Enhancement of Tensile Strength of Coconut Shell Ash Reinforced Al-Si Alloys: A Novel Approach to Optimise Composition and Process Parameters Simultaneously
Abstract
:1. Introduction
2. Experimental Details
2.1. Selection of the Base Material
2.2. Preparation of Coconut Shell Ash
- Step 1: Collection of the Coconut Shells
- Step 2: Drying the Coconut Shells
- Step 3: Burning of the Shells
2.3. Selection of Material Composition and Fabrication
2.4. Tensile Test
3. Results and Discussion
3.1. XRD Analysis
3.2. Tensile Strength
3.3. Mixture DOE
- Selection of Variables: The dependent variable selected for the regression analysis was tensile strength. The independent variables included the weight percentage of coconut shell ash (CSA), stirring speed, and melting temperature.
- Model Specification: A single regression analysis was performed to determine the relationship between the dependent and independent variables. The general form of the regression equation is:
- Significance Testing: The significance of the term in the regression model was evaluated using p-values. The term with a p-value less than 0.05 was considered statistically significant and included in the final model.
- Evaluation of Interactions: Although the primary focus was on single regression analysis, interaction effects between the independent variables were also assessed to determine their combined influence on tensile strength. Interaction terms were evaluated for their significance, and included in the model if they improved the model’s predictive capability.
- Model Validation: The model was validated by examining the R-squared (R2), adjusted R-squared (R2 adj), and predicted R-squared (R2 pred) values. These statistics indicate the proportion of variance explained by the model, adjusted for the number of predictors, and the model’s predictive accuracy, respectively. High values of these statistics confirmed the model’s robustness.
- Diagnostic Plots: Diagnostic plots, including residual plots and normal probability plots, were used to check the assumptions of the regression analysis, such as the linearity, independence, homoscedasticity, and normality of residuals. These plots confirmed that the assumptions were met, validating the reliability of the regression model.
3.4. Determination of Optimal Composition
4. Conclusions
- Usually, discarded coconut shells can be effectively used to produce novel composite materials, thus building a new sustainable future and helping contribute to the circular economy.
- The XRD Analysis of the coconut shell ash particles reveals the presence of crystalline particles, such as SiO2, Al2O3 and Fe2O3, among others.
- The composite materials can be effectively produced by combining stir and centrifugal casting.
- The results of the tensile tests performed on the produced composite materials revealed that adding reinforcing particles increased the tensile strength. The inclusion of the reinforcing particles acts as motion barriers to the dislocation when subjected to loading, thus slowing the fracture process and increasing the strength. The tensile strength has decreased slightly when reinforced with 10wt% of reinforcing particles, which is attributed to improper mixing and settlement of the particles.
- The predictive model developed through the statistical analysis shows high predictability levels (R2 = 93.63%).
