiming maintenance of normal blood glucose concentrations (ID 1987, 2091, 2135, 2179, 2335, 2461, 2642, 3145, 3230, 3244, 3258, 3291, 3345, 3375, 3408, 3438, 3457, 3471, 3528, 3534, 3540, 3554, 3557, 3583, 3625, 3628, 3730, 3782, 3851, 3971, 4034, 4043) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1490. [Google Scholar] [CrossRef]
- Li, Y.; Aiello, G.; Fassi, E.M.A.; Boschin, G.; Bartolomei, M.; Bollati, C.; Roda, G.; Arnoldi, A.; Grazioso, G.; Lammi, C. Investigation of Chlorella pyrenoidosa protein as a source of novel angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides. Nutrients 2021, 13, 1624. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef]
- Wang, J.; Ye, X.; Su, Z.; Zou, P.; Pang, J.; Chen, J.-C. ACE-inhibitory peptides from Laminaria japonica and their potential anti-hypertensive mechanism. CyTA-J. Food 2021, 19, 333–340. [Google Scholar] [CrossRef]
- Aiello, G.; Li, Y.; Boschin, G.; Bollati, C.; Arnoldi, A.; Lammi, C. Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. J. Funct. Foods 2019, 63, 103592. [Google Scholar] [CrossRef]
- Saiga, A.; Iwai, K.; Hayakawa, T.; Takahata, Y.; Kitamura, S.; Nishimura, T.; Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J. Agric. Food Chem. 2008, 56, 9586–9591. [Google Scholar] [CrossRef]
- He, Y.Y.; Li, T.T.; Chen, J.X.; She, X.X.; Ren, D.F.; Lu, J. Transport of ACE inhibitory peptides Ile-Gln-Pro and Val-Glu-Pro derived from Spirulina platensis across Caco-2 monolayers. J. Food Sci. 2018, 83, 2586–2592. [Google Scholar] [CrossRef]
- Fan, X.; Cui, Y.; Zhang, R.; Zhang, X. Purification and identification of anti-obesity peptides derived from Spirulina platensis. J. Funct. Foods 2018, 47, 350–360. [Google Scholar] [CrossRef]
- Zhang, N.; Li, F.; Zhang, T.; Li, C.-Y.; Zhu, L.; Yan, S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur. Food Res. Technol. 2022, 248, 1107–1115. [Google Scholar] [CrossRef]
- Suetsuna, K.; Chen, J.-R. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar. Biotechnol. 2001, 3, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Sannasimuthu, A.; Kumaresan, V.; Anilkumar, S.; Pasupuleti, M.; Ganesh, M.-R.; Mala, K.; Paray, B.A.; Al-Sadoon, M.K.; Albeshr, M.F.; Arockiaraj, J. Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radic. Biol. Med. 2019, 135, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.H.; Wang, J.J.; Zhang, Y.H.; Song, Y.Q.; Liang, J.L.; Zhang, X.W. Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis. J. Sci. Food Agric. 2020, 100, 3776–3782. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Fan, X.; Zheng, Q.; Wang, J.; Zhang, X. Anti-oxidant, hemolysis inhibition, and collagen-stimulating activities of a new hexapeptide derived from Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2018, 30, 1655–1665. [Google Scholar] [CrossRef]
- Moradi, F.; Hadavi, M.; Aghamaali, M.R.; Fallah, S.F. Beneficial effects of bioactive peptides extracted from Spirulina platensis and Gracilaria gracilis algae on bone regeneration/osteogenic differentiation of Mesenvhymal stem cells. Tissue Cell 2024, 89, 102430. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Food Funct. 2016, 7, 781–788. [Google Scholar] [CrossRef]
- Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE 2019, 14, e0218543. [Google Scholar] [CrossRef]
- Carrizzo, A.; Conte, G.M.; Sommella, E.; Damato, A.; Ambrosio, M.; Sala, M.; Scala, M.C.; Aquino, R.P.; De Lucia, M.; Madonna, M. Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension 2019, 73, 449–457. [Google Scholar] [CrossRef]
- Zaky, A.A.; Paterson, S.; Gómez-Cortés, P.; Hernández-Ledesma, B. Bioactive peptides released from microalgae during gastrointestinal digestion. In Protein Digestion-Derived Peptides; Elsevier: Amsterdam, The Netherlands, 2024; pp. 335–352. [Google Scholar]
- Echave, J.; Otero, P.; Garcia-Oliveira, P.; Munekata, P.E.; Pateiro, M.; Lorenzo, J.M.; Simal-Gandara, J.; Prieto, M.A. Seaweed-derived proteins and peptides: Promising marine bioactives. Antioxidants 2022, 11, 176. [Google Scholar] [CrossRef]
- Uzlasir, T.; Selli, S.; Kelebek, H. Effect of salt stress on the phenolic compounds, antioxidant capacity, microbial load, and in vitro bioaccessibility of two microalgae species (Phaeodactylum tricornutum and Spirulina platensis). Foods 2023, 12, 3185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, D.; Sun, X.; Sun, S.; Xu, N. Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsis lemaneiformis. J. Appl. Phycol. 2019, 31, 2585–2596. [Google Scholar] [CrossRef]
- Cian, R.E.; Nardo, A.E.; Garzón, A.G.; Añon, M.C.; Drago, S.R. Identification and in silico study of a novel dipeptidyl peptidase IV inhibitory peptide derived from green seaweed Ulva spp. hydrolysates. LWT 2022, 154, 112738. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein. Food Chem. 2020, 328, 127096. [Google Scholar] [CrossRef]
- Daliri, E.B.-M.; Lee, B.H.; Oh, D.H. Current trends and perspectives of bioactive peptides. Crit. Rev. Food Sci. Nutr. 2018, 58, 2273–2284. [Google Scholar] [CrossRef]
- Nasab, S.B.; Homaei, A.; Pletschke, B.I.; Salinas-Salazar, C.; Castillo-Zacarias, C.; Parra-Saldívar, R. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochem. 2020, 92, 313–342. [Google Scholar] [CrossRef]
- Kehinde, B.A.; Sharma, P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 322–340. [Google Scholar] [CrossRef]
- Sadek, K.M.; Lebda, M.A.; Nasr, S.M.; Shoukry, M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed. Pharmacother. 2017, 92, 1085–1094. [Google Scholar] [CrossRef]
- Aissaoui, O.; Amiali, M.; Bouzid, N.; Belkacemi, K.; Bitam, A. Effect of Spirulina platensis ingestion on the abnormal biochemical and oxidative stress parameters in the pancreas and liver of alloxan-induced diabetic rats. Pharm. Biol. 2017, 55, 1304–1312. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities. Trends Food Sci. Technol. 2024, 145, 104352. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.; Ahmed, B.; Al-Abbasi, F.; Anwar, F.; Verma, A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: Investigation via experimental validation and molecular docking. RSC Adv. 2018, 8, 18180–18196. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Dong, L.; Yan, Q.; Dong, Y.; Wang, L.; Wang, F. Preparation and characterization of an anticancer peptide from oriental tonic food Enteromorpha prolifera. Foods 2022, 11, 3507. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Kanwar, S.S. Bioactive peptides: Synthesis, functions and biotechnological applications. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2020; pp. 107–137. [Google Scholar]
