Why Carbon Nanotubes Improve Aqueous Nanofluid Thermal Conductivity: A Qualitative Model Critical Review
Abstract
:1. Introduction
1.1. General
1.2. Scope and Relevance
2. Methodology
3. Modeling and Theory
3.1. General
3.2. Concept of Thermal Conductivity
3.3. Impact of CNTs on Aqueous Nanofluid Thermal Conductivity
3.4. Proposed Qualitative Model and Postulates
- (1)
- A CNT is a relatively long nanotube. When suspended in water, the CNT may interact with water molecules via weak interactions to keep the tubes suspended. The interactions vary depending on type and structure of the CNT. The interactions are further improved by functionalizing with other polar groups such as –COOH or –SO3H. The polar groups allow formation of dipole–dipole and H-bond formations [52].
- (2)
- (3)
- A number of clusters may interact together to form a network of clusters that freely move, through Brownian random motion. The literature describes network formation in CNT nanofluids [53].
- (4)
- Heat moves through a given cluster from one end (with the higher temperature) to another end (with the lower temperature) in a directional manner. The cluster behaves as a conducting channel through which heat moves uniformly. The network also carries heat from the higher-temperature side of a fluid to the lower-temperature side, through Brownian motion. The suspended network freely moves from the higher-temperature end of a fluid to the other lower-temperature end [7]. This process provides an additional path of heat transfer through convection. The process is possible in functionalized CNTs, which have stronger interactions with water.
- (5)
- The cluster and network formation induces various effects on the base liquid physical properties, such as viscosity [54], surface tension [55], interface characteristics with the container walls, and others. Such variations may further affect the thermal conductivity of the nanofluid, as discussed below.
3.5. Mechanisms of Thermal Conductivity Increase in Aqueous Nanofluids
3.5.1. Conductive Network Formation
3.5.2. Boundary Layer Disruption
3.5.3. CNT Contact Resistance Reduction
3.5.4. Lowered Phonon Scattering
3.5.5. Increased Contact Points
3.5.6. Brownian Random Motion
3.5.7. Thermal Diffusivity
3.5.8. Surface Tension and Viscosity
3.5.9. Type of Carbon Nanotube
3.5.10. CNT Concentration
4. Results and Discussion
4.1. CNT Type
4.2. CNT Concentration
4.3. Aspect Ratio
4.4. Dispersion Quality
4.4.1. Functionalization
4.4.2. Sonication
4.4.3. Addition of Surfactant
Surfactant | Surfactant |
---|---|
Cetyltrimethylammonium bromide (CTAB). | Sodium dodecyl benzene sulfonate (SDBS), |
Anionic (SDS) (Sodium dodecyl sulfate) | Sodium dodecyl sulfate (SDS) |
Cationic (CTAB) Cetyltrimethylammonium bromide | Tween 80 polysorbate 80 |
Nonionic (LAE-7) Shazand petrochemical complex | Tergitol NP-10 |
Amphoteric (CHAPS) nonionic surfactants | Poly-Vinyl-Pyrrolidone (PVP) |
Hydropalat 5040 sodium polyacrylate in aqueous solution | Gum Arabic (GA) |
Aerosol OT-70 PG | Hexadecyl-Trimethyl-Ammonium-bromide (CTAB) |
Oleic acid | Antiterra 250 |
Laurate salt | Disperbyk 190 |
Sodium dodecyl sulfate (SDS) | Hypermer LP1 |
Disponil A 1580 | Aerosol TR-70 |
Aerosol TR-70 HG |
4.5. Temperature
5. Future Outlook
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, N.; Bahman, A.M.; Aljuwayhel, N.F.; Ebrahim, S.A.; Mukherjee, S.; Alsayegh, A. Carbon-based nanofluids and their advances towards heat transfer applications—A review. Nanomaterials 2021, 11, 1628. [Google Scholar] [CrossRef]
- Xie, H.; Chen, L. Adjustable thermal conductivity in carbon nanotube nanofluids. Phys. Lett. A 2009, 373, 1861–1864. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Srikanth, N.; Kumar, A.C. History of Carbon Nanotubes. In Handbook of Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–24. [Google Scholar]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Salah, L.S.; Ouslimani, N.; Bousba, D.; Huynen, I.; Danlée, Y.; Aksas, H. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. J. Nanomater. 2021, 2021, 4972770. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef]
- Kumar, V.; Madhukesh, J.; Jyothi, A.; Prasannakumara, B.; Khan, M.I.; Chu, Y.-M. Analysis of single and multi-wall carbon nanotubes (SWCNT/MWCNT) in the flow of Maxwell nanofluid with the impact of magnetic dipole. Comput. Theor. Chem. 2021, 1200, 113223. [Google Scholar] [CrossRef]
- Estellé, P.; Halelfadl, S.; Thierry, M. Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. J. Therm. Eng. 2015, 1, 381–390. [Google Scholar] [CrossRef]
- Xing, M.; Yu, J.; Wang, R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int. J. Heat Mass Transf. 2015, 88, 609–616. [Google Scholar] [CrossRef]
- Assael, M.J.; Chen, C.-F.; Metaxa, I.; Wakeham, W.A. Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 2004, 25, 971–985. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 2014, 52, 73–83. [Google Scholar] [CrossRef]
- Science Direct (2007–2023). Available online: https://www.sciencedirect.com/search?qs=cnt%20nano%20fluids&show=50&lastSelectedFacet=years&subjectAreas=1600&years=2023 (accessed on 4 November 2023).