- The study concludes that the composite materials produced at Al-18wt%Si = 90.5 wt%, coconut shell ash = 9.5 wt%, speed = 800 RPM, and temperature = 800 °C will give superior results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.K.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef]
- Yip, H.L.; Srna, A.; Yuen, A.C.Y.; Kook, S.; Taylor, R.A.; Yeoh, G.H.; Medwell, P.R.; Chan, Q.N. A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Appl. Sci. 2019, 9, 4842. [Google Scholar] [CrossRef]
- Guesser, W.; Cabezas, C.; Guedes, L.; Zanatta, A. High Temperature Strength of Cast Irons for Cylinder Heads. Mater. Sci. Forum 2018, 925, 385–392. [Google Scholar] [CrossRef]
- Pan, S.; Zeng, F.; Su, N.; Xian, Z. The effect of niobium addition on the microstructure and properties of cast iron used in cylinder head. J. Mater. Res. Technol. 2020, 9, 1509–1518. [Google Scholar] [CrossRef]
- Abdou, S.; Elkaseer, A.; Kouta, H.; Qudeiri, J.A. Wear behaviour of grey cast iron with the presence of copper addition. Adv. Mech. Eng. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Holmgren, D. Review of thermal conductivity of cast iron. Int. J. Cast Met. Res. 2005, 18, 331–345. [Google Scholar] [CrossRef]
- Pierce, D.; Haynes, A.; Hughes, J.; Graves, R.; Maziasz, P.; Muralidharan, G.; Shyam, A.; Wang, B.; England, R.l.; Daniel, C. High temperature materials for heavy duty diesel engines: Historical and future trends. Prog. Mater. Sci. 2019, 103, 109–179. [Google Scholar] [CrossRef]
- Hirz, M.; Nguyen, T.T. Life-Cycle CO2-Equivalent Emissions of Cars Driven by Conventional and Electric Propulsion Systems. World Electr. Veh. J. 2022, 13, 61. [Google Scholar] [CrossRef]
- Salonitis, K.; Jolly, M.; Pagone, E.; Papanikolaou, M. Life-Cycle and Energy Assessment of Automotive Component Manufacturing: The Dilemma Between Aluminum and Cast Iron. Energies 2019, 12, 2557. [Google Scholar] [CrossRef]
- Javidani, M.; Larouche, D. Application of Cast Al-Si Alloys in Internal Combustion Engine Components. Int. Mater. Rev. 2014, 59, 132–158. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Bolibruchová, D.; Širanec, L.; Matejka, M. Selected Properties of a Zr-Containing AlSi5Cu2Mg Alloy Intended for Cylinder Head Castings. Materials 2022, 15, 4798. [Google Scholar] [CrossRef]
- Niu, G.; Wang, Y.; Zhu, L.; Ye, J.; Mao, J. Fluidity of casting Al–Si series alloys for automotive light-weighting: A systematic review. Mater. Sci. Technol. 2022, 38, 902–911. [Google Scholar] [CrossRef]
- Khan, A.; Kaiser, M.; Kaiser, M.; Saraçyakupoğlu, T. Wear studies on Al-Si automotive alloy under dry, fresh and used engine oil sliding environments. Res. Eng. Struct. Mater. 2023, 9, 1–18. [Google Scholar] [CrossRef]
- Smokvina Hanza, S.; Vrsalović, L.; Štic, L.; Liverić, L. Corrosion investigations of Al-Si casting alloys in 0.6 M NaCl solution. Eng. Rev. 2021, 41, 115–123. [Google Scholar] [CrossRef]
- Poornesh, M.; Bhat, S.; Gijo, E.V.; Bellairu, P.K. Enhancing the tensile strength of SiC reinforced aluminium-based functionally graded structure through the mixture design approach. Int. J. Struct. Integr. 2022, 13, 150–163. [Google Scholar] [CrossRef]
- Poornesh, M.; Bhat, S.; Gijo, E.V.; Bellairu, P.K.; McDermott, O. Multi-Response Modelling and Optimisation of Mechanical Properties of Al-Si Alloy Using Mixture Design of Experiment Approach. Processes 2022, 10, 2246. [Google Scholar] [CrossRef]
- Poornesh, M.; Bhat, S.; Gijo, E.V.; Bellairu, P.K. Multi-objective modelling and optimization of Al–Si–SiC composite material: A multi-disciplinary approach. Multiscale Multidiscip. Model. Exp. Des. 2022, 5, 53–66. [Google Scholar] [CrossRef]
