Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Extraction Kinetics Study
3.2. Separation Study on Centrifugal Extractors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A Versatile Heterocyclic. Saudi Pharm. J. 2013, 21, 1–12. [Google Scholar] [CrossRef]
- Rogošić, M.; Kučan, K.Z. Deep Eutectic Solvents Based on Choline Chloride and Ethylene Glycol as Media for Extractive Denitrification/Desulfurization/Dearomatization of Motor Fuels. J. Ind. Eng. Chem. 2019, 72, 87–99. [Google Scholar] [CrossRef]
- Inman, M.; Moody, C.J. Indole Synthesis–Something Old, Something New. Chem. Sci. 2013, 4, 29–41. [Google Scholar] [CrossRef]
- Mindt, M.; Beyraghdar Kashkooli, A.; Suarez-Diez, M.; Ferrer, L.; Jilg, T.; Bosch, D.; Martins dos Santos, V.; Wendisch, V.F.; Cankar, K. Production of Indole by Corynebacterium Glutamicum Microbial Cell Factories for Flavor and Fragrance Applications. Microb. Cell Factories 2022, 21, 45. [Google Scholar] [CrossRef]
- Scriven, E.F.V.; Murugan, R. Pyridine and Pyridine Derivatives. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Portero, C.E.; Han, Y.; Marchán-Rivadeneira, M.R. Advances on the Biosynthesis of Pyridine Rings. Eng. Microb. 2023, 3, 100064. [Google Scholar] [CrossRef]
- Akbari, A.; Andevary, H.H. Catalytic Oxidative-Extractive Deep Desulfurization of Diesel Fuel by N-Methyl-2-Pyrrolidone-Based Protic Acidic Ionic Liquids (PAILs). Iran. J. Chem. Chem. Eng. 2014, 20, 315–323. [Google Scholar]
- Feng, X.; Ma, X.; Li, N.; Shang, C.; Yang, X.; Chen, X.D. Adsorption of Quinoline from Liquid Hydrocarbons on Graphite Oxide and Activated Carbons. RSC Adv. 2015, 5, 74684–74691. [Google Scholar] [CrossRef]
- Le Borgne, S.; Quintero, R. Biotechnological Processes for the Refining of Petroleum. Fuel Process. Technol. 2003, 81, 155–169. [Google Scholar] [CrossRef]
- Koriakin, A.; Ponvel, K.M.; Lee, C.-H. Denitrogenation of Raw Diesel Fuel by Lithium-Modified Mesoporous Silica. Chem. Eng. J. 2010, 162, 649–655. [Google Scholar] [CrossRef]
- Gao, P.; Yang, L.; Wang, J.; Gao, J.; Xu, D.; Ma, L.; Zhang, L.; Wang, Y. Integrated Investigation for Extractive Denitrogenation of Fuel Oils with Eco-Friendly Piperazine-Based Ionic Liquids. Fuel 2023, 337, 127187. [Google Scholar] [CrossRef]
- Solov’ev, V.O.; Kostenko, M.O.; Solov’eva, S.V.; Zakhodyaeva, Y.A.; Parenago, O.O.; Sobolev, N.A.; Voshkin, A.A. A Green Hybrid Extraction Process for Thiophene, Quinoline and Indole Recovery from Light Hydrocarbon Fractions. Chem. Eng. Res. Des. 2023, 191, 1–13. [Google Scholar] [CrossRef]
- Ci, F.; Zhang, T.; Zhang, L. Efficient Separation of Indole from Fossil Fuel Pyrolysis Products by Carboxylic Acid Non-Aromatic Ring Ionic Liquids: Experiment and Mechanism Exploration. J. Mol. Liq. 2023, 391, 123429. [Google Scholar] [CrossRef]
- Hansmeier, A.R.; Meindersma, G.W.; de Haan, A.B. Desulfurization and Denitrogenation of Gasoline and Diesel Fuels by Means of Ionic Liquids. Green Chem. 2011, 13, 1907. [Google Scholar] [CrossRef]
