Experimental Study on Fracture Toughness of Shale Based on Three-Point Bending Semi-Circular Disk Samples
Abstract
:1. Introduction
2. Testing Method and Sample
2.1. Experimental Equipment and Procedure
2.2. Specimen Preparation
2.3. Physical Properties of Rock Sample
3. Calibration of Fracture Parameters
4. Results and Discussion
4.1. Crack and Load Curve Analysis
4.2. Fracture Toughness Analysis
5. Conclusions
- (1)
- The diameter of the semi-circular specimen should be at least 10 times the particle size or 76 mm, with a thickness of at least 0.4 times the diameter or 30 mm. The optimal range for the relative pre-existing crack length a/R is 0.4 to 0.6, and for the relative support point distance S/2R, it is 0.5 to 0.8.
- (2)
- The load–time curves of the three-point bending semi-circular specimens all undergo a compaction stage, followed by sudden failure with a sharp drop in load. Some shale specimens may burst out during failure, and the load decreases abruptly. The entire process exhibits significant brittle failure characteristics. The initial closure of internal defects in the rock leads to a gradual increase in the slope of the load curve, followed by entry into the linear elastic stage until brittle failure occurs.
- (3)
- For Longmaxi shale samples with different crack angles, the range of fracture load distribution is 3.27 to 10.92 kN. With an increase in crack angle, the maximum load-bearing capacity of the semi-circular shale specimens gradually increases. The fracture toughness of Longmaxi shale for pure mode I fracture ranges from 1.13 to 1.38 MPa·m1/2, and for pure mode II fracture, it ranges from 0.55 to 0.62 MPa·m1/2. The variation range of T-stress for shale samples with different crack angles is −0.49 to 9.48 MPa.
- (4)
- As the inclination angle of the pre-existing crack increases, crack propagation transitions from being controlled by mode I fracture to being dominated by mode II fracture, with the influence of T-stress becoming increasingly significant.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirsayar, M.M. Mixed mode fracture analysis using extended maximum tangential strain criterion. Mater. Des. 2015, 86, 941–947. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ayatollahi, M.R.; Smith, D.J.; Pavier, M.J. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech. 2010, 77, 2200–2212. [Google Scholar] [CrossRef]
- Hua, W.; Zhu, Z.; Zhang, W.; Li, J.; Huang, J.; Dong, S. Application of modified fracture criteria incorporating T-stress for various cracked specimens under mixed mode I-II loading. Theor. Appl. Fract. Mech. 2024, 129, 104184. [Google Scholar] [CrossRef]
- Febrian, W.; Nurhalisah, S. Determination of Workload, Work Stress, and Authotarian Leadership Style on Performance Performance. Dinasti Int. J. Digit. Bus. Manag. 2024, 5, 282–292. [Google Scholar]
- Maiti, S.K.; Prasad, K.S.R.K. A study on the theories of unstable crack extension for the prediction of crack trajectories. Int. J. Solids Struct. 1980, 16, 563–574. [Google Scholar] [CrossRef]
- Miao, X.T.; Zhou, C.Y.; Lv, F.; He, X.H. Three-dimensional finite element analyses of T-stress for different experimental specimens. Theor. Appl. Fract. Mech. 2017, 91, 116–125. [Google Scholar] [CrossRef]
- Xie, Y.; Cao, P.; Jin, J.; Wang, M. Mixed mode fracture analysis of semi-circular bend (SCB) specimen: A numerical study based on extended finite element method. Comput. Geotech. 2017, 82, 157–172. [Google Scholar] [CrossRef]
- Dobson, T.; Larrosa, N.; Coules, H. The role of corrosion pit topography on stress concentration. Eng. Fail. Anal. 2024, 157, 107900. [Google Scholar] [CrossRef]