- Polat, S.; Sun, Y.; Çevi, E.; Colijn, H. Microstructure and synergistic reinforcing activity of GNPs-B4C dual-micro and nano supplements in Al-Si matrix composites. J. Alloys Compd. 2019, 806, 1230–1241. [Google Scholar] [CrossRef]
- Qian, G.; Sun, L.; Chen, H.; Wang, Z.; Wei, K.; Ma, W. Enhancing impurities removal from Si by controlling crystal growth in directional solidification refining with Al–Si alloy. J. Alloys Compd. 2020, 820, 153300. [Google Scholar] [CrossRef]
- Qi, M.; Kang, Y.; Qiu, Q.; Tang, W.; Li, J.; Li, B. Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure die-casting. J. Alloys Compd. 2018, 749, 487–502. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, S.; Li, B.; Zhu, Y.; Liu, J.; Liu, D.; Lan, Y.; Xia, T. Modification of multi-component Al–Si casting piston alloys by addition of rare earth yttrium. Mater. Res. Express 2019, 6, 106525. [Google Scholar] [CrossRef]
- Weng, W.; Nagaumi, H.; Sheng, X.; Fan, W.; Chen, X.; Wang, X. Influence of Silicon Phase Particles on the Thermal Conductivity of Al-Si Alloys. In Light Metals 2019; Chesonis, C., Ed.; Springer: Cham, Switzerland, 2019; pp. 193–198. [Google Scholar]
- Zhang, J.Y.; Zuo, L.J.; Jian FE, N.G.; Bing, Y.E.; Kong, X.Y.; Jiang, H.Y.; Ding, W.J. Effect of thermal exposure on microstructure and mechanical properties of Al−Si−Cu−Ni−Mg alloy produced by different casting technologies. Trans. Nonferrous Met. Soc. China 2020, 30, 1717–1730. [Google Scholar] [CrossRef]
- Dias, M.; Oliveira, R.; Kakitani, R.; Cheung, N.; Henein, H.; Spinelli, J.E.; Garcia, A. Effects of solidification thermal parameters and Bi doping on silicon size, morphology and mechanical properties of Al-15wt.% Si-3.2wt.% Bi and Al-18wt.% Si-3.2wt.% Bi alloys. J. Mater. Res. Technol. 2020, 9, 3460–3470. [Google Scholar] [CrossRef]
- Dixit, P.; Suhane, A. Aluminum metal matrix composites reinforced with rice husk ash: A review. Mater. Today Proc. 2022, 62, 4194–4201. [Google Scholar] [CrossRef]
- Harish, T.M.; Mathai, S.; Cherian, J.; Mathew, K.M.; Thomas, T.; Prasad, K.V.; Ravi, V.C. Development of aluminium 5056/SiC/bagasse ash hybrid composites using stir casting method. Mater. Today Proc. 2020, 27, 2635–2639. [Google Scholar] [CrossRef]
- Raju, S.; Siva, B. Fabrication and tribological studies of Al-CSA composite using RSM. Int. J. Mater. Eng. Innov. 2021, 12, 83. [Google Scholar] [CrossRef]
- Purushothaman, L.; Balakrishnan, P. Wear and corrosion behavior of coconut shell ash (CSA) reinforced Al6061 metal matrix composites. Mater. Test. 2020, 62, 77–84. [Google Scholar] [CrossRef]
- Saleh, B.; Ji, B.; Fathi, R.; Guo, S.; Ahmed, M.H.; Jiang, J.; Ma, A. Utilization of machining chips waste for production of functionally gradient magnesium matrix composites. J. Mater. Process. Technol. 2022, 308, 117702. [Google Scholar] [CrossRef]
- De la Rocha, M.R.; Virginie, M.; Khodakov, A.; Pollo, L.D.; Marcílio, N.R.; Tessaro, I.C. Preparation of alumina based tubular asymmetric membranes incorporated with coal fly ash by centrifugal casting. Ceram. Int. 2021, 47, 4187–4196. [Google Scholar] [CrossRef]
- Mohapatra, S.; Sarangi, H.; Mohanty, U.K. Effect of processing factors on the characteristics of centrifugal casting. Manuf. Rev. 2020, 7, 26. [Google Scholar] [CrossRef]
- Liu, W.Y.; Zhang, J.B.; Jin, Y.M.; Hu, T.T.; Chen, T.T.; Xiao, X.P.; Yan, L.M. Microstructure and properties of Ti3SiC2/Al–Si composites synthesized by spark plasma sintering. Mater. Res. Express 2017, 4, 116521. [Google Scholar] [CrossRef]