- Bertleff, B.; Haider, M.S.; Claußnitzer, J.; Korth, W.; Wasserscheid, P.; Jess, A.; Albert, J. Extractive Catalytic Oxidative Denitrogenation of Fuels and Their Promoting Effect for Desulfurization Catalyzed by Vanadium Substituted Heteropolyacids and Molecular Oxygen. Energy Fuels 2020, 34, 8099–8109. [Google Scholar] [CrossRef]
- Solov’ev, V.O.; Solov’eva, S.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extractive Denitrogenization of Liquid Model Fuel Using Polyethylene Glycol Methyl Ether 350. Can. J. Chem. Eng. 2024, 102, 703–712. [Google Scholar] [CrossRef]
- Solov’ev, V.O.; Zakhodyaeva, Y.A.; Voshkin, A.A. On the Influence of Additives of Polymer, Sodium Nitrate, and 1-Methyl-2-Pyrrolidone on the Extraction of Thiophene in an n-Hexan–Water System. Theor. Found. Chem. Eng. 2020, 54, 894–899. [Google Scholar] [CrossRef]
- Zakhodyaeva, Y.A.; Solov’ev, V.O.; Zinov’eva, I.V.; Rudakov, D.G.; Timoshenko, A.V.; Voshkin, A.A. Interphase Distribution of Thiophene, Toluene, and o-Xylene in the Hexane–Polymer–Water Extraction System. Theor. Found. Chem. Eng. 2019, 53, 550–555. [Google Scholar] [CrossRef]
- Gaile, A.A.; Kostenko, A.V.; Semenov, L.V.; Koldobskaya, L.L. Extraction of 1-Methylnaphthalene, Benzothiophene, and Indole with N-Methylpyrrolidone from Their Mixtures with Alkanes. Russ. J. Appl. Chem. 2005, 78, 1403–1407. [Google Scholar] [CrossRef]
- Lemaoui, T.; Benguerba, Y.; Darwish, A.S.; Hatab, F.A.; Warrag, S.E.E.; Kroon, M.C.; Alnashef, I.M. Simultaneous Dearomatization, Desulfurization, and Denitrogenation of Diesel Fuels Using Acidic Deep Eutectic Solvents as Extractive Agents: A Parametric Study. Sep. Purif. Technol. 2021, 256, 117861. [Google Scholar] [CrossRef]
- Mokhtar, W.N.A.W.; Bakar, W.A.W.A.; Ali, R.; Kadir, A.A.A. Deep Desulfurization of Model Diesel by Extraction with N,N-Dimethylformamide: Optimization by Box–Behnken Design. J. Taiwan Inst. Chem. Eng. 2014, 45, 1542–1548. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Modarress, H.; Doulabi, F.; Bagheri, H. Liquid+liquid Equilibria for Ternary Mixtures of (Solvent+aromatic Hydrocarbon+alkane). J. Chem. Thermodyn. 2005, 37, 1111–1118. [Google Scholar] [CrossRef]
- Kumar, K.; Bharti, A.; Kumar, A.; Ghosh, S.K.; Kumar, A. Choline Based Deep Eutectic Solvent for Denitrogenation of Liquid Fuel: A Molecular Dynamics Study. J. Mol. Liq. 2023, 382, 121862. [Google Scholar] [CrossRef]
- Lima, F.; Dave, M.; Silvestre, A.J.D.; Branco, L.C.; Marrucho, I.M. Concurrent Desulfurization and Denitrogenation of Fuels Using Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2019, 7, 11341–11349. [Google Scholar] [CrossRef]
- Hizaddin, H.F.; Hadj-Kali, M.K.; Ramalingam, A.; Ali Hashim, M. Extractive Denitrogenation of Diesel Fuel Using Ammonium- and Phosphonium-Based Deep Eutectic Solvents. J. Chem. Thermodyn. 2016, 95, 164–173. [Google Scholar] [CrossRef]
- Ali, M.C.; Yang, Q.; Fine, A.A.; Jin, W.; Zhang, Z.; Xing, H.; Ren, Q. Efficient Removal of Both Basic and Non-Basic Nitrogen Compounds from Fuels by Deep Eutectic Solvents. Green Chem. 2016, 18, 157–164. [Google Scholar] [CrossRef]
