The Effects of Drying and Grinding on the Extraction Efficiency of Polyphenols from Grape Skin: Process Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Grape Skin Samples
2.1.2. Chemicals and Reagents
2.2. Methods
2.2.1. Grape Skin Pretreatments
2.2.2. Extraction Experiments
2.2.3. Physical Properties of the Grape Skin Extracts
2.2.4. Total Phenolic Content and Antioxidant Activity of the Grape Skin Extracts
2.2.5. Statistical Analysis and Data Modeling
3. Results
3.1. Aqueous Extracts from Grape Skin: Their Physical and Chemical Properties
3.2. Relationships between Extraction Conditions and Physical and Chemical Properties of the Aqueous Extracts from Grape Skin
3.3. RSM Modeling and Optimization of the Grape Extraction Procedure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spigno, G. State of the Art in Grape Processing By-Products. In Handbook of Grape Processing By-Products; Academic Press: Cambridge, MA, USA, 2017; pp. 1–27. [Google Scholar] [CrossRef]
- Skračić, Z.; Ljubenkov, I.; Mimicac, N.; Generalić Mekinić, I. Valorizacija nusproizvoda proizvodnje vina. Kem. Ind. 2023, 72, 247–255. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape pomace—Advances in its bioactivity, health benefits, and food applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Mangione, R.; Simões, R.; Pereira, H.; Catarino, S.; Ricardo-da-Silva, J.; Miranda, I.; Ferreira-Dias, S. Potential use of grape stems and pomaces from two red grapevine cultivars as source of oligosaccharides. Processes 2022, 10, 1896. [Google Scholar] [CrossRef]
- Megías-Pérez, R.; Ferreira-Lazarte, A.; Villamiel, M. Valorization of grape pomace as a renewable source of techno-functional and antioxidant pectins. Antioxidants 2023, 12, 957. [Google Scholar] [CrossRef] [PubMed]
- Filippi, K.; Georgaka, N.; Alexandi, M.; Papapostolus, H.; Koutinas, A. Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes. Ind. Crops Prod. 2021, 168, 113578. [Google Scholar] [CrossRef]
- Elejalde, E.; Villarán, M.C.; Alonso, R.M. Grape polyphenols supplementation for exercise-induced oxidative stress. J. Int. Soc. Sports Nutr. 2021, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Heras, M.; Gómez, I.; de Pablos-Alcalde, S.; González-Sanjosé, M.L. Application of the just-about-right scales in the development of new healthy whole-wheat muffins by the addition of a product obtained from white and red grape pomace. Foods 2019, 8, 419. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Szwengiel, A.; Pacyński, M. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 2011, 46, 1485–1493. [Google Scholar] [CrossRef]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Bender, A.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape pomace skins and the effects of its inclusion in the technological properties of muffins. J. Culin. Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. J. Sci. Food Agric. 2013, 93, 389–395. [Google Scholar] [CrossRef]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of blueberry, grape seed powder and poppy seed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.J.; Jung, M.O.; Choi, J.S.; Jung, J.T.; Choi, Y.I.; Lee, J.K. Meat Quality and Storage Characteristics of Pork Loin Marinated in Grape Pomace. Korean J. Food Sci. Anim. Resour. 2017, 37, 726. [Google Scholar] [CrossRef] [PubMed]
- Özvural, E.B.; Vural, H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011, 88, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Marchiani, R.; Bertolino, M.; Belviso, S.; Giordano, M.; Ghirardello, D.; Torri, L.; Piochi, M.; Zeppa, G. Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties. J. Food Qual. 2016, 39, 77–89. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef]
- Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef]
- Martinović, J.; Lukinac, J.; Jukić, M.; Ambrus, R.; Planinić, M.; Šelo, G.; Klarić, A.-M.; Perković, G.; Bucić-Kojić, A. In vitro bioaccessibility assessment of phenolic compounds from encapsulated grape pomace extract by ionic gelation. Molecules 2023, 28, 5285. [Google Scholar] [CrossRef] [PubMed]
- Naviglio, D.; Scarano, P.; Ciaravolo, M.; Gallo, M. Rapid solid-liquid dynamic extraction (rslde): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods 2019, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Valinger, D.; Kušen, M.; Benković, M.; Jurina, T.; Panić, M.; Radojčić Redovniković, I.; Kljusurić, J.G.; Tušek, A.J. Enhancement of the green extraction of bioactive molecules from Olea europaea leaves. Separations 2022, 9, 33. [Google Scholar] [CrossRef]
- Che Sulaiman, I.S.; Basri, M.; Fard Masoumi, H.R.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.J.; Chang, S.K. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Albu, S. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason. Sonochem. 2004, 11, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, C.D.; Vuong, Q.V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Optimization of aqueous extraction of phenolic compounds from olive leaves. Antioxidants 2014, 3, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Tsegay, Z.T.; Agriopoulou, S.; Chaari, M.; Smaoui, S.; Varzakas, T. Statistical Tools to Optimize the Recovery of Bioactive Compounds from Marine Byproducts. Mar. Drugs 2024, 22, 182. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K.V.S.S. Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. J. Food Sci. Technol. 2019, 56, 995–1007. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K.V.S.S. Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. Int. J. Biol. Macromol. 2019, 135, 1070–1081. [Google Scholar] [CrossRef]