- Pabst, W.; Hříbalová, S. Modeling the thermal conductivity of carbon nanotube (CNT) nanofluids and nanocomposites–a fresh restart. Int. J. Heat Mass Transf. 2023, 206, 123941. [Google Scholar] [CrossRef]
- Kumar, S.; Kothiyal, A.D.; Bisht, M.S.; Kumar, A. Numerical analysis of thermal hydraulic performance of Al2O3–H2O nanofluid flowing through a protrusion obstacles square mini channel. Case Stud. Therm. Eng. 2017, 9, 108–121. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Ghasempour, R. A review of thermal conductivity of various nanofluids. J. Mol. Liq. 2018, 265, 181–188. [Google Scholar] [CrossRef]
- Devarajan, M.; Krishnamurthy, N.P.; Balasubramanian, M.; Ramani, B.; Wongwises, S.; El-Naby, K.A.; Sathyamurthy, R. Thermophysical properties of CNT and CNT/Al2O3 hybrid nanofluid. Micro Nano Lett. 2018, 13, 617–621. [Google Scholar] [CrossRef]
- Sarviya, R.; Fuskele, V. Review on thermal conductivity of nanofluids. Mater. Today Proc. 2017, 4, 4022–4031. [Google Scholar] [CrossRef]
- Tugolukov, E.; Ali, A.J. Review enhancement of thermal conductivity and heat transfer using carbon nanotube for nanofluids and ionanofluids. J. Therm. Eng. 2021, 7, 66–90. [Google Scholar] [CrossRef]
- Wu, S.; Yan, T.; Kuai, Z.; Pan, W. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater. 2020, 25, 251–295. [Google Scholar] [CrossRef]
- Ali, A.; Tugolukov, E. An experimental study on the influence of functionalized carbon nanotubes CNT Taunit series on the thermal conductivity enhancement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 693, 012001. [Google Scholar] [CrossRef]
- Özerinç, S.; Kakaç, S.; Yazıcıoğlu, A.G. Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluid. Nanofluid. 2010, 8, 145–170. [Google Scholar] [CrossRef]
- Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 2008, 29, 432–460. [Google Scholar] [CrossRef]
- Zeng, Y.; Marconnet, A. A direct differential method for measuring thermal conductivity of thin films. Rev. Sci. Instrum. 2017, 88, 4. [Google Scholar] [CrossRef] [PubMed]
- Vargaftik, N.B. Handbook of Thermal Conductivity of Liquids and Gases; CRC-Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Bohne, D.; Fischer, S.; Obermeier, E. Thermal, conductivity, density, viscosity, and Prandtl-numbers of ethylene glycol-water mixtures. Berichte Der Bunsenges. Für Phys. Chem. 1984, 88, 739–742. [Google Scholar] [CrossRef]
- Huang, W.; Li, Z.; Liu, X.; Zhao, H.; Guo, S.; Jia, Q. Effective thermal conductivity of reservoir freshwater ice with attention to high temperature. Ann. Glaciol. 2013, 54, 189–195. [Google Scholar] [CrossRef]
- Charde, N. Microstructure and fatigue properties of dissimilar spot welds joints of AISI 304 and AISI 1008. Int. J. Automot. Mech. Eng. 2013, 7, 882–899. [Google Scholar] [CrossRef]
- Muhammad, S.; Ali, G.; Shah, Z.; Islam, S.; Hussain, S.A. The rotating flow of magneto hydrodynamic carbon nanotubes over a stretching sheet with the impact of non-linear thermal radiation and heat generation/absorption. Appl. Sci. 2018, 8, 482. [Google Scholar] [CrossRef]
- Gspann, T.S.; Juckes, S.M.; Niven, J.F.; Johnson, M.B.; Elliott, J.A.; White, M.A.; Windle, A.H. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon 2017, 114, 160–168. [Google Scholar] [CrossRef]
- Yang, X.; Cui, J.; Xue, K.; Fu, Y.; Li, H.; Yang, H. Thermal conductivity and thermoelectric properties in 3D macroscopic pure carbon nanotube materials. Nanotechnol. Rev. 2021, 10, 178–186. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Zhang, Y.-F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers 2017, 9, 437. [Google Scholar] [CrossRef]