- Prakash, J.U.; Rubi, C.S.; Rajkumar, C.; Juliyana, S.J. Multi-objective drilling parameter optimization of hybrid metal matrix composites using grey relational analysis. Mater. Today Proc. 2021, 39, 1345–1350. [Google Scholar] [CrossRef]
- Daniel, S.A.A.; Pugazhenthi, R.; Kumar, R.; Vijayananth, S. Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi -grey relational analysis. Def. Technol. 2019, 15, 545–556. [Google Scholar] [CrossRef]
- Juliyana, S.J.; Prakash, J.U.; Čep, R.; Karthik, K. Multi-Objective Optimization of Machining Parameters for Drilling LM5/ZrO2 Composites Using Grey Relational Analysis. Materials 2023, 16, 3615. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, G.; Ghadai, R.K.; Das, S.; Das, P.P.; Chakraborty, S. A comparative study on multi-objective optimization of drilling of hybrid aluminium metal matrix composite. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 3177–3187. [Google Scholar] [CrossRef]
- Kumar, A.; Grover, N.; Manna, A.; Kumar, R.; Chohan, J.S.; Singh, S.; Singh, S.; Pruncu, C.I. Multi-Objective Optimization of WEDM of Aluminum Hybrid Composites Using AHP and Genetic Algorithm. Arab. J. Sci. Eng. 2022, 47, 8031–8043. [Google Scholar] [CrossRef]
- Bao, Q.; Li, N.; Feng, J.; Yan, S.; Ma, G.; Wang, B.; Cheng, S.; Hao, H.; Liu, C.; Zhang, S.; et al. Using mixture design approach for modeling and optimizing tribology properties of PPESK composites. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107256. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Luhar, I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Compos. Part B Eng. 2019, 175, 107076. [Google Scholar] [CrossRef]
- He, J.; Kawasaki, S.; Achal, V. The Utilization of Agricultural Waste as Agro-Cement in Concrete: A Review. Sustainability 2020, 12, 6971. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V. Application of biochar derived from crops residues for biofuel production. Fuel Commun. 2023, 15, 100088. [Google Scholar] [CrossRef]
- Harish, T.M.; Mathai, S.; George, M.; Harisankar, M.; Francis, B. Development of aluminium 5083/B4C/carbonized coconut shell ash hybrid composite using friction stir processing. Mater. Today Proc. 2023, 72, 3149–3153. [Google Scholar] [CrossRef]
- Kumar, A.; Nirala, A.; Singh, V.P.; Sahoo, B.K.; Singh, R.C.; Chaudhary, R.; Dewangan, A.K.; Gaurav, G.K.; Klemes, J.J.; Liu, X. The utilisation of coconut shell ash in production of hybrid composite: Microstructural characterisation and performance analysis. J. Clean. Prod. 2023, 398, 136494. [Google Scholar] [CrossRef]
- Panda, B.; Niranjan, C.A.; Vishwanatha, A.D.; Harisha, P.; Chandan, K.R.; Kumar, R. Development of Novel Stir Cast Aluminium Composite with modified Coconut Shell Ash Filler. Mater. Today Proc. 2020, 22, 2715–2724. [Google Scholar] [CrossRef]
- Kolappan, S.; Arunkumar, T.; Mohanavel, V.; Subramani, K.; Kailasanathan, C.; Kumaran, P.; Subbiah, R.; Kumar, S.S. Experimental investigation on stir casted hybrid composite AA7068 with SiC and coconut shell fly ash. Mater. Today Proc. 2022, 62, 5540–5545. [Google Scholar] [CrossRef]
- Jenish, I.; Veeramalai Chinnasamy, S.G.; Basavarajappa, S.; Indran, S.; Divya, D.; Liu, Y.; Sanjay, M.R.; Siengchin, S. Tribo-Mechanical characterization of carbonized coconut shell micro particle reinforced with Cissus quadrangularis stem fiber/epoxy novel composite for structural application. J. Nat. Fibers 2022, 19, 2963–2979. [Google Scholar] [CrossRef]