- Bakar, F.I.A.; Bakara, M.F.A.B.; Abdullah, N.; Endrini, S.; Fatmawati, S. Optimization of extraction conditions of phytochemical compounds and anti-gout activity of Euphorbia hirta L. (Ara Tanah) using response surface methodology and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Evid.-Based Complement. Altern. Med. 2020, 2020, 4501261. [Google Scholar] [CrossRef] [PubMed]
- Salih, A.M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules 2021, 26, 7454. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023, 28, 3885. [Google Scholar] [CrossRef] [PubMed]
- Ćurko, N.; Kelšin, K.; Dragović-Uzelac, V.; Valinger, D.; Tomašević, M.; Kovačević Ganić, K. Microwave-assisted extraction of different groups of phenolic compounds from grape skin pomaces: Modeling and optimization. Pol. J. Food Nutr. Sci. 2019, 69, 235–246. [Google Scholar] [CrossRef]
- Puntnik, P.; Bursać-KOvačević, D.; Radojčin, M.; Dragović-Uzelac, V. Influence of Acidity and Extraction Time on the Recovery of Flavonoids from Grape Skin Pomace Optimized by Response Surface Methodology. Chem. Biochem. Eng. Q. 2016, 30, 455–464. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA; Arlington, VA, USA, 1998. [Google Scholar]
- Sokač Cvetnić, T.; Krog, K.; Benković, M.; Jurina, T.; Valinger, D.; Gajdoš Kljusurić, J.; Radojčić Redovniković, I.; Jurinjak Tušek, A. Solid–liquid extraction of bioactive molecules from white grape skin: Optimization and near-infrared spectroscopy. Separations 2023, 10, 452. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Jurina, T.; Belščak-Cvitanović, A.; Gajdoš-Kljusurić, J. Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Ind. Crops Prod. 2016, 126, 449–458. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Bordiga, M. Valorization of Winemaking By-Products; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- El Tannir, H.; Houhou, D.; Debs, E.; Koubaa, M.; Jammoul, A.; Azakir, B.; Khalil, M.I.; El Darra, N.; Louka, N. Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity. BioTech 2024, 13, 7. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Benchaachoua, A.; Bessam, H.M.; Saidi, I. Effects of different extraction methods and solvents on the phenolic composition and antioxidant activity of Silybum marianum leaves extracts. Int. J. Med. Sci. Clin. Invent. 2018, 5, 3641–3647. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.; Juraimi, A.; Tayebi-Meigooni, A. Comparative evaluation of different extraction techniques and solvents for the assay of phytochemicals and antioxidant activity of Hashemi rice bran. Molecules 2015, 20, 10822–10838. [Google Scholar] [CrossRef] [PubMed]
- Librán, C.; Mayor, L.; Garcia-Castello, E.M.; Vidal-Brotons, D. Polyphenol extraction from grape wastes: Solvent and pH Effect. Agric. Sci. 2013, 4, 56–62. [Google Scholar] [CrossRef]
