The Wetting Characteristics and Microscopic Wetting Mechanism of Coal under High-Pressure Nitrogen Environment
Abstract
:1. Introduction
2. Coal Samples and Laboratory Experiments
2.1. Sample Collection and Preparation
2.2. Contact Angle Experiment under Gas Atmosphere
- (1)
- Make two cake-shaped coal samples (40 mm in diameter and 5 mm in thick). Use 240, 600, 1000, and 2000 mesh sandpaper to polish the samples until the surface is smooth and free of particle sensation. Finally, remove the residual powders on the surface of the samples using high-purity N2;
- (2)
- Place the sample in the high-pressure transparent chamber and adjust the sample position, such that it can be observed through a camera. Turn on the gas-injection system to inject N2 with a preset pressure and maintain this pressure for 4 h to allow the N2 and coal samples to fully interact;
- (3)
- Slowly rotate the water-injection pump to drip distilled water onto the coal surface, record the water droplet on the coal surface using a high-definition camera to measure, and calculate the contact angle using a computer testing system;
- (4)
- Considering the nonuniformity of the coal surface, drop five drops and conduct measurements at different positions on the coal sample and take the average value as the contact angle of the sample;
- (5)
- Once step 4 is completed, remove the sample and allow it to dry. Then, repeat steps 1–4 to test the coal-water contact angle under different N2 pressures of 1, 2, 3, 4, 5, 6, 7, and 8 MPa at a temperature of 20 °C.
2.3. Surface Roughness
3. Results and Analysis
3.1. Coal–Water Contact Angle
3.2. Surface Roughness
4. Discussion
4.1. Mathematical Relationship between Contact Angle and N2 Pressure
a (°) | b (MPa−1) | c (°) | R2 |
---|---|---|---|
23.02 | 0.19 | 78.38 | 0.97 |
4.2. Capillary Pressure Changes Induced by Contact Angle and N2 Pressure
4.3. Mechanism of Contact Angle/Capillary Pressure Reversal under N2 Pressure
5. Conclusions
- (1)
- The contact angle of anthracite increases with the increase of N2 pressure and finally stabilizes; the relationship between contact angle and N2 pressure is similar to the Langmuir isothermal adsorption curve;
- (2)
- With the increase of N2 pressure, the amount of N2 adsorbed in the coal matrix increases, which is the main reason for the increase in contact angle. At 5.26 MPa N2 pressure, the contact angle reaches 90°, and the wettability of anthracite is reversed. The capillary pressure changes from a resisting force to a driving force;
- (3)
- In addition, high-pressure N2 increases the surface roughness of the coal matrix and enhances the adsorption capacity and amount of N2, which is beneficial for improving the contact angle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dávila-Pulido, G.I.; González-Ibarra, A.A.; Garza-García, M. A brief review on coal reserves, production and possible non-power uses: The case of Mexico. Heliyon 2023, 9, e16043. [Google Scholar] [CrossRef]
- Wu, X.F.; Li, H.X.; Wang, B.L.; Zhu, M.B. Review on Improvements to the Safety Level of Coal Mines by Applying Intelligent Coal Mining. Sustainability 2022, 14, 16400. [Google Scholar] [CrossRef]
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Pet. Explor. Dev. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Guo, Z.X.; Zhao, J.Z.; You, Z.J.; Li, Y.M.; Zhang, S.; Chen, Y.Y. Prediction of coalbed methane production based on deep learning. Energy 2021, 230, 120847. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Pan, Z.; Wang, Z.; Yang, K.; Ren, C.; Xu, J. Coal Permeability Evolution Under Different Water-Bearing Conditions. Nat. Resour. Res. 2020, 29, 2451–2465. [Google Scholar] [CrossRef]
