LSMOF-AD: Three-Stage Optimization Approach with Adaptive Differential for Large-Scale Container Scheduling
Abstract
:1. Introduction
- (1)
- To handle a practical large-scale container scheduling problem, we construct a multi-objective optimization model, which can be easily solved through muti-objective optimization algorithms.
- (2)
- Based on the LSMOF, we design a novel optimization algorithm called LSMOF-AD by incorporating advanced optimization strategies, i.e., the three-stage and adaptive differential strategies, to improve the convergence and diversity of population.
- (3)
- We conduct theoretical and application experiments, demonstrating that the proposed approach can achieve a better performance in handling large-scale problems compared to other advanced algorithms or strategies.
2. Container Scheduling Model
2.1. Completion Time Model
- (1)
- Task Transfer Time
- (2)
- Task Execution Time
- (3)
- Task Completion Time
2.2. Resource Cost Model
- (1)
- CPU Cost
- (2)
- Bandwidth Cost
- (3)
- Memory Cost
2.3. Load Balancing Model
3. Algorithm
3.1. Large-Scale Multi-Objective Framework (LSMOF)
Algorithm 1 The main framework of the LSMOF | |
Input: (original LSMOP), (total FEs), (embedded MOEA), (population size for Alg), (number of reference solutions), (threshold). | |
Output: (final population). | |
1: | ← Initialization () |
2: | while do |
3: | ← Problem_Reformulation () |
4: | , Δt ← Single_Objective_Optimization () |
5: | ← Environmental_Selection () |
6: | ← |
7: | end while |
8: | ← Embedded_MOEA () |
3.2. Proposed LSMOF-Based Improved Algorithm (LSMOF-AD)
3.2.1. The Framework of LSMOF-AD
Algorithm 2 LSMOF-AD algorithm | |
Input: (original LSMOP), (total FEs), (population size), (number of reference solutions), , (threshold). | |
Output: (final population). | |
1: | ← Initialization (); |
2: | flag←1; ; |
3: | While termination criterion is not fulfilled do |
4: | /***********First Stage***********/ |
5: | if flag == 1 |
6: | ← Problem_Reformulation () |
7: | ← ADE () |
8: | ← Environmental_Selection |
9: | |
10: | if |
11: | flag = 2 |
12: | end if |
13: | end if |
14: | /*********Second Stage*********/ |
15: | else if flag == 2 |
16: | ← MOEA/D-AD () |
17: | |
18: | if |
19: | flag = 3 |
20: | end if |
21: | /*********Third Stage*********/ |
22: | else if flag == 3 |
23: | ← Problem_Reformulation () |
24: | ← ADE () |
25: | ← Environmental_Selection () |
26: | ← MOEA/D-AD(P) |
27: | ← + + |
28: | end if |
29: | end while |
3.2.2. Adaptive Differential Strategy
- (1)
- Mutation
- (2)
- Crossover
- (3)
- Selection
Algorithm 3 Adaptive differential evolution algorithm | |
Input: (population) | |
Output: Final solution set | |
1: | Set Generation ; |
2: | Initialize |
3: | while termination criterion is not fulfilled do |
4: | for each individual in do |
5: | Generate a mutant vector according to Equation (15) |
6: | Generate a trial vector according to Equation (16) |
Select better individual according to Equation (17) | |
7: | Generate , for next individual to Equations (18) and (19) |
9: | end for |
Generate , for the next generation population according to Equations (20) and (21) | |
10: | end while |
4. Experiment
4.1. Theoritic Experiment
4.1.1. Experimental Setup
4.1.2. Experimental Analysis and Results
- (1)
- Comparison with other advanced algorithms
- (2)
- Ablation comparison experiments.
- (3)
- Comparation on special test instance DTLZ7.
4.2. Application Experiment
- Task Completion Time: the total completion time of tasks is the maximum completion time among all nodes.
- Resource Cost: the total cost required for processing all tasks.
- Load Balancing: the overall load balancing is calculated by the weighted sum of CPU and memory utilization.
4.2.1. Experimental Setup
4.2.2. Experimental Analysis and Results
- (1)
- Total Task Completion Time
- (2)
- Resource Cost
- (3)
- Load Balancing
5. Conclusions
- (1)
- The algorithm proposed in this paper may suffer from issues such as getting stuck in local optima with a significant increase in iteration count, and it may be time-consuming due to the three-stage iteration strategy. Future research could explore combining our algorithm with other advanced intelligent optimization algorithms, such as Multiverse Optimizer [44] or Simulated Annealing [45], to enhance performance, increase the chances of escaping local optima, and further optimize time complexity.