- Kadaru, S.K.R.; Kannan, M.; Karthikeyan, R. Preparation and investigation of wear and corrosion behaviour of Al 7475/CSA/Graphite hybrid metal matrix composites. Adv. Mater. Process. Technol. 2023, 1–13. [Google Scholar] [CrossRef]
- Ranjan, S.; Jha, P.K. Investigation on the thermodynamic stability of phases evolved in Al-based hybrid metal matrix composite fabricated using in-situ stir casting route. J. Manuf. Process. 2023, 95, 14–26. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, W.; Du, Y.; Wang, Y. High-performance Al-1.5 wt% Si-Al2O3 composite by vortex-free high-speed stir casting. J. Manuf. Process. 2020, 56, 1126–1135. [Google Scholar] [CrossRef]
- Ezema, I.C.; Aigbodion, V.S.; Okonkwo, E.G.; Obayi, C.S. Fatigue properties of value-added composite from Al-Si-Mg/palm kernel shell ash nanoparticles. Int. J. Adv. Manuf. Technol. 2020, 107, 3247–3257. [Google Scholar] [CrossRef]
- Si, Y.; Di, W.; Liu, M.; Zhao, Y. Effects of pouring temperature and electromagnetic stirring on semi-solid microstructure of hypoeutectic Mg2Si/Al composite. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 32120. [Google Scholar] [CrossRef]
- Zhang, Z.; Ge, B.; Xie, W.; Wei, Z.; Yang, W.; Li, Y.; Shi, Z. Effect of Si alloying content on the microstructure and thermophysical properties of SiC honeycomb/Al–Mg–Si composites prepared by spontaneous infiltration. Ceram. Int. 2020, 46, 10934–10941. [Google Scholar] [CrossRef]
- Pan, J.; Liu, X.; He, G.; Ge, B.; Le, P.; Li, J.; Zhou, Z. Dry sliding tribological properties of A356-SiC aluminum matrix composites prepared by vacuum stir casting. Ind. Lubr. Tribol. 2021, 73, 685–691. [Google Scholar] [CrossRef]
- Han, X.; Yang, L.; Zhao, N.; He, C. Copper-Coated Graphene Nanoplatelets-Reinforced Al–Si Alloy Matrix Composites Fabricated by Stir Casting Method. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 111–124. [Google Scholar] [CrossRef]
- Goudar, D.M.; Patil, I.S.; Magalad, V.T.; Rao, S.S.; Herbert, M.A. A comparative study of tensile properties of eutectic Al-Si/ZrO2 composites fabricated by spray forming and stir casting methods. Adv. Mater. Process. Technol. 2022, 8, 2684–2698. [Google Scholar] [CrossRef]
- Ramadoss, N.; Pazhanivel, K.; Anbuchezhiyan, G. Synthesis of B4C and BN reinforced Al7075 hybrid composites using stir casting method. J. Mater. Res. Technol. 2020, 9, 6297–6304. [Google Scholar] [CrossRef]
- Tharanikumar, L.; Mohan, B.; Anbuchezhiyan, G. Enhancing the microstructure and mechanical properties of Si3N4–BN strengthened Al–Zn–Mg alloy hybrid nano composites using vacuum assisted stir casting method. J. Mater. Res. Technol. 2022, 20, 3646–3655. [Google Scholar] [CrossRef]
- Pan, H.; He, Y.; Zhang, X. Interactions between Dislocations and Boundaries during Deformation. Materials 2021, 14, 1012. [Google Scholar] [CrossRef]
- Yang, Z.; Fan, J.; Liu, Y.; Nie, J.; Yang, Z.; Kang, Y. Effect of the Particle Size and Matrix Strength on Strengthening and Damage Process of the Particle Reinforced Metal Matrix Composites. Materials 2021, 14, 675. [Google Scholar] [CrossRef]
- Garg, P.; Jamwal, A.; Kumar, D.; Sadasivuni, K.K.; Hussain, C.M.; Gupta, P. Advance research progresses in aluminium matrix composites: Manufacturing & applications. J. Mater. Res. Technol. 2019, 8, 4924–4939. [Google Scholar] [CrossRef]
- Farkash, A.; Mittelman, B.; Hayun, S.; Priel, E. Aluminum Matrix Composites with Weak Particle Matrix Interfaces: Effective Elastic Properties Investigated Using Micromechanical Modeling. Materials 2021, 14, 6083. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.N.; Walley, S.M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef]