- Lee, D.-K.; Yoo, J.; Kim, H.; Kang, B.-H.; Park, S.-H. Electrical and thermal properties of carbon nanotube polymer composites with various aspect ratios. Materials 2022, 15, 1356. [Google Scholar] [CrossRef]
- Bruggeman, D.A.G. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. 1935, 416, 636–791. [Google Scholar] [CrossRef]
- Kotrbová, L.; Pabst, W. Is the Hamilton-Crosser model of any relevance?–A contribution dedicated to the 150th anniversary of Maxwell’s model and the 100th anniversary of Fricke’s model. Int. J. Therm. Sci. 2024, 197, 108805. [Google Scholar] [CrossRef]
- Wadell, H. Volume, shape, and roundness of quartz particles. J. Geol. 1935, 43, 250–280. [Google Scholar] [CrossRef]
- Xu, J.; Gao, B.; Kang, F. A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Appl. Therm. Eng. 2016, 102, 972–979. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanopart. Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
- Younes, H.; Christensen, G.; Li, D.; Hong, H.; Ghaferi, A.A. Thermal conductivity of nanofluids. J. Nanofluids 2015, 4, 107–132. [Google Scholar] [CrossRef]
- Navaei, M.; Mahdavifar, A.; Xu, J.; Dimandja, J.; McMurray, G.; Hesketh, P. Micro-fabrication of all silicon 3 meter GC columns using gold eutectic fusion bonding. ECS J. Solid State Sci. Technol. 2015, 4, S3011. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84, 4316–4318. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys. Rev. E 2007, 76, 061203. [Google Scholar] [CrossRef]
- Apmann, K.; Fulmer, R.; Soto, A.; Vafaei, S. Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials 2021, 14, 1291. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Saidur, R.; Mahbubul, I.; Hosseini, S. Data-driven methods for estimating the effective thermal conductivity of nanofluids: A comprehensive review. Int. J. Heat Mass Transf. 2019, 131, 1211–1231. [Google Scholar] [CrossRef]
- Sohrabi, N.; Masoumi, N.; Behzadmehr, A.; Sarvari, S. A simple analytical model for calculating the effective thermal conductivity of nanofluids. Heat Transf.—Asian Res. Co-Spons. By Soc. Chem. Eng. Jpn. Heat Transf. Div. ASME 2010, 39, 141–150. [Google Scholar] [CrossRef]
- Kleinstreuer, C. Modern Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef]
- Kaur, S.; Raravikar, N.; Helms, B.A.; Prasher, R.; Ogletree, D.F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun. 2014, 5, 3082. [Google Scholar] [CrossRef]
- Dahm, M.M.; Evans, D.E.; Schubauer-Berigan, M.K.; Birch, M.E.; Fernback, J.E. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann. Occup. Hyg. 2012, 56, 542–556. [Google Scholar] [PubMed]
- Younes, H.; Mao, M.; Murshed, S.S.; Lou, D.; Hong, H.; Peterson, G. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Coccia, G.; Tomassetti, S.; Di Nicola, G. Thermal conductivity of nanofluids: A review of the existing correlations and a scaled semi-empirical equation. Renew. Sustain. Energy Rev. 2021, 151, 111573. [Google Scholar] [CrossRef]
- Zakharychev, E.; Kabina, M.; Razov, E.; Semenycheva, L. A study of the stability of aqueous suspensions of functionalized carbon nanotubes. Colloid J. 2016, 78, 602–607. [Google Scholar] [CrossRef]
- Fasano, M.; Bigdeli, M.B.; Sereshk, M.R.V.; Chiavazzo, E.; Asinari, P. Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest. Renew. Sustain. Energy Rev. 2015, 41, 1028–1036. [Google Scholar] [CrossRef]
- Rehman, A.; Salleh, Z.; Gul, T. Influence of dynamics viscosity on the water base CNTs nanofluid flow over a stretching surface. Cogent Eng. 2020, 7, 1772945. [Google Scholar] [CrossRef]