- Yin, J.; Wang, J.; Li, Z.; Li, D.; Yang, G.; Cui, Y.; Wang, A.; Li, C. Deep Desulfurization of Fuels Based on an Oxidation/Extraction Process with Acidic Deep Eutectic Solvents. Green Chem. 2015, 17, 4552–4559. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Li, Z.; Yin, J.; Cui, Y.; Liu, Y.; Yang, G. Extraction Desulfurization of Fuels with ‘Metal Ions’ Based Deep Eutectic Solvents (MDESs). Green Chem. 2016, 18, 3789–3795. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Wang, X.; Wu, C.; Gates, I.D.; Guo, S.; Wu, B.; Zhu, W.; Gu, M.; Gao, M.; et al. Intermolecular Interactions Induced Desulfurization/Denitrification of Oil with Deep Eutectic Solvents. J. Mol. Liq. 2022, 366, 120159. [Google Scholar] [CrossRef]
- Alli, R.D.; Kroon, M.C. Extraction of Benzothiazole and Thiophene from Their Mixtures with N-Heptane Using Tetrahexylammonium Bromide-Based Deep Eutectic Solvents as Extractive Denitrogenation and Desulfurization Agents. Fluid Phase Equilib. 2018, 477, 1–11. [Google Scholar] [CrossRef]
- Lee, H.; Kang, S.; Jin, Y.; Jung, D.; Park, K.; Li, K.; Lee, J. Systematic Investigation of the Extractive Desulfurization of Fuel Using Deep Eutectic Solvents from Multifarious Aspects. Fuel 2020, 264, 116848. [Google Scholar] [CrossRef]
- Fortunato, L.; Al Fuhaid, L.; Murgolo, S.; De Ceglie, C.; Mascolo, G.; Falivene, L.; Vrouwenvelder, J.S.; Witkamp, G.-J.; Farinha, A. Removal of Polyfluoroalkyl Substances (PFAS) from Water Using Hydrophobic Natural Deep Eutectic Solvents (NADES): A Proof of Concept Study. J. Water Proc. Eng. 2023, 56, 104401. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Fedorov, A.Y.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. A Deep Eutectic Solvent Based on Choline Chloride and Sulfosalicylic Acid: Properties and Applications. Theor. Found. Chem. Eng. 2021, 55, 371–379. [Google Scholar] [CrossRef]
- Ul Haq, H.; Bibi, R.; Balal Arain, M.; Safi, F.; Ullah, S.; Castro-Muñoz, R.; Boczkaj, G. Deep Eutectic Solvent (DES) with Silver Nanoparticles (Ag-NPs) Based Assay for Analysis of Lead (II) in Edible Oils. Food Chem. 2022, 379, 132085. [Google Scholar] [CrossRef] [PubMed]
- Hatab, F.A.; Darwish, A.S.; Lemaoui, T.; Warrag, S.E.E.; Benguerba, Y.; Kroon, M.C.; AlNashef, I.M. Extraction of Thiophene, Pyridine, and Toluene from n-Decane as a Diesel Model Using Betaine-Based Natural Deep Eutectic Solvents. J. Chem. Eng. Data 2020, 65, 5443–5457. [Google Scholar] [CrossRef]
- Rogošić, M.; Zagajski Kučan, K. Deep Eutectic Solvent Based on Choline Chloride and Propylene Glycol as a Potential Medium for Extraction Denitrification of Hydrocarbon Fuels. Chem. Eng. Res. Des. 2020, 161, 45–57. [Google Scholar] [CrossRef]
- Tahir, S.; Qazi, U.Y.; Naseem, Z.; Tahir, N.; Zahid, M.; Javaid, R.; Shahid, I. Deep Eutectic Solvents as Alternative Green Solvents for the Efficient Desulfurization of Liquid Fuel: A Comprehensive Review. Fuel 2021, 305, 121502. [Google Scholar] [CrossRef]
