Reaction–Thin Film Evaporation Coupling Technology for Highly Efficient Synthesis of Higher Alkyl Methacrylate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Equipment and Procedures
2.3. Analysis Methods
3. Results and Discussion
3.1. Molar Ratio of Methacrylic Acid to Lauryl Alcohol
3.2. Temperature
3.3. Scraping Speed of Thin Film Evaporator
3.4. Reaction Solution Renewal Rate
3.5. Effect of Reaction–Thin Film Evaporation Coupling on Reaction Efficiency and Side Reaction of Etherification
3.6. Recovery of Methacrylic Acid in Aqueous Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations: | |
RD | Reaction–distillation |
RTFE | Reaction–thin film evaporation |
MAA | Methacrylic acid |
N2 | Nitrogen |
GC | Gas chromatograph |
LMA | Lauryl methacrylate |
Symbols: | |
AMAA | Peak area of methacrylic acid |
ADodecane | Peak area of dodecane |
ALaurylalcohol | Peak area of lauryl alcohol |
ALMA | Peak area of lauryl methacrylate |
ADodecylether | Peak area of dodecylether |
nMAA | Molar amount of methacrylic acid |
nLaurylalcohol | Molar amount of laury lalcohol |
mreaction residue | Reaction residue mass of lauryl alcohol |
minitially added | Initial addition mass of lauryl alcohol |
mactually generated | Actual mass of dodecylether produced |
mtheory generation | Theoretical maximum mass of dodecylether |
cMAA in organic phase | MAA concentration in organic phase |
cMAA in aqueous phase | MAA concentration in aqueous phase |
mMAA in organic and aqueous phase | Mass of MAA in organic and aqueous phase |
mMAA in organic phase | Mass of MAA in organic phase |
mMAA | Mass of methacrylic acid |
mDodecane | Mass of dodecane |
mLaurylalcohol | Mass of lauryl alcohol |
mLMA | Mass of lauryl methacrylate |
mDodecylether | Mass of dodecylether |
References
- Huang, Y.; Yi, Q.; Kang, J.-X.; Zhang, Y.-G.; Li, W.-Y.; Feng, J.; Xie, K.-C. Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints. Appl. Energy 2019, 254, 113684. [Google Scholar] [CrossRef]
- Li, T.; Gao, Y.; Zhou, R.; Zhang, T.; Ostrikov, K. Outlook for improving energy efficiency, conversion rates, and selectivity of plasma-assisted CO2 conversion. Curr. Opin. Green Sustain. Chem. 2024, 47, 100915. [Google Scholar] [CrossRef]
- Bartz, W.J. Influence of viscosity index improver, molecular weight, and base oil on thickening, shear stability, and evaporation losses of multigrade oils. Lubr. Sci. 2000, 12, 215–237. [Google Scholar] [CrossRef]
- Gavlin, G.; Swire, E.A.; Jones, S.P. Pour Point Depression of Lubricating Oils. Ind. Eng. Chem. 1953, 45, 2327–2335. [Google Scholar] [CrossRef]
- Moreira, M.M.; Farrapo, M.T.; Sousa Pereira, R.d.C.; Rocha da Silva, L.R.; Koller, G.; Watson, T.; Feitosa, V.P.; Lomonaco, D. Methacrylic monomer derived from cardanol incorporated in dental adhesive as a polymerizable collagen crosslinker. Dent. Mater. 2022, 38, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Eren, T.N.; Lalevée, J.; Avci, D. Water soluble polymeric photoinitiator for dual-curing of acrylates and methacrylates. J. Photochem. Photobiol. A Chem. 2020, 389, 112288. [Google Scholar] [CrossRef]
- Ito, D.; Ogura, Y.; Sawamoto, M.; Terashima, T. Acrylate-Selective Transesterification of Methacrylate/Acrylate Copolymers: Postfunctionalization with Common Acrylates and Alcohols. ACS Macro Lett. 2018, 7, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Huang, Y.K.; Duan, G.B.; Yang, S.J. Catalytic Synthesis of N-Butyl Methacrylate with H4SiW6Mo6O40/SiO2. Adv. Mater. Res. 2013, 631, 135–139. [Google Scholar] [CrossRef]