- (2)
- In the container scheduling algorithm LSMOF-AD proposed in this paper, the CPU and memory are considered as the two main resource dimensions. Hence, one future research direction is to incorporate more resource dimensions and design more reasonable and reliable scheduling strategies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernandez-Gomez, A.M.; Gutierrez-Aviles, D.; Troncoso, A.; Martínez-Álvarez, F. A new Apache Spark-based framework for big data streaming forecasting in IoT networks. J. Supercomput. 2023, 79, 11078–11100. [Google Scholar] [CrossRef] [PubMed]
- Vaño, R.; Lacalle, I.; Sowiński, P.; S-Julián, R.; Palau, C.E. Cloud-Native Workload Orchestration at the Edge: A Deployment Review and Future Directions. Sensors 2023, 23, 2215. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.R.; Wang, Y.; Wang, X.X. Load balancing scheduling mechanism for OpenStack and Docker integration. J. Cloud Comput. Adv. Syst. Appl. 2023, 12, 12. [Google Scholar] [CrossRef]
- Peinl, R.; Holzschuher, F.; Pfitzer, F. Docker Cluster Management for the Cloud—Survey Results and Own Solution. J. Grid Comput. 2016, 14, 265–282. [Google Scholar] [CrossRef]
- Bittencourt, L.F.; Goldman, A.; Madeira, E.R.M. Scheduling in distributed systems: A cloud computing perspective. Comput. Sci. Rev. 2018, 30, 31–54. [Google Scholar] [CrossRef]
- Malti, A.N.; Hakem, M.; Benmammar, B. A new hybrid multi-objective optimization algorithm for task scheduling in cloud systems. Clust. Comput. 2024, 27, 2525–2548. [Google Scholar] [CrossRef]
- Hosseini, S.M. A novel discrete grey wolf optimizer for scientific workflow scheduling in heterogeneous cloud computing platforms. Sci. Iran. 2022, 29, 2375–2393. [Google Scholar] [CrossRef]
- Asghari, A.Y.; Hosseini, S.M.; Rahmani, A.M. A hybrid bi-objective scheduling algorithm for execution of scientific workflows on cloud platforms with execution time and reliability approach. J. Supercomput. 2023, 79, 1451–1503. [Google Scholar] [CrossRef]
- Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [Google Scholar] [CrossRef]
- Hosseini, S.M. A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems. Eng. Appl. Artif. Intell. 2020, 90, 103501. [Google Scholar] [CrossRef]
- Noorian, T.R.; Hosseini, S.M.; Motameni, H. A hybrid meta-heuristic scheduler algorithm for optimization of workflow scheduling in cloud heterogeneous computing environment. J. Eng. Des. Technol. 2022, 20, 1581–1605. [Google Scholar] [CrossRef]
- Sandhu, R.; Faiz, M.; Kaur, H.; Srivastava, A.; Narayan, V. Enhancement in performance of cloud computing task scheduling using optimization strategies. Clust. Comput. 2024, 1–24. [Google Scholar] [CrossRef]
- Barut, C.; Yildirim, G.; Tatar, Y. An intelligent and interpretable rule-based metaheuristic approach to task scheduling in cloud systems. Knowl. Based Syst. 2024, 284, 111241. [Google Scholar] [CrossRef]
- Zavieh, H.; Javadpour, A.; Li, Y.; Ja’fari, F.; Nasseri, S.H.; Rostami, A.S. Task processing optimization using cuckoo particle swarm (CPS) algorithm in cloud computing infrastructure. Clust. Comput. 2023, 26, 745–769. [Google Scholar] [CrossRef]
- Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive PSO-based task scheduling approach for cloud computing. Sensors 2022, 22, 920. [Google Scholar] [CrossRef] [PubMed]
- Mangalampalli, S.; Karri, G.R.; Elngar, A.A. An efficient trust-aware task scheduling algorithm in cloud computing using firefly optimization. Sensors 2023, 23, 1384. [Google Scholar] [CrossRef]
- Bürkük, M.; Yıldırım, G. Cloneable jellyfish search optimizer based task scheduling in cloud environments. Türk Doğa Fen Dergisi 2022, 11, 35–43. [Google Scholar] [CrossRef]