- Barbosa, F.; Pinto, E.; Kijjoa, A.; Pinto, M.; Sousa, E. Targeting antimicrobial drug resistance with marine natural products. Int. J. Antimicrob. Agents 2020, 56, 106005. [Google Scholar] [CrossRef]
- Kumar, D.; Chatli, M.K.; Singh, R.; Mehta, N.; Kumar, P. Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Rumin. Res. 2016, 139, 20–25. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Peng, C.; Wang, J. Optimization of the preparation of fish protein anti-obesity hydrolysates using response surface methodology. Int. J. Mol. Sci. 2013, 14, 3124–3139. [Google Scholar] [CrossRef]
- Hamedifard, Z.; Milajerdi, A.; Reiner, Ž.; Taghizadeh, M.; Kolahdooz, F.; Asemi, Z. The effects of spirulina on glycemic control and serum lipoproteins in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 2609–2621. [Google Scholar] [CrossRef]
- Zhang, F.; Man, Y.B.; Mo, W.Y.; Wong, M.H. Application of Spirulina in aquaculture: A review on wastewater treatment and fish growth. Rev. Aquac. 2020, 12, 582–599. [Google Scholar] [CrossRef]
Macronutrient | [28] Brazil | [29] Austria | [4] Spain | [1] Morocco | [30] Spain | [24] India | [31] India | [32] Egypt | [33] Luxembourg | |
---|---|---|---|---|---|---|---|---|---|---|
g/100 g (Fresh Weight) | (% Dry Matter) | g/100 g | (% Dry Matter) | g/100 g | (% Dry Matter) | (g/100 g) | (%) | g/100 g Dry Matter | ||
A. platensis | Commercial Variety | |||||||||
Moisture | 90.7 | - | 4.7 | 12.6 | - | - | 5.81 | 7.00 | 6.98 | |
Energy (Kcal) | - | 1603 | 290 | 436.18 | - | - | 412.78 | 373.00 | - | |
Protein | 5.92 | 62.7 | 57.5 | 76.5 | 58.1 | 53.3 | 65.71 | 63.00 | 56.79 | 81.9 |
Fat | 0.39 | 8.1 | 7.7 | 2.45 | 8.1 | 4.4 | 6.94 | 5.60 | 8.33 | 3.77 |
Ash | 0.6 | - | 6.2 | 14.56 | 8.2 | 10.5 | 8.34 | 9.00 | 10.50 | 6.3 |
Carbohydrate | 2.42 | 15.6 | 23.9 | 6.46 | 25.6 | 30.7 | 21.87 | 20.5 | 13.60 | 8.16 |
Total dietary fiber | 0.4 | 3.1 | - | 4.07 | - | - | 7.7 | 4.25 |
[13] | [42] | [43] | [4] | [28] | [31] | [32] | |
---|---|---|---|---|---|---|---|
(mg/g Dry Sample) | (mg/kg) | (mg/g) | (g/100 g) | (mg/g Dry Sample) | (g/100 g) | (mg/100 g) | |
Aspartic acid | 80.4 | 90.78 | 60 | 5.79 | 63.1 | 5.99 | 36.69 |
Glutamic acid | 105.9 | 159.72 | 92 | 8.39 | 84.7 | 9.13 | 47.03 |
Histidine | 14.8 | 41.25 | 10 | 1.08 | 11.3 | 1.00 | 13.46 |
Serine | 42.7 | 40.52 | 33 | 2.99 | 30.9 | 2.76 | 18.43 |
Arginine | 48.7 | 104.16 | 44 | 4.15 | 44.7 | 4.31 | 44.91 |
Glycine | 44.8 | 119.62 | 32 | 3.09 | 34.3 | 3.13 | 15.0 |
Threonine | 41.9 | 118.52 | 33 | 2.97 | 33.1 | 2.86 | 13.59 |
Alanine | 66.1 | 118.55 | 47 | 4.51 | 50.2 | 4.59 | 33.80 |
Tyrosine | 37.5 | 45.14 | 30 | 2.58 | 30.7 | 2.50 | 19.74 |