- Fila, K.; Podkościelna, B.; Podgórski, M. Cross-Linked Polythiomethacrylate Esters Based on Naphthalene—Synthesis, Properties and Reprocessing. Materials 2020, 13, 3021. [Google Scholar] [CrossRef]
- Ogura, Y.; Takenaka, M.; Sawamoto, M.; Terashima, T. Fluorous Gradient Copolymers via in-Situ Transesterification of a Perfluoromethacrylate in Tandem Living Radical Polymerization: Precision Synthesis and Physical Properties. Macromolecules 2018, 51, 864–871. [Google Scholar] [CrossRef]
- Todea, A.; Fortuna, S.; Ebert, C.; Asaro, F.; Tomada, S.; Cespugli, M.; Hollan, F.; Gardossi, L. Rational Guidelines for the Two-Step Scalability of Enzymatic Polycondensation: Experimental and Computational Optimization of the Enzymatic Synthesis of Poly(glycerolazelate). ChemSusChem 2022, 15, e202102657. [Google Scholar] [CrossRef]
- Zappaterra, F.; Renzi, M.; Piccardo, M.; Spennato, M.; Asaro, F.; Di Serio, M.; Vitiello, R.; Turco, R.; Todea, A.; Gardossi, L. Understanding Marine Biodegradation of Bio-Based Oligoesters and Plasticizers. Polymers 2023, 15, 1536. [Google Scholar] [CrossRef]
- Wang, R.; Chen, G.; Qin, H.; Cheng, H.; Chen, L.; Qi, Z. Systematic screening of bifunctional ionic liquid for intensifying esterification of methyl heptanoate in the reactive extraction process. Chem. Eng. Sci. 2021, 246, 116888. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Li, J.; Wang, N.; An, Q.-F. Co-solvent-assisted contra-diffusion assembly of COF membranes for intensifying esterification. J. Membr. Sci. 2024, 691, 122262. [Google Scholar] [CrossRef]
- Constantino, D.S.M.; Faria, R.P.V.; Ribeiro, A.M.; Loureiro, J.M.; Rodrigues, A.E. Performance Evaluation of Pervaporation Technology for Process Intensification of Butyl Acrylate Synthesis. Ind. Eng. Chem. Res. 2017, 56, 13064–13074. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Z.; Dai, Y.; Zhao, Q.; Li, Y.; Cui, P.; Zhu, Z.; Wang, Y.; Gao, J.; Ma, Y. Economy, Exergy, energy consumption and environmental human toxicity potential assessment of vacuum extractive distillation coupled pervaporation process for separating Acetone/Isopropanol/Water Multi-azeotropes system. Sep. Purif. Technol. 2022, 300, 121834. [Google Scholar] [CrossRef]
- Baharudin, L.; Indera, L.A.A.; Watson, M.J.; Yip, A.C.K. Process intensification in multifunctional reactors: A review of multi-functionality by catalytic structures, internals, operating modes, and unit integrations. Chem. Eng. Process. Process Intensif. 2021, 168, 108561. [Google Scholar] [CrossRef]
- Russo, V.; Haase, S.; Tolvanen, P. Process Intensification in Chemical Reaction Engineering. Processes 2022, 10, 1294. [Google Scholar] [CrossRef]
- Yuan, E.; Yu, Y.; Shi, G.; Jian, P.; Hou, X.; Wu, C. Fabrication of single Co sites in graphitic carbon nitride via the ion exchange to boost aerobic cyclohexane oxidation. Carbon 2024, 217, 118612. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdullah, A.; Patle, D.S.; Shahadat, M.; Ahmad, Z.; Athar, M.; Aslam, M.; Vo, D.-V.N. Feedstocks, catalysts, process variables and techniques for biodiesel production by one-pot extraction-transesterification: A review. Environ. Chem. Lett. 2022, 20, 335–378. [Google Scholar] [CrossRef]