- Yammine, S.; Delsart, C.; Vitrac, X.; Peuchot, M.M.; Ghidossi, R. Characterisation of Polyphenols and antioxidant potential of red and white pomace by-product extracts using subcritical water extraction. OENO One 2020, 54, 263–278. [Google Scholar] [CrossRef]
- Guerrero, M.S.; Torres, J.S.; Nuñez, M.J. Extraction of polyphenols from white distilled grape pomace: Optimization and modelling. Bioresour. Technol. 2008, 99, 1311–1318. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Le Man, H.; Behera, S.K.; Park, H.S. Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Technol. 2010, 7, 157–164. [Google Scholar] [CrossRef]
- Teng, D.; Fang, Y.; Song, X.; Gao, Y. Optimization of enzymatic hydrolysis parameters for antioxidant capacity of peptide from goat placenta. Food Bioprod. Process. 2011, 89, 202–208. [Google Scholar] [CrossRef]
- Giovanna, B.; Giulio, F.; Cristina, M.; Carini, M.; Paolo, M.; Aldini, G. Effect of extraction solvent and temperature on polyphenol. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- Gironi, F.; Piemonte, V. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chem. Eng. Res. Des. 2011, 89, 857–862. [Google Scholar] [CrossRef]
- Begum, S.N.; Hossain, M.; Adnan, M.; Rahaman, C.H.; Reza, A. Optimization and Characterization of Phenolic Extraction Conditions and Antioxidant Activity Evaluation of Adenanthera pavonina L. Bark. Plants 2023, 12, 3902. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijević, A.; Marić, S.; Jocić, A.; Tekić, D.; Mušović, J.; Amaral, J.S. Green extraction strategy using bio-based aqueous biphasic systems for polyphenol valorization from grape by-product. Foods 2024, 13, 954. [Google Scholar] [CrossRef]
- Ferriera-Sntos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef]
Exp. | X1 | X2 | X3 | X4 | pH | S (µS/cm) | TDS (mg/L) | TPC (mgGAE/gd.m.) | DPPH (mmolTrolox/gd.m.) | FRAP (mmolFeSO4·7H2O/gd.m.) |
---|---|---|---|---|---|---|---|---|---|---|
1. | 15 | 40 | 20 | 500 | 4.16 ± 0.06 | 188.20 ± 1.90 | 380.50 ± 0.71 | 4.82 ± 0.0001 | 0.0002 ± 0.0017 | 0.0168 ± 0.0018 |
4.04 ± 0.01 | 370.50 ± 7.78 | 704.00 ± 8.49 | 7.27 ± 0.1754 | 0.0158 ± 0.0006 | 0.0349 ± 0.0022 | |||||
2. | 40 | 40 | 20 | 500 | 4.02 ± 0.03 | 167.70 ± 0.14 | 319.50 ± 17.68 | 5.23 ± 0.0002 | 0.0119 ± 0.0007 | 0.0186 ± 0.0081 |
4.00 ± 0.01 | 431.50 ± 0.71 | 868.00 ± 1.41 | 5.84 ± 0.0877 | 0.0124 ± 0.0001 | 0.0276 ± 0.0025 | |||||
3. | 15 | 80 | 20 | 500 | 4.03 ± 0.03 | 156.8 ± 0.14 | 311.00 ± 1.41 | 9.11 ± 0.0005 | 0.0401 ± 0.0015 | 0.0412 ± 0.0075 |
3.97 ± 0.01 | 368.50 ± 0.71 | 756.00 ± 8.49 | 14.71 ± 0.2631 | 0.0548 ± 0.0006 | 0.0985 ± 0.0021 | |||||
4. | 40 | 80 | 20 | 500 | 3.95 ± 0.02 | 257.00 ± 0.00 | 488.50 ± 21.92 | 9.90 ± 0.0007 | 0.0447 ± 0.0005 | 0.0399 ± 0.0199 |
3.98 ± 0.01 | 397.00 ± 0.00 | 811.00 ± 2.83 | 15.70 ± 0.5262 | 0.0497 ± 0.0014 | 0.1032 ± 0.0022 | |||||
5. | 27.5 | 60 | 10 | 250 | 4.12 ± 0.01 | 102.70 ± 0.63 | 214.50 ± 4.95 | 7.87 ± 0.0004 | 0.0210 ± 0.0007 | 0.0244 ± 0.0241 |