- Gómez-Gamboa, E.; Díaz-Rodríguez, J.G.; Mantilla-Villalobos, J.A.; Bohórquez-Becerra, O.R.; Martínez, M.D.J. Experimental and Numerical Evaluation of Equivalent Stress Intensity Factor Models under Mixed-Mode (I+ II) Loading. Infrastructures 2024, 9, 45. [Google Scholar] [CrossRef]
- Ren, L.; Zhu, Z.; Yang, Q.; Ai, T. Investigation on the applicability of several fracture criteria to the mixed mode brittle fractures. Adv. Mech. Eng. 2013, 5, 545108. [Google Scholar] [CrossRef]
- Khan, S.M.A.; Khraisheh, M.K. A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int. J. Plast. 2004, 20, 55–84. [Google Scholar] [CrossRef]
- Subramani, A.; Maimi, P.; Costa, J. On how pseudo-ductility modifies the translaminar fracture toughness of composites and the nominal strength of center-cracked specimens. Compos. Part A Appl. Sci. Manuf. 2024, 184, 108275. [Google Scholar] [CrossRef]
- Li, Y.; Lin, X.; Hu, Y.; Fan, W.; Gao, X.; Yu, J.; Dong, H.; Huang, W. Microstructure and fracture toughness of a Nb–Ti–Si-based in-situ composite fabricated by laser-based directed energy deposition. Compos. Part B Eng. 2024, 278, 111427. [Google Scholar] [CrossRef]
- Cheng, Q.; Huang, G.; Zheng, J.; Liang, Q. New method for determining mode-i static fracture toughness of coal using particles. Materials 2024, 17, 1765. [Google Scholar] [CrossRef]
- Rao, Q.; Sun, Z.; Stephansson, O.; Li, C.; Stillborg, B. Shear fracture (Mode Ⅱ) of brittle rock. Int. J. Rock Mech. Min. Sci. 2003, 40, 355–375. [Google Scholar] [CrossRef]
- Schmittbuhl, J.; Roux, S.; Berthaud, Y. Development of roughness in crack propagation. Europhys. Lett. 1994, 28, 585–590. [Google Scholar] [CrossRef]
- Backers, T.; Fardin, N.; Dresen, G.; Stephansson, O. Effect of loading rate on Mode Ⅰ fracture toughness, roughness and micromechanics of sandstone. Int. J. Rock Mech. Min. Sci. 2003, 40, 425–433. [Google Scholar] [CrossRef]
- Li, J.; Gu, D.; Cao, P.; Wu, C. Interrelated law between mode I fracture toughness and compression strength of rock. J. Cent. South Univ. Sci. Technol. 2009, 40, 1695–1699. [Google Scholar]
- Gunsallus, K.L.; Kulhawy, F.H. A comparative evaluation of rock strength measures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1984, 21, 233–248. [Google Scholar] [CrossRef]
- Whittaker, B.N.; Singh, R.N.; Sun, G. Rock Fracture Mechanics Principles, Design and Applications; ETDEWEB: Oak Ridge, TN, USA, 1992. [Google Scholar]
- Bhagat, R.B. Mode I fracture toughness of coal. Int. J. Min. Eng. 1985, 3, 229–236. [Google Scholar] [CrossRef]
- Deng, H.; Zhu, M.; Li, J.; Wang, Y.; Luo, Q.; Yuan, X. Study of mode I fracture toughness and its correlation with strength parameters of sandstone. Rock Soil Mech. 2012, 33, 3585–3591. [Google Scholar] [CrossRef]
- Chang, S.H.; Lee, C.I.; Jeon, S. Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng. Geol. 2002, 66, 79–97. [Google Scholar] [CrossRef]
- Zhang, Z.X. An empirical relation between mode I fracture toughness and the tensile strength of rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 401–406. [Google Scholar] [CrossRef]
- Chen, J.; Deng, J.; Yuan, J.-L.; Yan, W.; Wei, B.-H.; Tan, Q. Study on evaluation methods of fracture toughness of type I and type II shale reservoirs. Chin. J. Rock Mech. Eng. 2015, 6, 1101–1105. [Google Scholar]
- Su, S.; Cao, S.; Liao, J.; Dong, D. Analysis of I-II Compound Fracture Criteria Based on Apparent Fracture Toughness. Aeronaut. Sci. Technol. 2018, 29, 67–73. [Google Scholar] [CrossRef]
- Tong, G.; Xu, P.; Chen, X. Experimental Study on Three-Point Bending Test of Concrete Specimens with Sharp V-Notch Based on Finite Fracture Mechanics Method. Exp. Mech. 2018, 33, 253–262. [Google Scholar]