- Santana, A.P.R.; Mora-Vargas, J.A.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. [Google Scholar] [CrossRef]
- Lobovich, D.V.; Solov’eva, S.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment. Theor. Found. Chem. Eng. 2023, 57, 1276–1291. [Google Scholar]
- Misek, T.; Berger, R.; Schröter, J. Standart Test Systems for Liquid Extraction, 2nd ed.; Misek, T., Ed.; European Federation of Chemical Engineering by Institution of Chemical Engineers: Rugby, UK, 1985; Volume 46. [Google Scholar]
- Dean, J.A. Lange’s Handbook of Chemistry; McGraw Hill Inc.: New York, NY, USA, 1992. [Google Scholar]
- Pratt, H.R.C.; Lo, T.C. Handbook of Solvent Extraction; Lo, T.C., Braid, M.H.I., Hanson, C., Eds.; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Kaplanow, I.; Goerzgen, F.; Merz, J.; Schembecker, G. Mass Transfer of Proteins in Aqueous Two-Phase Systems. Sci. Rep. 2019, 9, 3692. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Rodríguez-Ramos, R.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Application of Natural Deep Eutectic Solvents for the Extraction of Plasticizers in Laying Hen and Goat Feed. Microchem. J. 2023, 193, 109072. [Google Scholar] [CrossRef]
Experiment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
NaDES flowrate, L/h | 0.1 | 0.2 | 0.252 | 0.3 | 0.4 | 0.504 | 0.78 | 1.008 | 1.2 | 1.38 | 1.6 |
Organic phase flowrate, L/h | 0.05 | 0.1 | 0.126 | 0.15 | 0.2 | 0.252 | 0.39 | 0.504 | 0.6 | 0.69 | 0.8 |
CA-Xyl-H2O | MA-Xyl-H2O | MA-CA-H2O | |
---|---|---|---|
Pyridine | 3.8 × 10−5 | 2.8 × 10−5 | 2.7 × 10−5 |
Quinoline | 2.0 × 10−5 | 1.9 × 10−5 | 2.5 × 10−5 |
Indole | 3.4 × 10−6 | 2.9 × 10−6 | 1.2 × 10−6 |
vx (L/h) | X | t | Vc/vx (s) | kx ac (1/s) | kx (cm/s) |
---|---|---|---|---|---|
0.252 | 0.58558 | 3.66255 | 35.71429 | 0.10255 | 0.00051 |
0.390 | 0.65309 | 1.34664 | 23.07692 | 0.05835 | 0.00029 |
0.504 | 0.66744 | 1.15341 | 17.85714 | 0.06459 | 0.00032 |
0.600 | 0.74677 | 0.55282 | 15.00000 | 0.03685 | 0.00018 |
0.69 | 0.79911 | 0.35237 | 13.04348 | 0.02702 | 0.00014 |
0.800 | 0.82069 | 0.29095 | 11.25000 | 0.02586 | 0.00013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobovich, D.V.; Zinov’eva, I.V.; Milevskii, N.A.; Kostanyan, A.E.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor. Processes 2024, 12, 488. https://doi.org/10.3390/pr12030488
Lobovich DV, Zinov’eva IV, Milevskii NA, Kostanyan AE, Zakhodyaeva YA, Voshkin AA. Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor. Processes. 2024; 12(3):488. https://doi.org/10.3390/pr12030488
Chicago/Turabian StyleLobovich, Dmitriy V., Inna V. Zinov’eva, Nikita A. Milevskii, Artak E. Kostanyan, Yulia A. Zakhodyaeva, and Andrey A. Voshkin. 2024. "Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor" Processes 12, no. 3: 488. https://doi.org/10.3390/pr12030488
APA StyleLobovich, D. V., Zinov’eva, I. V., Milevskii, N. A., Kostanyan, A. E., Zakhodyaeva, Y. A., & Voshkin, A. A. (2024). Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor. Processes, 12(3), 488. https://doi.org/10.3390/pr12030488