4.13 ± 0.03 | 229.00 ± 0.00 | 456.50 ± 0.71 | 10.57 ± 0.7600 | 0.0326 ± 0.0016 | 0.0442 ± 0.0193 | |||||
6. | 27.5 | 60 | 30 | 250 | 3.94 ± 0.00 | 211.50 ± 0.70 | 418.50 ± 4.95 | 3.96 ± 0.0001 | 0.0125 ± 0.0002 | 0.0186 ± 0.0059 |
3.91 ± 0.01 | 416.00 ± 15.56 | 861.50 ± 6.36 | 7.41 ± 0.3508 | 0.0236 ± 0.0004 | 0.0470 ± 0.0029 | |||||
7. | 27.5 | 60 | 10 | 750 | 4.13 ± 0.04 | 97.75 ± 0.49 | 198.70 ± 0.71 | 8.43 ± 0.0011 | 0.0182 ± 0.0026 | 0.0295 ± 0.0018 |
4.02 ± 0.04 | 238.5 ± 0.71 | 488.00 ± 9.89 | 13.17 ± 0.0000 | 0.0395 ± 0.0016 | 0.0739 ± 0.0082 | |||||
8. | 27.5 | 60 | 30 | 750 | 3.99 ± 0.01 | 216.00 ± 2.83 | 442.00 ± 1.41 | 5.67 ± 0.0006 | 0.0114 ± 0.0011 | 0.0236 ± 0.0004 |
3.98 ± 0.02 | 380.5 ± 6.36 | 7850 ± 2.82 | 7.28 ± 0.2631 | 0.0212 ± 0.0001 | 0.0398 ± 0.0041 | |||||
9. | 27.5 | 60 | 20 | 500 | 4.01 ± 0.01 | 148.15 ± 1.06 | 286.50 ± 4.95 | 5.61 ± 0.0004 | 0.0162 ± 0.0015 | 0.0265 ± 0.0018 |
3.93 ± 0.04 | 337.50 ± 0.71 | 664.50 ± 6.36 | 8.51 ± 0.0877 | 0.0229 ± 0.0025 | 0.0421 ± 0.0030 | |||||
10. | 15 | 60 | 20 | 250 | 3.97 ± 0.01 | 164.45 ± 0.35 | 330.00 ± 0.00 | 5.29 ± 0.0005 | 0.0146 ± 0.0005 | 0.0239 ± 0.0038 |
3.99 ± 0.01 | 350.50 ± 10.61 | 724.00 ± 2.83 | 10.49 ± 0.0000 | 0.0330 ± 0.0025 | 0.0629 ± 0.0023 | |||||
11. | 40 | 60 | 20 | 250 | 4.04 ± 0.01 | 152.20 ± 0.28 | 305.50 ± 0.71 | 5.38 ± 0.0006 | 0.0041 ± 0.0002 | 0.0262 ± 0.0001 |
3.98 ± 0.04 | 350.00 ± 0.00 | 659.50 ± 23.33 | 11.17 ± 0.0000 | 0.0363 ± 0.0003 | 0.0624 ± 0.0077 | |||||
12. | 15 | 60 | 20 | 750 | 4.07 ± 0.04 | 155.00 ± 0.85 | 293.50 ± 4.95 | 4.87 ± 0.0009 | 0.0030 ± 0.0012 | 0.0231 ± 0.0002 |
4.02 ± 0.04 | 373.50 ± 0.71 | 757.00 ± 11.31 | 7.95 ± 0.0000 | 0.0178 ± 0.0008 | 0.0360 ± 0.0015 | |||||
13. | 40 | 60 | 20 | 750 | 4.07 ± 0.04 | 165.75 ± 0.77 | 304.00 ± 8.49 | 5.75 ± 0.0012 | 0.0055 ± 0.0008 | 0.0293 ± 0.0011 |
4.03 ± 0.03 | 289.50 ± 7.78 | 615.00 ± 14.14 | 9.62 ± 0.0000 | 0.0269 ± 0.0005 | 0.0415 ± 0.0157 | |||||
14. | 27.5 | 40 | 10 | 500 | 4.14 ± 0.01 | 118.90 ± 0.85 | 216.20 ± 39.32 | 6.84 ± 0.0017 | 0.0062 ± 0.0013 | 0.0265 ± 0.0101 |
4.07 ± 0.01 | 266.00 ± 1.41 | 538.50 ± 4.95 | 8.09 ± 0.0000 | 0.0185 ± 0.0013 | 0.0015 ± 0.0355 | |||||
15. | 27.5 | 80 | 10 | 500 | 4.00 ± 0.04 | 194.55 ± 0.91 | 392.50 ± 0.71 | 15.33 ± 0.0018 | 0.0447 ± 0.0007 | 0.0779 ± 0.0237 |
4.11 ± 0.02 | 231.00 ± 0.00 | 465.50 ± 4.95 | 16.27 ± 0.0000 | 0.0556 ± 0.0000 | 0.0647 ± 0.0392 | |||||
16. | 27.5 | 40 | 30 | 500 | 4.02 ± 0.00 | 232.50 ± 7.77 | 485.00 ± 0.00 | 3.55 ± 0.0004 | 0.0019 ± 0.0006 | 0.0135 ± 0.0103 |
3.97 ± 0.01 | 429.00 ± 1.41 | 896.50 ± 2.12 | 5.30 ± 0.0000 | 0.0124 ± 0.0007 | 0.0167 ± 0.0105 | |||||
17. | 27.5 | 80 | 30 | 500 | 4.00 ± 0.01 | 295.50 ± 0.70 | 585.50 ± 2.12 | 8.68 ± 0.0015 | 0.0407 ± 0.0183 | 0.0419 ± 0.0053 |