- Li, Q.; Yu, Q.; Zhang, S.; Tian, C.; Qian, L.; Li, N. Study on the Strain Gage Test Method of Dynamic Fracture Parameters of Type I Cracks. J. Rock Mech. Eng. 2018, 1430–1437. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, Y.; Zhu, Z.; Zhou, C.; Qiu, H. Theoretical and Experimental Study on the Closure Crack Fracture Behavior under T Stress. J. Rock Mech. Eng. 2018, 37, 1340–1349. [Google Scholar]
- Lv, Y. Experimental Study on Loading Rate Effect of Laminated Shale Fracture Toughness. J. Rock Mech. Eng. 2018, 37, 1359–1370. [Google Scholar]
- Tang, S.; Zhang, H. Research on Rock Fracture Hydraulic Fracturing Based on Maximum Tangential Strain Fracture Criterion. J. Rock Mech. Eng. 2016, 2710–2719. [Google Scholar] [CrossRef]
- Feng, R.; Zhu, Z.; Fan, Y. Study on Composite Fracture Properties and Criteria of Sandstone Semi-Circular Bending. Eng. Sci. Technol. 2016, 48, 121–127. [Google Scholar]
- Gao, Y.-H.; Wang, Y.; Cheng, C.-Z. Effect of general T-stress on stress intensity factor of a crack. J. Univ. Sci. Technol. China 2009, 39, 1319–1322. [Google Scholar]
- Hou, C.; Wang, Z.; Wang, Z. Study on Fracture Behavior of Concrete Discs with Centered Straight Cracks Based on Modified Maximum Tangential Stress Criterion. Sci. China Technol. Sci. 2016, 46, 377–386. [Google Scholar]
- Liu, S.; Li, Z. Effect of T stress on critical stress intensity factor of Ⅰ-Ⅱ mixed mode crack. J. Henan Univ. Urban Constr. 2013, 22, 33–37. [Google Scholar]
- Wang, Q.Z.; Lei, X. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks. Eng. Fract. Mech. 1999, 64, 193–201. [Google Scholar] [CrossRef]
- Hondros, G. The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust. J. Appl. Sci. 1959, 10, 243–268. [Google Scholar]
- Satoh, Y. Position and Load of Failure in Brazilian Test: A Numerical Analysis by Griffith Criterion. J. Soc. Mater. Sci. Jpn. 1987, 36, 1219–1224. [Google Scholar] [CrossRef]
- Wang, F.; Xu, H.; Liu, Y.; Meng, X.; Liu, L. Mechanism of Low Chemical Agent Adsorption by High Pressure for Hydraulic Fracturing-Assisted Oil Displacement Technology: A Study of Molecular Dynamics Combined with Laboratory Experiments. Langmuir 2023, 39, 16628–16636. [Google Scholar] [CrossRef]
- Xie, H.; Gao, F.; Ju, Y.; Fu, Q.; Zhou, F. Unconventional Theory and Technology Concept for Fracturing Modification of Shale Reservoirs. J. Sichuan Univ. Eng. Sci. Ed. 2012, 44, 1–6. [Google Scholar] [CrossRef]
- Irwin, G.R. Analysis of Stresses and Strains Near End of a Crack Traversing a Plate. J. Appl. Mech. 1956, 24, 361–364. [Google Scholar] [CrossRef]
- Zang, Z.; Li, Z.; Zhang, X.; Kong, X.; Gu, Z.; Yin, S.; Niu, Y. Electric potential response characteristics of coal under stress wave loading. Nat. Resour. Res. 2024, 33, 1289–1307. [Google Scholar] [CrossRef]
- Lin, J.; Dong, C.; Lin, C.; Duan, D.; Ma, P.; Zhao, Z.; Liu, B.; Zhang, X.; Huang, X. The impact of tectonic inversion on diagenesis and reservoir quality of the Oligocene fluvial sandstones: The Upper Huagang Formation, Xihu Depression, East China Sea Shelf Basin. Mar. Pet. Geol. 2024, 165, 106860. [Google Scholar] [CrossRef]
- Chong, K.P.; Kuruppu, M.D. New specimen for fracture toughness determination for rock and other materials. Int. J. Fract. 1984, 26, R59–R62. [Google Scholar] [CrossRef]
- Chong, K.P.; Kuruppu, M.D.; Kuszmaul, J.S. Fracture toughness determination of layered materials. Eng. Fract. Mech. 1987, 28, 43–54. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, C.; Tang, H.; Wen, T.; Tannant, D.D.; Zhang, B. Input-parameter optimization using a SVR based ensemble model to predict landslide displacements in a reservoir area—A comparative study. Appl. Soft Comput. 2024, 150, 111107. [Google Scholar] [CrossRef]
- Yao, J.; Ding, Y.; Sun, H.; Fan, D.; Wang, M.; Jia, C. Productivity Analysis of Fractured Horizontal Wells in Tight Gas Reservoirs Using a Gas–Water Two-Phase Flow Model with Consideration of a Threshold Pressure Gradient. Energy Fuels 2023, 37, 8190–8198. [Google Scholar] [CrossRef]