- Contreras-Zarazúa, G.; Vázquez-Castillo, J.A.; Ramírez-Márquez, C.; Pontis, G.A.; Segovia-Hernández, J.G.; Alcántara-Ávila, J.R. Comparison of intensified reactive distillation configurations for the synthesis of diphenyl carbonate. Energy 2017, 135, 637–649. [Google Scholar] [CrossRef]
- Arora, A.; Iyer, S.S.; Hasan, M.M.F. GRAMS: A general framework describing adsorption, reaction and sorption-enhanced reaction processes. Chem. Eng. Sci. 2018, 192, 335–358. [Google Scholar] [CrossRef]
- McDonald, M.A.; Salami, H.; Harris, P.R.; Lagerman, C.E.; Yang, X.; Bommarius, A.S.; Grover, M.A.; Rousseau, R.W. Reactive crystallization: A review. React. Chem. Eng. 2021, 6, 364–400. [Google Scholar] [CrossRef]
- Ahn, S.-M.; Ha, J.-W.; Kim, J.-H.; Lee, Y.-T.; Lee, S.-B. Pervaporation of fluoroethanol/water and methacrylic acid/water mixtures through PVA composite membranes. J. Membr. Sci. 2005, 247, 51–57. [Google Scholar] [CrossRef]
- Shao, X.; Feng, W.; Guo, Z.; Chen, W. Continuous and Safe Alkylation of 1,3,5-Trihydroxy-2,4,6-trinitrobenzene using Wiped Film Evaporator/Distillation Coupled Technology. Org. Process Res. Dev. 2022, 26, 2665–2673. [Google Scholar] [CrossRef]
- Al Azri, N.; Mantripragada, H.; Patel, R.; Kowall, C.; Cormack, G.; Proust, N.; Enick, R.; Veser, G. Process intensification for production of dispersants via integration of reaction and separation in a horizontal thin film evaporator. Chem. Eng. J. 2024, 489, 151541. [Google Scholar] [CrossRef]
- Jasch, K.; Grützner, T.; Rosenthal, G.; Scholl, S. Experimental investigation of the residence time behavior of a wiped film evaporator. Chem. Eng. Res. Des. 2021, 165, 162–171. [Google Scholar] [CrossRef]
- Jahnke, S.; Jasch, K.; Scholl, S. Wiped film evaporators: Segmental assessment of wetting behavior and heat transfer performance. Chem. Eng. Res. Des. 2020, 163, 67–75. [Google Scholar] [CrossRef]
- Scholl, S. Verfahrenstechnisches Design von Verdampfern. Chem. Ing. Tech. 2010, 82, 2179–2187. [Google Scholar] [CrossRef]
- Olson, J.D.; Morrison, R.E.; Wilson, L.C. Thermodynamics of Hydrogen-Bonding Mixtures. 5. GE, HE, and TSE and Zeotropy of Water + Acrylic Acid. Ind. Eng. Chem. Res. 2008, 47, 5127–5131. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Cheng, H.; Wang, Y.; Cui, P.; Zheng, S.; Zhu, Z.; Wang, Y.; Lu, Y.; Gao, J. Comprehensive analysis on the economy and energy demand of pressure-swing distillation and pervaporation for separating waste liquid containing multiple components. Chin. J. Chem. Eng. 2023, 63, 12–20. [Google Scholar] [CrossRef]
- Zhao, L.; Lyu, X.; Wang, W.; Shan, J.; Qiu, T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 2017, 100, 27–37. [Google Scholar] [CrossRef]
- Schulze, S.; Vogel, H. Aspects of the Safe Storage of Acrylic Monomers: Kinetics of the Oxygen Consumption. Chem. Eng. Technol. 1998, 21, 829–837. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Bian, Y.; Li, C.; Li, Z.; Li, J. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies. Chin. J. Chem. Eng. 2023, 58, 1–10. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Zhang, R.; Liu, R.; Liu, J. Low volume shrinkage photopolymerization system using hydrogen-bond-based monomers. Prog. Org. Coat. 2019, 137, 105308. [Google Scholar] [CrossRef]