- Lu, Y.; Meng, Z.; Su, X.; Yu, Y. Experimental Study of Dynamic Permeability Changes in Coals of Various Ranks During Hydraulic Fracturing. Nat. Resour. Res. 2022, 31, 3253–3272. [Google Scholar] [CrossRef]
- Yu, Y.; Meng, Z.; Gao, C.; Lu, Y.; Li, J. Experimental Investigation of Pore Pressure Effect on Coal Sample Permeability Under Different Temperatures. Nat. Resour. Res. 2022, 31, 1585–1599. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, X.; Fan, C.; Bai, G. Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery. Energy 2022, 252, 124065. [Google Scholar] [CrossRef]
- Oudinot, A.Y.; Riestenberg, D.E.; Koperna, G.J. Enhanced Gas Recovery and CO2 Storage in Coal Bed Methane Reservoirs with N2 Co-Injection. Energy Procedia 2017, 114, 5356–5376. [Google Scholar] [CrossRef]
- Kang, Y.; Sun, L.; Zhang, B.; Jiaoyang, G.; Delei, M. Discussion on classification of coalbed reservoir permeability in China. J. China Coal Soc. 2017, 42 (Suppl. S1), 186–194. [Google Scholar]
- Cao, W.; Yildirim, B.; Durucan, S.; Wolf, K.-H.; Cai, W.; Agrawal, H.; Korre, A. Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing. Fuel 2021, 288, 119618. [Google Scholar] [CrossRef]
- Li, H.; Liang, W.; Jiang, Y.; Wu, P.; Wu, J.; He, W. Numerical Study on the Field-Scale Criterion of Hydraulic Fracture Crossing the Interface Between Roof and Broken Low-Permeability Coal. Rock Mech. Rock Eng. 2021, 54, 4543–4567. [Google Scholar] [CrossRef]
- Zhang, B.; Li, B.; Zhang, D.; Li, J. Experimental research on permeability variation from the process of hydraulic fracturing of high-rank coal. Environ. Earth Sci. 2020, 79, 45. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.K.; Shi, X.; Li, J.; Zhou, T.; Cao, W.K.; Zhang, K.H.; Zhang, Y.J.; Gao, M. Experimental and numerical study on the relationship between water imbibition and salt ion diffusion in fractured shale reservoirs. J. Nat. Gas Sci. Eng. 2017, 38, 283–297. [Google Scholar] [CrossRef]
- Liu, Q.; Nie, W.; Hua, Y.; Peng, H.; Liu, Z. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face: A case study. Powder Technol. 2018, 329, 371–385. [Google Scholar] [CrossRef]
- Plug, W.-J.; Mazumder, S.; Bruining, J. Capillary Pressure and Wettability Behavior of CO2 Sequestration in Coal at Elevated Pressures. SPE J. 2008, 13, 455–464. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Peng, X.L.; You, Z.J.; Li, C.L.; Deng, P. The effects of cross-formational water flow on production in coal seam gas reservoir: A case study of Qinshui Basin in China. J. Pet. Sci. Eng. 2020, 194, 107516. [Google Scholar] [CrossRef]
- Franco-Aguirre, M.; Zabala, R.D.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. Interaction of anionic surfactant-nanoparticles for gas—Wettability alteration of sandstone in tight gas-condensate reservoirs. J. Nat. Gas Sci. Eng. 2018, 51, 53–64. [Google Scholar] [CrossRef]
- Jia, L.; Li, K.; Shi, X.; Zhao, L.; Linghu, J. Application of gas wettability alteration to improve methane drainage performance: A case study. Int. J. Min. Sci. Technol. 2021, 31, 621–629. [Google Scholar] [CrossRef]
- Liu, J.; Yang, T.; Yuan, J.; Chen, X.; Wang, L. Study on Eliminating the Water Blocking Effect in Coal Seams Using Gas-Wetting Reversal Technology. ACS Omega 2020, 5, 30687–30695. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Han, J.; Yao, B.H. A numerical solution to the effects of surface roughness on water-coal contact angle. Sci. Rep. 2021, 11, 459. [Google Scholar] [CrossRef]
- Yan, M.; Luo, H.; Yang, T.; Yan, D.; Wei, J.; Lin, H.; Li, S. Experimental Study on Fractal Characteristics of Surface Roughness of Briquettes and their Effect on Wettability of Coal Samples. Nat. Resour. Res. 2023, 32, 1235–1249. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, X.; Li, G.; Deng, Z.; Shen, Y.; Hao, M. An experimental study on the effect of nitrogen injection on the deformation of coal during methane desorption. J. Nat. Gas Sci. Eng. 2020, 83, 103529. [Google Scholar] [CrossRef]