3.96 ± 0.02 | 484.00 ± 1.41 | 971.50 ± 0.71 | 14.23 ± 0.0000 | 0.0431 ± 0.0003 | 0.0744 ± 0.0083 | |||||
18. | 27.5 | 60 | 20 | 500 | 4.02 ± 0.03 | 140.30 ± 0.42 | 282.50 ± 0.71 | 4.54 ± 0.0006 | 0.0098 ± 0.0000 | 0.0232 ± 0.0215 |
4.08 ± 0.02 | 273.50 ± 6.37 | 572.50 ± 4.95 | 8.38 ± 0.0000 | 0.0227 ± 0.0003 | 0.0308 ± 0.0281 | |||||
19. | 15 | 60 | 10 | 500 | 4.11 ± 0.01 | 106.75 ± 0.91 | 202.50 ± 3.54 | 7.50 ± 0.0018 | 0.0069 ± 0.0013 | 0.0319 ± 0.0055 |
4.14 ± 0.01 | 200.00 ± 0.00 | 365.50 ± 6.36 | 11.56 ± 0.0000 | 0.0298 ± 0.0039 | 0.0453 ± 0.0029 | |||||
20. | 40 | 60 | 10 | 500 | 4.15 ± 0.07 | 122.95 ± 2.47 | 204.00 ± 5.66 | 9.92 ± 0.0015 | 0.0152 ± 0.0017 | 0.0459 ± 0.0068 |
4.11 ± 0.02 | 195.80 ± 0.35 | 391.50 ± 0.71 | 8.71 ± 0.0000 | 0.0289 ± 0.0016 | 0.0589 ± 0.0310 | |||||
21. | 15 | 60 | 30 | 500 | 4.05 ± 0.00 | 173.50 ± 1.41 | 351.50 ± 0.71 | 5.05 ± 0.0005 | 0.0064 ± 0.0006 | 0.0173 ± 0.0021 |
4.03 ± 0.01 | 376.50 ± 0.71 | 741.00 ± 11.31 | 6.79 ± 0.4092 | 0.0201 ± 0.0008 | 0.0392 ± 0.0017 | |||||
22. | 40 | 60 | 30 | 500 | 3.99 ± 0.01 | 208.00 ± 0.00 | 414.00 ± 1.41 | 5.57 ± 0.0007 | 0.0133 ± 0.0043 | 0.0245 ± 0.0074 |
4.05 ± 0.01 | 446.00 ± 7.07 | 504.00 ± 2.83 | 7.49 ± 0.0000 | 0.0198 ± 0.0004 | 0.0401 ± 0.0073 | |||||
23. | 27.5 | 40 | 20 | 250 | 4.00 ± 0.02 | 202.00 ± 2.82 | 410.00 ± 0.00 | 4.63 ± 0.0001 | 0.0037 ± 0.0003 | 0.0174 ± 0.0006 |
3.99 ± 0.01 | 405.00 ± 5.66 | 784.50 ± 4.95 | 5.84 ± 0.3508 | 0.0172 ± 0.0010 | 0.0294 ± 0.0050 | |||||
24. | 27.5 | 80 | 20 | 250 | 4.06 ± 0.01 | 191.85 ± 0.92 | 391.00 ± 5.66 | 8.27 ± 0.0018 | 0.0229 ± 0.0023 | 0.0420 ± 0.0056 |
4.00 ± 0.01 | 386.00 ± 1.41 | 765.00 ± 5.65 | 17.13 ± 0.0877 | 0.0611 ± 0.0110 | 0.1256 ± 0.0028 | |||||
25. | 27.5 | 40 | 20 | 750 | 4.12 ± 0.03 | 147.75 ± 4.31 | 295.50 ± 9.19 | 5.52 ± 0.0002 | 0.0067 ± 0.0056 | 0.0167 ± 0.0003 |
4.02 ± 0.00 | 374.50 ± 0.71 | 755.00 ± 1.41 | 5.04 ± 0.5262 | 0.0140 ± 0.0001 | 0.0266 ± 0.0068 | |||||
26. | 27.5 | 80 | 20 | 750 | 4.08 ± 0.02 | 250.50 ± 0.71 | 509.50 ± 4.95 | 11.07 ± 0.0012 | 0.0427 ± 0.0025 | 0.0534 ± 0.0076 |
4.05 ± 0.01 | 389.00 ± 1.41 | 766.00 ± 7.07 | 14.15 ± 0.5262 | 0.0399 ± 0.0003 | 0.0828 ± 0.0029 | |||||
27. | 27.5 | 60 | 20 | 500 | 4.04 ± 0.03 | 158.75 ± 0.49 | 319.50 ± 0.71 | 6.92 ± 0.0002 | 0.0124 ± 0.0008 | 0.0291 ± 0.0026 |
4.06 ± 0.00 | 398.50 ± 2.12 | 812.50 ± 7.78 | 8.32 ± 0.0000 | 0.0233 ± 0.0005 | 0.0421 ± 0.0000 | |||||
28. | 27.5 | 60 | 20 | 500 | 3.98 ± 0.02 | 153.85 ± 0.92 | 311.00 ± 0.00 | 5.71 ± 0.0004 | 0.0138 ± 0.0005 | 0.0310 ± 0.0003 |
4.09 ± 0.01 | 355.50 ± 4.95 | 734.00 ± 5.66 | 7.45 ± 0.0877 | 0.0180 ± 0.0009 | 0.0387 ± 0.0052 | |||||
29. | 27.5 | 60 | 20 | 500 | 3.98 ± 0.02 | 151.15 ± 0.92 | 261.00 ± 9.89 | 5.85 ± 0.0005 | 0.0151 ± 0.0051 | 0.0300 ± 0.0006 |
3.90 ± 0.01 | 394.50 ± 0.71 | 783.00 ± 2.83 | 8.51 ± 0.6139 | 0.0274 ± 0.0012 | 0.0496 ± 0.0020 | |||||