- Fu, B.; Pei, C.; Pan, H.; Guo, Y.; Fu, L.; Shan, A. Hall-Petch relationship of interstitial-free steel with a wide grain size range processed by asymmetric rolling and subsequent annealing. Mater. Res. Express 2020, 7, 116516. [Google Scholar] [CrossRef]
- Fu, W.; Ma, J.; Liao, Z.; Xiong, H.; Fu, Y.; Wang, B. New Numerical Method Based on Linear Damage Evolution Law for Predicting Mechanical Properties of TiB(2)/6061Al. Materials 2023, 16, 4786. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, Y.; Wu, J.; Kai, X.; Zhang, Z.; Fang, Z.; Xia, C. Effects of particulate agglomerated degree on deformation behaviors and mechanical properties of in-situ ZrB2 nanoparticles reinforced AA6016 matrix composites by finite element modelling. Mater. Res. Express 2020, 7, 36507. [Google Scholar] [CrossRef]
- Bhowmik, A.; Dey, D.; Biswas, A. Microstructure, mechanical and wear Behaviour of AL7075/SIC Aluminium matrix composite fabricated by stir casting. Indian J. Eng. Mater. Sci. 2021, 28, 46–54. [Google Scholar] [CrossRef]
- Gunawan; Arifin, A.; Irsyadi, Y.; Munandar, B.A. Effects of SiC particulate-reinforced on the fluidity and mechanical properties of Aluminium Matrix Composite through stir casting route. J. Phys. Conf. Ser. 2019, 1198, 32013. [Google Scholar] [CrossRef]
- Aghajani, S.; Pouyafar, V.; Meshkabadi, R.; Volinsky, A.A.; Bolouri, A. Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing. Int. J. Adv. Manuf. Technol. 2023, 125, 2569–2580. [Google Scholar] [CrossRef]
- Kermode, J.R.; Ben-Bashat, L.; Atrash, F.; Cilliers, J.J.; Sherman, D.; De Vita, A. Macroscopic scattering of cracks initiated at single impurity atoms. Nat. Commun. 2013, 4, 2441. [Google Scholar] [CrossRef]
- Bellairu, P.K.; Bhat, S.; Gijo, E.V.; Poornesh, M. Multi-Response Modelling and Optimization of Agave Cantala Natural Fiber and Multi-wall Carbon Nano Tube Reinforced Polymer Nanocomposite: Application of Mixture Design. Fibers Polym. 2022, 23, 1089–1099. [Google Scholar] [CrossRef]
Element | Si | Cu | Mg | Fe | S | Others |
---|---|---|---|---|---|---|
Wt% | 17.95 | 4.23 | 0.58 | 0.7 | 0.03 | Remaining |
Experiment Layout | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample Number | Al-18wt%Si (wt%) | Coconut Shell Ash (wt%) | Speed (RPM) | Temperature (°C) | Sample Number | Al-18wt%Si (wt%) | Coconut Shell Ash (wt%) | Speed (RPM) | Temperature (°C) |
A1 | 10 | 0 | 600 | 700 | C1 | 10 | 0 | 600 | 800 |
A2 | 90 | 10 | 600 | 700 | C2 | 90 | 10 | 600 | 800 |
A3 | 95 | 5 | 600 | 700 | C3 | 95 | 5 | 600 | 800 |
A4 | 97.5 | 2.5 | 600 | 700 | C4 | 97.5 | 2.5 | 600 | 800 |
A5 | 92.5 | 7.5 | 600 | 700 | C5 | 92.5 | 7.5 | 600 | 800 |
B1 | 10 | 0 | 800 | 700 | S1 | 10 | 0 | 800 | 800 |
B2 | 90 | 10 | 800 | 700 | S2 | 90 | 10 | 800 | 800 |
B3 | 95 | 5 | 800 | 700 | S3 | 95 | 5 | 800 | 800 |
B4 | 97.5 | 2.5 | 800 | 700 | S4 | 97.5 | 2.5 | 800 | 800 |
B5 | 92.5 | 7.5 | 800 | 700 | S5 | 92.5 | 7.5 | 800 | 800 |
Elements | Mass% |
---|---|
SiO2 | 66.382 |
Al2O3 | 4.974 |
Fe2O3 | 15.741 |
CaO | 3.428 |
K2O | 8.536 |
TiO | 0.939 |
Term | Coef | SE-Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Al-18wt%Si | 112.70 | 1.20 | - | - | 4.00 |
Coconut Shell Ash | −3770 | 491 | - | - | 2787.57 |
Al-18wt%Si × Coconut Shell Ash | 5036 | 545 | 9.25 | 0.000 * | 2882.43 |
Al-18wt%Si × Speed | 1.61 | 1.20 | 1.35 | 0.182 | 4.00 |