Methionine | 13.7 | 35.84 | 14 | 1.15 | 17.1 | 1.17 | 5.31 |
Valine | 48.2 | 30.51 | 45 | 3.51 | 42.2 | 3.94 | 18.40 |
Phenylalanine | 42.3 | 29.47 | 28 | 2.77 | 33.3 | 2.75 | 23.78 |
Isoleucine | 44.6 | 46.52 | 36 | 3.21 | 36.4 | 3.50 | 14.12 |
Leucine | 73.1 | 99.41 | 55 | 4.95 | 61.7 | 5.38 | 29.11 |
Lysine | 47.2 | 35.65 | 30 | 3.02 | 34 | 2.96 | 19.10 |
Tryptophan | 5.3 | - | 10 | 0.93 | 8.5 | 1.09 | 12.88 |
Cystine | - | 14.23 | 7 | 0.66 | 6.4 | 5.90 | 3.30 |
Minerals | [43] | [4] | [1] | [29] | [28] | [31] | [37] |
---|---|---|---|---|---|---|---|
(mg/g) | (mg/100 g) | (mg/100 g) Dry Weight | (μg/100 g) | (mg/g) Fresh Weight | (g/100 g) | (mg/100 g) | |
Potassium | 16 | 1.4 | 2501.66 | - | 13.32–127 | 1.66 | 170.0 |
Calcium | 15 | 30.3 | 6000 | - | 1.05–12 | 0.47 | 363.77 |
Phosphorus | 10 | 118.0 | 10,088.33 | - | 11 | 0.96 | 123.1 |
Manganese | 3 | 1.9 | 1.56 | 2.9–4.1 | 9.5 | 3.26 | - |
Zinc | 70 (μg) | 2.0 | 5 | 0.9–1.2 | 9.7 | 1.45 | 2.90 |
Magnesium | 3.7 | 195 | 100.33 | - | 1.42–19 | 0.32 | 2.66 |
Sodium | 2.5 | 1.0 | 14,004.397 | - | 11.50–98 | 0.64 | 216.77 |
Iron | 1.7 | 28.5 | 80.66 | 48.9–82.9 | 0.15–2.79 | 0.09 | 12.44 |
Vitamins | (μg/g) | (mg/100 g) | - | (mg/100 g) dry weight | (mg/g) dry weight | (mg/100 g) | (mg/100 g) |
Biotin | 0.55 | - | - | - | - | 5.00 | - |
Folic acid | 0.71 | - | - | 26.6–534.5 (μg) | 7.3 | 0.33 | - |
Pantothenic acid | 2 | - | - | - | 0.325 | 0.10 | - |
B12(cyanocobalamin) | 3.6 | - | - | 127–244 | - | 0.36 | - |
B6 (pyridoxine) | 8 | 0.4 | - | - | 90 | 0.96 | - |
B1 (thiamin) | 48 | 2.4 | - | - | 48 | 0.51 | 3.0 |
B2 (riboflavin) | 55 | 3.7 | - | - | 39 | 4.53 | 3.7 |
B3 (niacin) | 0.15 (mg) | 12.8 | - | - | 3.9 | 14.90 | 12.2 |
E (tocopherol) | 0.41 (mg) | 5 | - | 2.8–75 | 1.06 | 6.71 | 60.0 |
Inositol acid | 0.7 (mg) | - | - | - | - | 64.00 | - |
Pro vit A (beta carotene) | 5.8 (mg) | 570 (IU) | - | 33.5–231.6 | 18 | 352,000 (IU) | 70.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, N.; Qi, F.; Yang, F.; Khan, Q.U.; Faizan; Fu, Q.; Li, J.; Wang, X.; Wang, X.; Wang, J.; et al. Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: A Green and Sustainable Protein-Rich Supplement. Processes 2024, 12, 2608. https://doi.org/10.3390/pr12112608
Begum N, Qi F, Yang F, Khan QU, Faizan, Fu Q, Li J, Wang X, Wang X, Wang J, et al. Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: A Green and Sustainable Protein-Rich Supplement. Processes. 2024; 12(11):2608. https://doi.org/10.3390/pr12112608
Chicago/Turabian StyleBegum, Nabila, Fei Qi, Fang Yang, Qudrat Ullah Khan, Faizan, Qiang Fu, Jie Li, Xiu Wang, Xiaoxiao Wang, Jun Wang, and et al. 2024. "Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: A Green and Sustainable Protein-Rich Supplement" Processes 12, no. 11: 2608. https://doi.org/10.3390/pr12112608
APA StyleBegum, N., Qi, F., Yang, F., Khan, Q. U., Faizan, Fu, Q., Li, J., Wang, X., Wang, X., Wang, J., Li, R., Liu, D., & Zhang, W. (2024). Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: A Green and Sustainable Protein-Rich Supplement. Processes, 12(11), 2608. https://doi.org/10.3390/pr12112608