30. | 27.5 | 60 | 20 | 500 | 4.00 ± 0.01 | 144.75 ± 0.78 | 292.50 ± 0.71 | 6.17 ± 0.0009 | 0.0002 ± 0.0017 | 0.0245 ± 0.0004 |
3.98 ± 0.01 | 374.50 ± 0.71 | 741.50 ± 12.02 | 9.62 ± 0.0000 | 0.0248 ± 0.0009 | 0.0546 ± 0.0029 |
t | T | S/L | rpm | pH | TDS | S | TPC | DPPH | FRAP | |
---|---|---|---|---|---|---|---|---|---|---|
t | 1 | |||||||||
T | 0.000 | 1 | ||||||||
S/L | 0.000 | 0.000 | 1 | |||||||
rpm | 0.000 | 0.000 | 0.000 | 1 | ||||||
pH | −0.138 | −0.166 | −0.390 | 0.163 | 1 | |||||
TDS | 0.147 | 0.331 | 0.678 | 0.009 | −0.384 | 1 | ||||
S | 0.091 | 0.313 | 0.694 | −0.014 | −0.367 | 0.989 | 1 | |||
TPC | 0.110 | 0.681 | −0.502 | 0.127 | 0.103 | 0.116 | 0.094 | 1 | ||
DPPH | 0.122 | 0.754 | −0.391 | 0.094 | −0.005 | 0.196 | 0.166 | 0.946 | 1 | |
FRAP | 0.095 | 0.824 | −0.105 | 0.035 | −0.199 | 0.439 | 0.417 | 0.820 | 0.799 | 1 |
t | T | S/L | rpm | pH | TDS | S | TPC | DPPH | FRAP | |
---|---|---|---|---|---|---|---|---|---|---|
t | 1 | |||||||||
T | 0.000 | 1 | ||||||||
S/L | 0.000 | 0.000 | 1 | |||||||
rpm | 0.000 | 0.000 | 0.000 | 1 | ||||||
pH | 0.056 | −0.012 | −0.641 | 0.100 | 1 | |||||
TDS | 0.049 | −0.093 | 0.832 | −0.065 | −0.709 | 1 | ||||
S | −0.069 | −0.056 | 0.713 | −0.029 | −0.750 | 0.882 | 1 | |||
TPC | −0.004 | 0.861 | −0.312 | −0.085 | 0.051 | −0.259 | −0.188 | 1 | ||
DPPH | 0.034 | 0.839 | −0.063 | −0.145 | −0.138 | 0.007 | 0.051 | 0.873 | 1 | |
FRAP | 0.010 | 0.858 | −0.259 | −0.178 | 0.002 | −0.223 | −0.149 | 0.970 | 0.905 | 1 |
Model Variable | RSM Equation | R2 | F-Value | p-Value |
---|---|---|---|---|
pH | Y = 4.091 − 0.069·X3 | 0.2709 | 5.4624 | 0.0274 |
Y = 4.027 − 0.065·X3 | 0.4417 | 4.5495 | 0.0075 | |
TDS | Y = 153.597 + 10.740·X1 + 30.133·X2 + 52.070·X3 + 1.58·X4 − 4.293·X12 − 46.784·X22 − 3.901·X32 − 4.464·X42 + 36.195·X1X2 + 5.49·X1X3 + 9.071·X1X4 − 3.163·X2X3 + 28.225·X2X4 + 2.35·X3X4 | 0.9555 | 19.9534 | <0.0001 |
Y = 349.625 + 9.269·X1 − 12.541·X2 + 95.401·X3 − 10.907·X4 − 0.919·X12 + 41.497·X22 − 29.575·X32 − 5.442·X42 − 9.75·X1X2 + 22.125·X1X3 − 32.703·X1X4 − 5·X2X3 + 8.375·X2X4 − 11.25·X3X4 | 0.8241 | 8.5362 | 0.0002 | |
S | Y = 297.751 + 8.730·X1 + 59.533·X2 + 111.415·X3 − 0.806·X4-20.482·X12 − 98.472·X22 − 11.961·X32 − 15.837·X42 + 71.55·X1 X2 + 18.3·X1X3 + 13.776·X1X4 − 18.95·X2X3 + 58.25·X2X4 + 9.825·X3X4 | 0.9609 | 22.8023 | <0.0001 |
Y = 725.076 − 49.924·X1 − 18.908·X2 + 161.733·X3 − 9.918·X4 − 99.578·X12 + 88.446·X22 − 119.1908·X32 + 1.485·X42 − 32.7·X1X2 − 78.9·X1·X3 − 32.606·X1X4 − 0.5·X2X3 + 7.625·X2X4 − 27·X3X4 | 0.9469 | 16.5601 | <0.0001 | |
TPC | Y = 5.682 + 0.589·X1 + 2.663·X2 − 2.171·X3 + 0.5407·X4 + 0.145·X12 + 1.764·X22 + 1.382·X32 − 0.302·X42 + 0.112·X1X2 − 0.568·X1X3 + 0.155·X1X4 − 0.839·X2X3 + 0.4778·X2X3 + 0.287·X3X4 | 0.8976 | 8.1422 | 0.0003 |