- El-Ashmawi, W.H.; Ali, A.F. A modified salp swarm algorithm for task assignment problem. IEEE Syst. J. 2020, 94, 106445. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, L.; Liu, C.; Liu, Q.; Liu, J.; Mao, Y.; Murphy, J. A WOA-based optimization approach for task scheduling in cloud computing systems. IEEE Syst. J. 2020, 14, 3117–3128. [Google Scholar] [CrossRef]
- Fu, J.Z.; Wang, J.F.; Ma, Y.; Liu, Y.P. Optimized decomposition of manufacturing tasks based on task-correlation analysis. J. Mach. Des. 2023, 40, 65–69. [Google Scholar]
- Feng, Z.Y.; Hu, X.B.; Huo, Y.L.; Hou, J.X. Research on task decomposition algorithm model in network collaborative design process. Hoist. Convey. Mach. 2021, 6, 18–24. [Google Scholar]
- Wei, L.K.; Zhou, F.Q.; Yu, P.; Li, W.J.; Zhao, M.y.; Yan, X.Q.; Wu, J.J. Task Decomposition of Network Services for Deploying in Heterogeneous Network Computing Nodes. In Proceedings of the 26th IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Porto, Portugal, 25–27 October 2021; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhou, F.Q.; Feng, L.; Li, W.J. Multi-granularity decomposition for componentized multimedia applications based on graph clustering. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Chengdu, China, 4–6 August 2021; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, L. A Pareto based fruit fly optimization algorithm for task scheduling and resource allocation in cloud computing environment. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Liao, T.W.; Liu, Y. Multi-objective optimisation of multi-task scheduling in cloud manufacturing. Int. J. Prod. Res. 2019, 57, 3847–3863. [Google Scholar] [CrossRef]
- Khalili, A.; Babamir, S.M. Optimal scheduling workflows in cloud computing environment using pareto-based grey wolf optimizer. Concurr. Comput. Pract. Exp. 2017, 29, 4044. [Google Scholar] [CrossRef]
- Liu, J.; Sarker, R.; Elsayed, S.; Essam, D.; Siswanto, N. Large-scale evolutionary optimization: A review and comparative study. Swarm Evol. Comput. 2024, 85, 101466. [Google Scholar] [CrossRef]
- Mao, X.; Wu, G.; Fan, M.; Cao, Z.; Pedrycz, W. DL-DRL: A double-level deep reinforcement learning approach for large-scale task scheduling of multi-UAV. IEEE Trans. Autom. Sci. Eng. 2024, 1–17. [Google Scholar] [CrossRef]
- He, C.; Li, L.H.; Tian, Y. Accelerating Large-Scale Multiobjective Optimization via Problem Reformulation. IEEE Trans. Evol. Comput. 2019, 23, 949–961. [Google Scholar] [CrossRef]
- Chen, X.; Bian, H.W.; He, H.Y. An Improved Differential Evolution Adaptive Fuzzy PID Control Method for Gravity Measurement Stable Platform. Sensors 2023, 23, 3172. [Google Scholar] [CrossRef] [PubMed]
- Lampinen, J.; Zelinka, I. On stagnation of the differential evolution algorithm. Proc. MENDEL 2000, 6, 76–83. [Google Scholar]
- Tanabe, R.; Ishibuchi, H. Review and analysis of three components of the differential evolution mutation operator in MOEA/D-DE. Soft Comput. 2019, 23, 12843–12857. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Zhang, J. Cooperative Differential Evolution With Multiple Populations for Multiobjective Optimization. IEEE Trans. Cybern. 2016, 46, 2848–2861. [Google Scholar] [CrossRef]
- Verma, S.; Pant, M.; Snasel, V. A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems. IEEE Access 2021, 9, 57757–57791. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 2008, 13, 284–302. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Qi, Y.; Wang, X.; Li, L. A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 2015, 20, 275–298. [Google Scholar] [CrossRef]