- Berrada, N.; Hamze, S.; Desforges, A.; Ghanbaja, J.; Gleize, J.; Mare, T.; Vigolo, B.; Estellé, P. Surface tension of functionalized MWCNT-based nanofluids in water and commercial propylene-glycol mixture. J. Mol. Liq. 2019, 293, 111473. [Google Scholar] [CrossRef]
- Akhilesh, M.; Santarao, K.; Babu, M. Thermal Conductivity of CNT-Wated Nanofluids: A Review. Mech. Mech. Eng. 2018, 22, 1. [Google Scholar] [CrossRef]
- Schütt, F.; Signetti, S.; Krüger, H.; Röder, S.; Smazna, D.; Kaps, S.; Gorb, S.N.; Mishra, Y.K.; Pugno, N.M.; Adelung, R. Hierarchical self-entangled carbon nanotube tube networks. Nat. Commun. 2017, 8, 1215. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Guo, M.; Liu, Y.; Zhang, D.; Gao, F.; Sun, L.; Li, J.; Chen, X.; Terrones, M.; Wang, Y. Surface modification methods and mechanisms in carbon nanotubes dispersion. Carbon 2023, 212, 118133. [Google Scholar] [CrossRef]
- Yuan, L.; Zou, S.; Yang, Y.; Chen, S. Boundary-Layer Disruption and Heat-Transfer Enhancement in Convection Turbulence by Oscillating Deformations of Boundary. Phys. Rev. Lett. 2023, 130, 204001. [Google Scholar] [CrossRef] [PubMed]
- Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R.R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073. [Google Scholar] [CrossRef]
- De Bellis, L.; Phelan, P.E.; Prasher, R.S. Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance. J. Thermophys. Heat Transf. 2000, 14, 144–150. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Xia, G. Enhanced thermal conductivity of nanofluids by introducing Janus particles. Nanoscale 2022, 14, 99–107. [Google Scholar] [CrossRef]
- Levchenko, A.; Schmalian, J. Transport properties of strongly coupled electron–phonon liquids. Ann. Phys. 2020, 419, 168218. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202. [Google Scholar] [CrossRef]
- Weber, M.; Kimmich, R. Rayleigh-Bénard percolation transition of thermal convection in porous media: Computational fluid dynamics, NMR velocity mapping, NMR temperature mapping. Phys. Rev. E 2002, 66, 056301. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Zeeshan; Rasheed, H.U.; Khan, W.; Khan, I.; Alshammari, N.; Hamadneh, N. Numerical computation of 3D Brownian motion of thin film nanofluid flow of convective heat transfer over a stretchable rotating surface. Sci. Rep. 2022, 12, 2708. [Google Scholar] [CrossRef]
- Francis, I.; Saha, S.C. Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung. Heliyon 2022, 8, 10. [Google Scholar] [CrossRef]
- Halliday, D.; Resnick, R.; Krane, K.S. Physics, Volume 1; Wiley: Berkeley, CA, USA, 2002. [Google Scholar]
- Halliday, D.; Resnick, R.; Krane, K.S. Physics, Volume 2; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 0471401943. [Google Scholar]
- Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021, 3, 5722–5744. [Google Scholar] [CrossRef]
- Hussein, A.M.; Sharma, K.; Bakar, R.; Kadirgama, K. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew. Sustain. Energy Rev. 2014, 29, 734–743. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Mamat, R. Recent progress on lattice Boltzmann simulation of nanofluids: A review. Int. Commun. Heat Mass Transf. 2015, 66, 11–22. [Google Scholar] [CrossRef]
- Li, Y.; Georges, G. Three Decades of Single-Walled Carbon Nanotubes Research: Envisioning the Next Breakthrough Applications. ACS Nano 2023, 17, 19471–19473. [Google Scholar] [CrossRef] [PubMed]
- Orole Mr, O.A. Electronic Thesis and Dissertation Repository. 2023. Available online: https://ir.lib.uwo.ca/etd/9784 (accessed on 1 April 2024).