- Shojai Kaveh, N.; Rudolph, E.S.; Wolf, K.H.; Ashrafizadeh, S.N. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2. J. Colloid Interface Sci. 2011, 364, 237–247. [Google Scholar] [CrossRef]
- Song, L.; Song, Q.; Yan, J.; Shu, X. Study on wettability of coal dust based on its microtopography and surface free energy. Coal Convers. 2018, 41, 12–18. [Google Scholar]
- Jia, C.; Lai, J.; Chen, W.; Lu, Y.; Cai, Y.; Liang, Y. Microscopic wettability of medium rank coals involved pore features and functional groups. Nat. Gas Ind. B. 2022, 9, 325–335. [Google Scholar] [CrossRef]
- Arif, M.; Barifcani, A.; Lebedev, M.; Iglauer, S. CO2-enhanced methane recovery. Fuel 2016, 181, 680–689. [Google Scholar] [CrossRef]
- Wei, J.; Wang, H.; Si, L.; Xi, Y. Characteristics of coal-water solid-liquid contact in gas atmosphere. J. China Coal Soc. 2022, 47, 323–332. [Google Scholar]
- Si, L.L.; Ding, N.; Wei, J.P.; Sheng, L.C.; Wang, L.; Li, Z.W.; Chen, X.M. Gas-liquid competitive adsorption characteristics and coal wetting mechanism under different pre-adsorbed gas conditions. Fuel 2022, 329, 125441. [Google Scholar] [CrossRef]
- Ding, N.; Si, L.; Wei, J.; Jiang, W.; Zhang, J.; Liu, Y. Study on Coal Wettability under Different Gas Environments Based on the Adsorption Energy. ACS Omega 2023, 8, 22211–22222. [Google Scholar] [CrossRef]
- Talapatra, A.; Halder, S.; Chowdhury, A.I. Enhancing coal bed methane recovery: Using injection of nitrogen and carbon dioxide mixture. Pet. Sci. Technol. 2021, 39, 49–62. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Z.; Fu, X.; Li, G.; Pan, J.; Hao, M.; Zhou, H. Effects of Methane Saturation and Nitrogen Pressure on N2-Enhanced Coalbed Methane Desorption Strain Characteristics of Medium-Rank Coal. Nat. Resour. Res. 2020, 30, 1527–1545. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Ni, M.; Shu, L.; Gong, H.; Wang, Z. Investigation on Key Parameters of N2 Injection to Enhance Coal Seam Gas Drainage (N2-ECGD). Energies 2022, 15, 5064. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Du, F.; Jin, L.; Gong, H. N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation. Energy 2022, 239, 122247. [Google Scholar] [CrossRef]
- Zhu, Y.; Xing, H.; Rudolph, V.; Chen, Z. Quantifying the impact of capillary trapping on coal seam gas recovery. J. Nat. Gas Sci. Eng. 2020, 83, 103588. [Google Scholar] [CrossRef]
- Cao, Y.; Shi, B.; Zhou, D.; Wu, H.; Liu, T.; Tian, L.; Cao, Y.; Jia, M. Study and application of stimulation technology for low production CBM well through high pressure N2 Injection-soak. J. China Coal Soc. 2019, 44, 2556–2565. [Google Scholar]
- Ni, X.; Jia, B.; Cao, Y. Study on Improving Coal -bed Gas Recovery Rate by Hydraulic Fracturing and Nitrogen Injection of Borehole. Min. Saf. Environ. Prot. 2012, 39, 1–3+6+7. [Google Scholar]
- GB/T 212-2008; Proximate Analysis of Coal. Standards Press of China: Beijing, China, 2008.
- GB/T 31391-2015; Ultimate Analysis of Coal. Standards Press of China: Beijing, China, 2015.
- GBT6948-2008; Method of Determining Microscopically the Reflectance of Vitrinite in Coal. Standards Press of China: Beijing, China, 2008.
- Zhang, J.; Xu, B.; Wei, J.; Zhang, P.; Cai, M.; Zhang, K. Numerical Simulation of Coal Surface Contact Angle Based on Roughness. Coal Sci. Technol. 2023, 51, 96–104. [Google Scholar]
- GB/T 40066-2021; Nanotechnologies—Thickness Measurement of Graphene Oxide—Atomic Force Microscopy (AFM). Standards Press of China: Beijing, China, 2021.