- Kuruppu, M.D.; Obara, Y.; Ayatollahi, M.R.; Chong, K.P.; Funatsu, T. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech. Rock Eng. 2014, 47, 267–274. [Google Scholar] [CrossRef]
- ISRM. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; Ulusay, R., Ed.; ISRM: Lisbon, Portugal, 2014; pp. 25–33. [Google Scholar]
Diameter D/mm | Thickness B/mm | Support Points Spacing S/mm | Crack Length a/mm | B/D | S/R | a/R |
---|---|---|---|---|---|---|
100 | 40 | 60 | 25 | 0.4 | 0.6 | 0.5 |
Pre-Cracked Angle/° | Specimen Diameter D/cm | Specimen Thickness B/cm | Pre-Cracked Length a/mm | P-Wave Transit Time/μs/m | S-Wave Transit Time/μs/m |
---|---|---|---|---|---|
0 | 9.95 | 4.01 | 25.02 | 260.71 | 365.56 |
9.96 | 4.12 | 25.04 | 257.17 | 396.89 | |
10 | 9.94 | 4.08 | 25.01 | 278.87 | 427.02 |
9.92 | 4.05 | 25.12 | 272.71 | 388.13 | |
20 | 9.96 | 4.01 | 25.03 | 273.5 | 410.46 |
9.97 | 4.03 | 25.07 | 274.39 | 402.53 | |
30 | 9.98 | 4.08 | 25.08 | 255.19 | 379.19 |
10.51 | 4.07 | 25.13 | 263.21 | 384.44 | |
43 | 10.21 | 4.05 | 25.12 | 288.5 | 420.43 |
10.22 | 4.09 | 25.04 | 239.95 | 379.92 | |
47 | 9.56 | 4.11 | 25.01 | 225.49 | 385.38 |
9.87 | 4.08 | 25.09 | 229.03 | 371.97 | |
50 | 9.94 | 4.10 | 25.08 | 233.26 | 342.44 |
9.74 | 4.09 | 25.13 | 217.47 | 376.27 |
Density/(g/cm3) | Porosity/% | Permeability/mD | Uniaxial Compressive Strength/MPa | Tensile Strength/MPa |
---|---|---|---|---|
2.53 | 1.6 | 0.0003 | 88.6 | 5.8 |
Crack inclination angle α/° | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
T* | −0.46 | −0.29 | 0.18 | 0.82 | 1.49 | 2.10 | 2.60 |
YI | 4.58 | 4.49 | 4.21 | 3.80 | 3.28 | 2.72 | 2.15 |
YII | 0 | 0.39 | 0.74 | 1.01 | 1.20 | 1.31 | 1.34 |
Crack inclination angle α/° | 35 | 40 | 43 | 47 | 50 | 55 | 60 |
T* | 2.98 | 3.27 | 3.40 | 3.55 | 3.64 | 3.75 | 3.82 |
YI | 1.58 | 1.05 | 0.76 | 0.39 | 0.15 | −0.22 | −0.50 |
YII | 1.31 | 1.24 | 1.17 | 1.06 | 0.97 | 0.80 | 0.60 |
Crack Angle θ/° | Maximum Load P/kN | Mode I Fracture Toughness KI/MPa·m1/2 | Mode II Fracture Toughness KII/MPa·m1/2 | T-Stress/MPa | Crack Initial Angle −θc/° |
---|---|---|---|---|---|
0 | 4.30 | 1.38 | 0.00 | −0.49 | 0 |
0 | 3.27 | 1.13 | 0.00 | −0.26 | 0 |
10 | 3.93 | 1.16 | 0.20 | 0.18 | 33 |
10 | 6.59 | 1.94 | 0.34 | 0.30 | 35 |
20 | 5.29 | 0.53 | 0.19 | 0.85 | 56 |
20 | 6.23 | 1.43 | 0.52 | 2.32 | 54 |
30 | 8.11 | 1.22 | 0.76 | 5.27 | 57 |
30 | 6.98 | 1.05 | 0.66 | 4.54 | 58 |
40 | 4.53 | 0.33 | 0.39 | 3.70 | 66 |
40 | 7.37 | 0.54 | 0.64 | 6.02 | 67 |
43 | 6.56 | 0.14 | 0.21 | 2.18 | 76 |
43 | 10.92 | 0.58 | 0.90 | 9.28 | 75 |
47 | 10.68 | 0.29 | 0.79 | 9.48 | 79 |
47 | 10.67 | 0.29 | 0.79 | 9.47 | 80 |
50 | 9.15 | 0.10 | 0.62 | 8.33 | 86 |
50 | 8.15 | 0.09 | 0.55 | 7.42 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Yin, Y.; Zhang, M. Experimental Study on Fracture Toughness of Shale Based on Three-Point Bending Semi-Circular Disk Samples. Processes 2024, 12, 1368. https://doi.org/10.3390/pr12071368
Wen J, Yin Y, Zhang M. Experimental Study on Fracture Toughness of Shale Based on Three-Point Bending Semi-Circular Disk Samples. Processes. 2024; 12(7):1368. https://doi.org/10.3390/pr12071368
Chicago/Turabian StyleWen, Jinglin, Yongming Yin, and Mingming Zhang. 2024. "Experimental Study on Fracture Toughness of Shale Based on Three-Point Bending Semi-Circular Disk Samples" Processes 12, no. 7: 1368. https://doi.org/10.3390/pr12071368
APA StyleWen, J., Yin, Y., & Zhang, M. (2024). Experimental Study on Fracture Toughness of Shale Based on Three-Point Bending Semi-Circular Disk Samples. Processes, 12(7), 1368. https://doi.org/10.3390/pr12071368