Y = 8.640 + 0.071·X1 + 4.688·X2 − 1.396·X3 − 0.398·X4 + 0.268·X12 + 1.845·X22 + 0.136·X32 + 0.622·X42 + 0.725·X1 X2 + 1.066·X1X3 + 0.284·X1X4 + 0.186·X2X3 − 0.542·X2X4 − 0.682·X3X4 | 0.9043 | 8.7757 | 0.0002 | |
DPPH | Y = 0.027 + 0.002·X1 + 0.015·X2 − 0.008·X3 + 0.002·X4 − 0.002·X12 + 0.007·X22 + 0.003·X32 − 0.002·X42 − 0.001·X1X2 − 0.002·X1X3 + 0.002·X1X4 − 0.006·X2X3 + 0.003·X2X4 | 0.9469 | 16.5684 | <0.0001 |
Y = 0.042 + 0.007·X1 + 0.034·X2 − 0.005·X3 − 0.005·X4 + 0.012·X12 + 0.010·X22 − 0.003·X32 + 0.008·X42 + 0.003·X1X2 − 0.004·X1X3 − 0.002·X1X4 − 0.001·X2 X3 − 0.009·X2X4 − 0.009·X3X4 | 0.9455 | 16.1230 | <0.0001 | |
FRAP | Y = 0.014 + 0.002·X1 + 0.016·X2 − 0.003·X3 + 0.001·X4 − 0.004·X12 + 0.012·X22 + 0.002·X32 − 0.003·X42 − 0.002· X1X2 − 0.0004·X1X3 + 0.002·X1 X4 + 0.0001·X2X3 + 0.004·X2X4 + 0.0004·X3X4 | 0.8937 | 7.8000 | 0.0003 |
Y = 0.023 + 0.001·X1 + 0.018·X2 − 0.0058·X3 − 0.003·X4 + 0.002·X12 + 0.007·X22 + 0.001·X32 + 0.003·X42 − 0.001·X1X2 + 0.0002·X1X3 + 0.001·X1X4 − 0.002·X2X3 − 0.004·X2X4 − 0.002·X3X4 | 0.9584 | 21.3800 | <0.0001 |
Model Output | Optimal Extraction Conditions | RMSE-Predicted Value of Output Variable | Experimental Value of Output Variable | |
---|---|---|---|---|
Set 1 | TPC | t = 15 min T = 80 °C S/L = 10 g/L rpm = 500 1/min | 26.6182 | 26.1284 ± 0.1287 |
DPPH | 0.0685 | 0.0601 ± 0.0011 | ||
FRAP | 0.1210 | 0.1157 ± 0.0224 | ||
Set 2 | TPC | t = 15 min T = 80 °C S/L = 10 g/L rpm = 375 1/min | 25.2930 | 25.1024 ± 0.0585 |
DPPH | 0.0831 | 0.0795 ± 0.0135 | ||
FRAP | 0.0427 | 0.0440 ± 0.0022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peternel, L.; Sokač Cvetnić, T.; Gajdoš Kljusurić, J.; Jurina, T.; Benković, M.; Radojčić Redovniković, I.; Jurinjak Tušek, A.; Valinger, D. The Effects of Drying and Grinding on the Extraction Efficiency of Polyphenols from Grape Skin: Process Optimization. Processes 2024, 12, 1100. https://doi.org/10.3390/pr12061100
Peternel L, Sokač Cvetnić T, Gajdoš Kljusurić J, Jurina T, Benković M, Radojčić Redovniković I, Jurinjak Tušek A, Valinger D. The Effects of Drying and Grinding on the Extraction Efficiency of Polyphenols from Grape Skin: Process Optimization. Processes. 2024; 12(6):1100. https://doi.org/10.3390/pr12061100
Chicago/Turabian StylePeternel, Lea, Tea Sokač Cvetnić, Jasenka Gajdoš Kljusurić, Tamara Jurina, Maja Benković, Ivana Radojčić Redovniković, Ana Jurinjak Tušek, and Davor Valinger. 2024. "The Effects of Drying and Grinding on the Extraction Efficiency of Polyphenols from Grape Skin: Process Optimization" Processes 12, no. 6: 1100. https://doi.org/10.3390/pr12061100
APA StylePeternel, L., Sokač Cvetnić, T., Gajdoš Kljusurić, J., Jurina, T., Benković, M., Radojčić Redovniković, I., Jurinjak Tušek, A., & Valinger, D. (2024). The Effects of Drying and Grinding on the Extraction Efficiency of Polyphenols from Grape Skin: Process Optimization. Processes, 12(6), 1100. https://doi.org/10.3390/pr12061100