- Lenin, R.; Joy, P.A.; Bera, C. A review of the recent progress on thermal conductivity of nanofluid. J. Mol. Liq. 2021, 338, 116929. [Google Scholar] [CrossRef]
- Jha, N.; Ramaprabhu, S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J. Appl. Phys. 2009, 106, 8. [Google Scholar] [CrossRef]
- Walvekar, R.; Faris, I.A.; Khalid, M. Thermal conductivity of carbon nanotube nanofluid—Experimental and theoretical study. Heat Transf. Asian Res. 2012, 41, 145–163. [Google Scholar] [CrossRef]
- Tian, W.; Bao, Y.; Qin, G.; Liu, L.; Zheng, X. Influence mechanism of functionalization of CNTs on the thermal transport property of their nanofluids. J. Mol. Liq. 2023, 392, 123433. [Google Scholar] [CrossRef]
- Hassan, J.; Diamantopoulos, G.; Homouz, D.; Papavassiliou, G. Water inside carbon nanotubes: Structure and dynamics. Nanotechnol. Rev. 2016, 5, 341–354. [Google Scholar] [CrossRef]
- Abohamzeh, E.; Sheikholeslami, M. Thermal Properties of Carbon Nanotube. In Handbook of Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–24. [Google Scholar]
- Applications, G.D.; Mildred, S.D.; Avouris, P. Carbon Nanotubes Synthesis, Structure, Properties; Nova: Hauppauge, NY, USA, 2001; Volume 80, ISBN 978-3-540-41086-7. [Google Scholar]
- Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A.M.; Khodafarin, R. Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transf. 2012, 55, 1529–1535. [Google Scholar] [CrossRef]
- Choi, S.; Zhang, Z.G.; Yu, W.; Lockwood, F.; Grulke, E. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar] [CrossRef]
- Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 2003, 94, 4967–4971. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J. Thermophys. Heat Transf. 2004, 18, 481–485. [Google Scholar] [CrossRef]
- Hwang, Y.-J.; Lee, J.; Lee, C.; Jung, Y.; Cheong, S.; Lee, C.; Ku, B.; Jang, S. Stability and thermal conductivity characteristics of nanofluids. Thermochim. Acta 2007, 455, 70–74. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf. A Physicochem. Eng. Asp. 2009, 352, 136–140. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Al-Ghezi, M.K.; Al-Waeli, A.H.; Ali, A.J.; Sopian, K.; Kadhum, A.A.H.; Isahak, W.N.R.W.; Takriff, M.S.; Al-Amiery, A.A. Optimizing MWCNT-based nanofluids for photovoltaic/thermal cooling through preparation parameters. ACS Omega 2023, 8, 29910–29925. [Google Scholar] [CrossRef]
- Lotfizadeh, S.; Matsoukas, T. Effect of nanostructure on thermal conductivity of nanofluids. J. Nanomater. 2015, 2015, 697596. [Google Scholar] [CrossRef]
- Ebin, P.; Babu, J.S. Effects of length, diameter, and doping on the thermal transport in carbon nanotubes: A molecular dynamics study. Appl. Nanosci. 2024, 14, 339–351. [Google Scholar] [CrossRef]
- Liu, M.; Lin, M.C.; Wang, C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res. Lett. 2011, 6, 297. [Google Scholar] [CrossRef]
- Batiston, E.; Gleize, P.J.P.; Mezzomo, P.; Pelisser, F.; Matos, P.R.D. Effect of Carbon Nanotubes (CNTs) aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste. Rev. IBRACON De Estrut. E Mater. 2021, 14, e14510. [Google Scholar] [CrossRef]