Coconut Shell Ash × Speed | −1815 | 491 | −3.70 | 0.000 * | 2787.57 |
Al-18wt%Si × Coconut Shell Ash × Speed | 2024 | 545 | 3.72 | 0.000 * | 2882.43 |
Al-18wt%Si × Temperature | 1.33 | 1.20 | 1.11 | 0.270 | 4.00 |
Coconut Shell Ash × Temperature | −534 | 491 | −1.09 | 0.279 | 2787.57 |
Al-18wt%Si × Coconut Shell Ash × Temperature | 637 | 545 | 1.17 | 0.245 | 2882.43 |
Source | DF | Seq-SS | Adj-SS | Adj-MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Regression | 8 | 59,731.3 | 59,731.3 | 7466.41 | 230.12 | 0.000 * |
Component Only | ||||||
Linear | 1 | 52,733.2 | 2033.3 | 2033.32 | 62.67 | 0.000 * |
Quadratic | 1 | 2773.5 | 2773.5 | 2773.51 | 85.48 | 0.000 * |
Al-18wt%Si × Coconut Shell Ash | 1 | 2773.5 | 2773.5 | 2773.51 | 85.48 | 0.000 * |
Component × Speed | ||||||
Linear | 2 | 1925.2 | 968.8 | 484.42 | 14.93 | 0.000 * |
Al-18wt%Si × Speed | 1 | 1914.1 | 58.7 | 58.71 | 1.81 | 0.182 |
Coconut Shell Ash × Speed | 1 | 11.1 | 443.3 | 443.33 | 13.66 | 0.000 * |
Quadratic | 1 | 448.2 | 448.2 | 448.16 | 13.81 | 0.000 * |
Al-18wt%Si × Coconut Shell Ash × Speed | 1 | 448.2 | 448.2 | 448.16 | 13.81 | 0.000 * |
Component × Temperature | ||||||
Linear | 2 | 1806.7 | 173.1 | 86.55 | 2.67 | 0.075 ** |
Al-18wt%Si × Temperature | 1 | 1583.0 | 40.0 | 39.96 | 1.23 | 0.270 |
Coconut Shell Ash × Temperature | 1 | 223.7 | 38.4 | 38.41 | 1.18 | 0.279 |
Quadratic | 1 | 44.4 | 44.4 | 44.45 | 1.37 | 0.245 |
Al-18wt%Si × Coconut Shell Ash × Temperature | 1 | 44.4 | 44.4 | 44.45 | 1.37 | 0.245 |
Residual Error | 91 | 2952.6 | 2952.6 | 32.45 | ||
Total | 99 | 62,683.9 |
Tensile Strength (MPa) = −3861 + 38.83 (Al-18wt%Si) + 0.04384 (Speed) + 0.0806 (Temperature) + 0.5036 (Al-18wt%Si) × (Coconut Shell Ash) | |||
---|---|---|---|
Model Summary | |||
S | R-sq | R-sq (adj) | R-sq (pred) |
6.18099 | 94.21% | 93.97% | 93.63% |
Tensile Strength (MPa) = −3861 + 38.83 (Al-18wt%Si) + 0.04384 (Speed) + 0.0806 (Temperature) + 0.5036 (Al-18wt%Si) × (Coconut Shell Ash) | |||
---|---|---|---|
Model Summary | |||
S | R-sq | R-sq (adj) | R-sq (pred) |
6.18099 | 94.21% | 93.97% | 93.63% |
Elements | Wt% | Elements | Wt% |
---|---|---|---|
Si | 16.15 | Al2O3 | 0.47 |
Cu | 3.80 | Fe2O3 | 1.49 |
Mg | 0.522 | CaO | 0.32 |
Fe | 0.63 | K2O | 0.81 |
S | 0.02 | TiO | 0.089 |
SiO2 | 6.30 | Others | Remaining |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poornesh, M.; Bhat, S.; Bellairu, P.K.; McDermott, O. Enhancement of Tensile Strength of Coconut Shell Ash Reinforced Al-Si Alloys: A Novel Approach to Optimise Composition and Process Parameters Simultaneously. Processes 2024, 12, 1521. https://doi.org/10.3390/pr12071521
Poornesh M, Bhat S, Bellairu PK, McDermott O. Enhancement of Tensile Strength of Coconut Shell Ash Reinforced Al-Si Alloys: A Novel Approach to Optimise Composition and Process Parameters Simultaneously. Processes. 2024; 12(7):1521. https://doi.org/10.3390/pr12071521
Chicago/Turabian StylePoornesh, M., Shreeranga Bhat, Pavana Kumara Bellairu, and Olivia McDermott. 2024. "Enhancement of Tensile Strength of Coconut Shell Ash Reinforced Al-Si Alloys: A Novel Approach to Optimise Composition and Process Parameters Simultaneously" Processes 12, no. 7: 1521. https://doi.org/10.3390/pr12071521
APA StylePoornesh, M., Bhat, S., Bellairu, P. K., & McDermott, O. (2024). Enhancement of Tensile Strength of Coconut Shell Ash Reinforced Al-Si Alloys: A Novel Approach to Optimise Composition and Process Parameters Simultaneously. Processes, 12(7), 1521. https://doi.org/10.3390/pr12071521