- Lu, Y.; Liu, D.; Cai, Y.; Gao, C.; Jia, Q.; Zhou, Y. AFM measurement of roughness, adhesive force and wettability in various rank coal samples from Qinshui and Junggar basin, China. Fuel 2022, 317, 123556. [Google Scholar] [CrossRef]
- Arif, M.; Barifcani, A.; Iglauer, S. Solid/CO2 and solid/water interfacial tensions as a function of pressure, temperature, salinity and mineral type: Implications for CO2-wettability and CO2 geo-storage. Int. J. Greenh. Gas Control 2016, 53, 263–273. [Google Scholar] [CrossRef]
- Jia, L.; Li, K.; Zhou, J.; Yan, Z.; Wang, Y.; Mahlalela, B.M. Experimental study on enhancing coal-bed methane production by wettability alteration to gas wetness. Fuel 2019, 255, 115860. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Zhu, J.T.; Liao, X.X.; Ni, S.J.; Shen, S.L. Experimental study on alleviating water-blocking effect and promoting coal gas desorption by gas wettability alteration. J. Nat. Gas Sci. Eng. 2022, 108, 104805. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Liu, W.; Zhang, T.; He, M.; Nasrabadi, H. Molecular dynamics of methane flow behavior through realistic organic nanopores under geologic shale condition: Pore size and kerogen types. Chem. Eng. J. 2020, 398, 124341. [Google Scholar] [CrossRef]
- Hu, B.; Cheng, Y.P.; Pan, Z.J. Classification methods of pore structures in coal: A review and new insight. Gas Sci. Eng. 2023, 110, 204876. [Google Scholar] [CrossRef]
Proximate Analysis (%) | Element Analysis (%) | Ro,max (%) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | |
1.00 | 15.74 | 11.06 | 72.20 | 91.52 | 3.95 | 3.05 | 1.11 | 2.46 |
Minerals (%) | Density (g/cm3) | |||
---|---|---|---|---|
Kaolinite | Quartz | Boehmite | True Density | Apparent Density |
70 | 23.8 | 6.2 | 1.67 | 1.34 |
Coal Sample | Maximum Fluctuation Height (nm) | Minimum Fluctuation Height (nm) | Roughness (nm) | Standard Deviation (nm) |
---|---|---|---|---|
Without N2 treatment | 31.3 | −30.8 | 5.6 | 0.28 |
Pressure N2 treated | 101.3 | −96.1 | 22.3 | 2.14 |
Contact Angle Source | N2 Pressure (MPa) | Contact Angle (°) | Capillary Pressure (MPa) |
---|---|---|---|
Actual measurement | 0.1 | 77.9 | 0.298 |
1 | 83.0 | 0.174 | |
2 | 85.3 | 0.117 | |
3 | 86.0 | 0.099 | |
4 | 87.1 | 0.554 | |
5 | 89.7 | 0.007 | |
6 | 91.4 | −0.035 | |
7 | 91.8 | −0.045 | |
8 | 92.3 | −0.057 | |
Fitted | 10 | 93.5 | −0.086 |
15 | 95.4 | −0.135 | |
20 | 96.6 | −0.164 | |
25 | 97.4 | −0.183 | |
30 | 98.0 | −0.197 | |
35 | 98.4 | −0.208 | |
40 | 98.7 | −0.216 | |
∞ | 101.4 | −0.281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, P.; Shi, B.; Cao, Y.; Qi, Y.; Chen, X.; Li, L. The Wetting Characteristics and Microscopic Wetting Mechanism of Coal under High-Pressure Nitrogen Environment. Processes 2024, 12, 568. https://doi.org/10.3390/pr12030568
Long P, Shi B, Cao Y, Qi Y, Chen X, Li L. The Wetting Characteristics and Microscopic Wetting Mechanism of Coal under High-Pressure Nitrogen Environment. Processes. 2024; 12(3):568. https://doi.org/10.3390/pr12030568
Chicago/Turabian StyleLong, Piao, Bin Shi, Yunxing Cao, Yufei Qi, Xinyi Chen, and Liuyang Li. 2024. "The Wetting Characteristics and Microscopic Wetting Mechanism of Coal under High-Pressure Nitrogen Environment" Processes 12, no. 3: 568. https://doi.org/10.3390/pr12030568
APA StyleLong, P., Shi, B., Cao, Y., Qi, Y., Chen, X., & Li, L. (2024). The Wetting Characteristics and Microscopic Wetting Mechanism of Coal under High-Pressure Nitrogen Environment. Processes, 12(3), 568. https://doi.org/10.3390/pr12030568