- Barrejón, M.; Prato, M. Carbon nanotube membranes in water treatment applications. Adv. Mater. Interfaces 2022, 9, 2101260. [Google Scholar] [CrossRef]
- Gao, W.; Kong, L.; Hodgson, P. Atomic interaction of functionalized carbon nanotube-based nanofluids with a heating surface and its effect on heat transfer. Int. J. Heat Mass Transf. 2012, 55, 5007–5015. [Google Scholar] [CrossRef]
- Sarafraz, M.; Hormozi, F.; Silakhori, M.; Peyghambarzadeh, S. On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. Appl. Therm. Eng. 2016, 95, 433–444. [Google Scholar] [CrossRef]
- Ghozatloo, A.; Niassar, M.S.; Rashidi, A. Effect of functionalization process on thermal conductivity of graphene nanofluids. Int. J. Nanosci. Nanotechnol. 2017, 13, 11–18. [Google Scholar]
- Farbod, M.; Ahangarpour, A.; Etemad, S.G. Stability and thermal conductivity of water-based carbon nanotube nanofluids. Particuology 2015, 22, 59–65. [Google Scholar] [CrossRef]
- Nanda, J.; Maranville, C.; Bollin, S.C.; Sawall, D.; Ohtani, H.; Remillard, J.T.; Ginder, J. Thermal conductivity of single-wall carbon nanotube dispersions: Role of interfacial effects. J. Phys. Chem. C 2008, 112, 654–658. [Google Scholar] [CrossRef]
- Asadi, A.; Alarifi, I.M.; Ali, V.; Nguyen, H.M. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. Ultrason. Sonochem. 2019, 58, 104639. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Yaqub, S.; Ali, M.; Nazir, H.; Shahzad, N.; Shakir, S.; Liaquat, R.; Said, Z. Effect of surfactants on the stability and thermophysical properties of Al2O3+ TiO2 hybrid nanofluids. J. Mol. Liq. 2023, 391, 123350. [Google Scholar] [CrossRef]
- Xie, H.; Yu, W.; Li, Y.; Chen, L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett. 2011, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Grzegorzewski, F.; Benhaim, A.; Alkotzer, Y.I.; Zelinger, E.; Yaakov, N.; Mechrez, G. In situ fabrication of multi-walled carbon nanotubes/silica hybrid colloidosomes by pickering emulsion templating using trialkoxysilanes of opposite polarity. Polymers 2019, 11, 1480. [Google Scholar] [CrossRef] [PubMed]
- Witharana, S.; Palabiyik, I.; Musina, Z.; Ding, Y. Stability of glycol nanofluids—The theory and experiment. Powder Technol. 2013, 239, 72–77. [Google Scholar] [CrossRef]
- Sharmin, I.; Gafur, M.A.; Dhar, N.R. Preparation and evaluation of a stable CNT-water based nano cutting fluid for machining hard-to-cut material. SN Appl. Sci. 2020, 2, 626. [Google Scholar] [CrossRef]
- Yeganeh, M.; Shahtahmasebi, N.; Kompany, A.; Goharshadi, E.; Youssefi, A.; Šiller, L. Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int. J. Heat Mass Transf. 2010, 53, 3186–3192. [Google Scholar] [CrossRef]
- Jabbari, F.; Rajabpour, A.; Saedodin, S. Thermal conductivity of CNT–water nanofluid at different temperatures, volume fractions, and diameters: Experimental investigation and molecular dynamics simulations. Microfluid. Nanofluid. 2021, 25, 102. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Chen, W. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J. Appl. Phys. 2010, 107, 094317. [Google Scholar] [CrossRef]
- Navaei, A.; Mohammed, H.; Munisamy, K.; Yarmand, H.; Gharehkhani, S. Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technol. 2015, 286, 332–341. [Google Scholar] [CrossRef]