- Zeboudj, S.; Belhaneche-Bensemra, N.; Belabbes, R.; Bourseau, P. Modelling of flow in a wiped film evaporator. Chem. Eng. Sci. 2006, 61, 1293–1299. [Google Scholar] [CrossRef]
- Reddy Sagili, S.U.K.; Addo, P.W.; Gladu-Gallant, F.-A.; Bilodeau, S.E.; MacPherson, S.; Paris, M.; Lefsrud, M.; Orsat, V. Optimization of wiped-film short path molecular distillation for recovery of cannabinoids from cannabis oil using response surface methodology. Ind. Crops Prod. 2023, 195, 116442. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, F.; Xia, B.; Cui, P.; Wang, Y.; Gao, J. Application of Mixed Solvent To Achieve an Energy-Saving Hybrid Process Including Liquid–Liquid Extraction and Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 2019, 58, 2379–2388. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, P.; Wang, Y.; Zhu, Z.; Wang, Y.; Gao, J. A review of extractive distillation from an azeotropic phenomenon for dynamic control. Chin. J. Chem. Eng. 2019, 27, 1510–1522. [Google Scholar] [CrossRef]
Process Method | Advantage | Disadvantage | |
---|---|---|---|
Acyl chloride process | High reaction activity | High toxicity of raw materials, high corrosion resistance of equipment | |
Ester exchange process | Mild reaction conditions, simple process route | More byproduct, long reaction time, product difficult to refine | |
Esterification process | Solvent azeotrope | High reaction efficiency and product yield | High energy consumption, solvent residue |
Molten | High product purity, simple process route | Low reaction efficiency | |
Materials and Reagents | Purity/wt% | Manufacturer |
---|---|---|
Methacrylic acid | ≥99.5 | Wanhua Chemical Group Co., Ltd., Yantai, China |
Lauryl alcohol | ≥99.0 | Beijing InnoChem Science & Technology Co., Ltd., Beijing, China |
P-toluenesulfonic acid | ≥99.0 | Beijing InnoChem Science & Technology Co., Ltd., Beijing, China |
Hydroquinone | ≥99.5 | Beijing InnoChem Science & Technology Co., Ltd., Beijing, China |
Dodecylether | ≥95.0 | Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China |
Dodecane | ≥99.9 | Beijing InnoChem Science & Technology Co., Ltd., Beijing, China |
Acetone | ≥99.5 | Xilong Scientific Co., Ltd., Shantou, China |
Pressure/kPa (A) | Methacrylic Acid Content in Azeotrope/wt% |
---|---|
4.998 | 16.160 |
9.999 | 17.044 |
14.825 | 17.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Y.; Su, S.; Yu, K.; Nie, F.; Li, Y. Reaction–Thin Film Evaporation Coupling Technology for Highly Efficient Synthesis of Higher Alkyl Methacrylate. Processes 2024, 12, 1233. https://doi.org/10.3390/pr12061233
Liu L, Zhang Y, Su S, Yu K, Nie F, Li Y. Reaction–Thin Film Evaporation Coupling Technology for Highly Efficient Synthesis of Higher Alkyl Methacrylate. Processes. 2024; 12(6):1233. https://doi.org/10.3390/pr12061233
Chicago/Turabian StyleLiu, Lele, Yao Zhang, Shuo Su, Kun Yu, Fengmin Nie, and Yong Li. 2024. "Reaction–Thin Film Evaporation Coupling Technology for Highly Efficient Synthesis of Higher Alkyl Methacrylate" Processes 12, no. 6: 1233. https://doi.org/10.3390/pr12061233
APA StyleLiu, L., Zhang, Y., Su, S., Yu, K., Nie, F., & Li, Y. (2024). Reaction–Thin Film Evaporation Coupling Technology for Highly Efficient Synthesis of Higher Alkyl Methacrylate. Processes, 12(6), 1233. https://doi.org/10.3390/pr12061233