- Cui, W.; Yuan, Y.; Sun, L.; Cao, X.; Yang, X. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew. Energy 2016, 99, 1029–1037. [Google Scholar] [CrossRef]
Phase | Material | Thermal Conductivity [W/m·K] | Ref. |
---|---|---|---|
Liquid | Water | 0.5918–0.609 | [25] |
Ethylene glycol | 0.246 | [26] | |
Engine oil | 0.145 | [26] | |
Water | 0.51 | [25] | |
Castor oil | 0.18 | [25] | |
Ethanol | 0.171 | [25] | |
Acetic acid | 0.193 | [25] | |
Phenol | 0.19 | [25] | |
Solid | Snow (dry) | 0.050–0.250 | [25] |
Aluminum | 237 | [25] | |
Ductile steel | 80 | [25] | |
Stainless steel 304 | 16.2 | [27] | |
Carbon steel | 54 | [28] | |
Gold | 320 | [25] | |
Aluminum nitride | 321 | [25] | |
Beryllium | 209–330 | [25] | |
Bismuth | 7.97 | [25] | |
Boron arsenide | 1300 | [25] | |
Copper (pure) | 401 | [25] | |
Diamond | 1000–2300 | [25] | |
Germanium | 60.2 | [25] | |
Polyurethane foam | 0.03 | [25] | |
Expanded polystyrene | 0.033–0.046 | [25] | |
Manganese | 7.810 | [25] | |
Ice | 2.22 | [27] | |
Silica aerogel | 0.02 | [25] | |
Silicon nitride | 90–177 | [25] | |
Silver | 406 | [25] | |
SWCNT | <6000 | [29] | |
MWCNT | <3000 | [29] |
No. | Sonication Time | Particle | Stability | Nano Fluid | Ref. |
---|---|---|---|---|---|
1 | 60 min | MWCNT 5–15 μm functionalized | 80 days | CNT Water | [98] |
2 | 60 min | MWCNT | 30 days | CNT Water | [100] |
3 | 45 min | Various types | 117 days | CNT Water | [83] |
No. | Temperature Range (°C) | Thermal Conductivity Enhancement% | Ref. | |
---|---|---|---|---|
Lower Temperature | Higher Temperature | |||
1 | 60–80 | 15.0 | 35.0 | [105] |
2 | 30–50 | 7.2 | 9.8 | [106] |
3 | 60–80 | 25.0 | 45.0 | [105] |
Working Temperature (°C) | Thermal Conductivity (W/m·K) for Various CNT Concentrations (Mass%) | |||||
---|---|---|---|---|---|---|
(0.00) Pure Water | 0.01 | 0.02 | 0.04 | 0.08 | 0.1 | |
20 | 0.6 | 0.6 | 0.64 | 0.65 | 0.66 | 0.7 |
30 | 0.6 | 0.7 | 0.66 | 0.7 | 0.75 | 0.8 |
40 | 0.6 | 0.9 | 1.2 | 1.5 | 1.7 | 1.9 |
50 | 0.6 | 1.25 | 1.5 | 1.7 | 1.9 | 2.2 |
60 | 0.6 | 1.5 | 1.7 | 1.9 | 2.1 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoswan, I.; Nassar, H.; Assali, M.; AbuSafa, A.; Sawalha, S.; Hilal, H.S. Why Carbon Nanotubes Improve Aqueous Nanofluid Thermal Conductivity: A Qualitative Model Critical Review. Processes 2024, 12, 834. https://doi.org/10.3390/pr12040834
Khoswan I, Nassar H, Assali M, AbuSafa A, Sawalha S, Hilal HS. Why Carbon Nanotubes Improve Aqueous Nanofluid Thermal Conductivity: A Qualitative Model Critical Review. Processes. 2024; 12(4):834. https://doi.org/10.3390/pr12040834
Chicago/Turabian StyleKhoswan, Ibrahim, Heba Nassar, Mohyeddin Assali, Abdelrahim AbuSafa, Shadi Sawalha, and Hikmat S. Hilal. 2024. "Why Carbon Nanotubes Improve Aqueous Nanofluid Thermal Conductivity: A Qualitative Model Critical Review" Processes 12, no. 4: 834. https://doi.org/10.3390/pr12040834
APA StyleKhoswan, I., Nassar, H., Assali, M., AbuSafa, A., Sawalha, S., & Hilal, H. S. (2024). Why Carbon Nanotubes Improve Aqueous Nanofluid Thermal Conductivity: A Qualitative Model Critical Review. Processes, 12(4), 834. https://doi.org/10.3390/pr12040834