- Zille, H.; Ishibuchi, H.; Mostaghim, S.; Nojima, Y. Weighted optimization framework for large-scale multi-objective optimization. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Denver, CO, USA, 20–24 July 2016; Association for Computing Machinery: New York, NY, USA; pp. 83–84. [Google Scholar] [CrossRef]
- Liu, J.; Liu, R.; Zhang, X. Recursive grouping and dynamic resource allocation method for large-scale multi-objective optimization problem. Appl. Soft Comput. 2022, 130, 109651. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, X.; Zhang, X.; Jin, Y. Efficient large-scale multiobjective optimization based on a competitive swarm optimizer. IEEE Trans. Cybern. 2019, 50, 3696–3708. [Google Scholar] [CrossRef]
- Cai, X.J.; Zhang, M.Q.; Wang, H. Analyses of inverted generational distance for many-objective optimisation algorithms. Int. J. Bio-Inspired Comput. 2019, 14, 62–68. [Google Scholar] [CrossRef]
- Halim, A.H.; Ismail, I.; Das, S. Performance assessment of the metaheuristic optimization algorithms: An exhaustive review. Artif. Intell. Rev. 2021, 54, 2323–2409. [Google Scholar] [CrossRef]
- Tenner, E. Prometheus Tamed: Fire, Security, and Modernities, 1400 to 1900. Technol. Cult. 2022, 63, 925–926. [Google Scholar] [CrossRef]
- Shukri, S.E.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Enhanced multi-verse optimizer for task scheduling in cloud computing environments. Expert Syst. Appl. 2020, 168, 114230. [Google Scholar] [CrossRef]
- Aktan, M.N.; Bulut, H. Metaheuristic task scheduling algorithms for cloud computing environments. Concurr. Comput. Pract. Exp. 2022, 34, 13. [Google Scholar] [CrossRef]
Problem | M | D | MOEA/DVA | WOF | RG-DRA-MMOPSO | LMOCSO | LSMOF-AD |
---|---|---|---|---|---|---|---|
LSMOP1 | 2 | 200 | 8.66 × 100 (8.04 × 10−1) − | 6.30 × 10−1 (9.36 × 10−2) − | 5.31 × 10−1 (4.44 × 10−2) − | 3.05 × 10−1 (5.01 × 102) − | 2.11 × 10−1 (1.44 × 10−2) |
500 | 1.91 × 101 (1.00 × 100) − | 6.58 × 10−1 (6.11 × 10−2) − | 5.34 × 10−1 (3.51 × 10−2) − | 6.18 × 10−1 (2.84 × 10−1) − | 2.23 × 10−1 (1.36 × 10−2) | ||
1000 | 2.39 × 101 (7.84 × 10−1) − | 6.79 × 10−1 (4.22 × 10−2) − | 4.35 × 10−1 (2.05 × 10−2) − | 9.25 × 10−1 (3.89 × 101) − | 3.56 × 10−1 (2.43 × 10−2) | ||
3 | 200 | 6.26 × 100 (4.62 × 10−1) − | 6.95 × 10−1 (1.32 × 10−1) − | 3.19 × 10−1 (2.02 × 10−2) + | 4.88 × 10−1 (1.26 × 10−1) − | 5.81 × 10−1 (9.78 × 10−2) | |
500 | 9.42 × 100 (2.89 × 10−1) − | 7.09 × 10−1 (8.36 × 10−2) − | 4.50 × 10−1 (5.57 × 10−3) − | 5.23 × 10−1 (8.67 × 10−4) − | 4.36 × 10−1 (4.72 × 10−2) | ||
1000 | 1.08 × 101 (3.22 × 10−1) − | 8.01 × 10−1 (7.05 × 10−2) − | 4.10 × 10−1 (3.28 × 10−3) − | 5.02 × 10−1 (3.11 × 102) − | 4.04 × 10−1 (2.43 × 10−2) | ||
LSMOP2 | 2 | 200 | 1.51 × 10−1 (6.75 × 10−4) − | 7.46 × 10−2 (4.63 × 10−4) − | 3.68 × 10−2 (1.52 × 10−3) − | 6.04 × 10−2 (8.55 × 101) − | 2.81 × 10−2 (1.07 × 10−3) |
500 | 7.27 × 10−2 (2.30 × 10−4) − | 3.30 × 10−2 (3.91 × 10−4) − | 2.13 × 10−2 (1.30 × 10−3) − | 1.26 × 10−2 (4.11 × 10−1) + | 1.67 × 10−2 (4.75 × 10−4) | ||
1000 | 4.04 × 10−2 (3.87 × 10−4) − | 1.92 × 10−2 (3.40 × 10−4) − | 1.45 × 10−2 (5.36 × 10−4) − | 1.09 × 10−2 (1.18 × 10−2) + | 1.15 × 10−2 (4.08 × 10−4) | ||
3 | 200 | 1.23 × 10−1 (2.61 × 10−3) + | 1.36 × 10−1 (3.84 × 10−3) − | 1.45 × 10−1 (3.79 × 10−3) − | 1.19 × 10−1 (1.23 × 10−1) + | 1.31 × 10−1 (2.69 × 10−3) | |
500 | 7.89 × 10−2 (2.63 × 10−3) + | 8.54 × 10−2 (3.82 × 10−3) − | 8.04 × 10−2 (3.72 × 10−3) − | 5.67 × 10−2 (5.98 × 10−4) + | 7.97 × 10−2 (1.97 × 10−3) | ||
1000 | 6.48 × 10−2 (2.46 × 10−3) + | 7.00 × 10−2 (4.28 × 10−3) − | 6.58 × 10−2 (5.11 × 10−3) − | 8.95 × 10−1 (5.60 × 10−1) − | 6.80 × 10−2 (1.37 × 10−3) | ||
LSMOP3 | 2 | 200 | 1.71 × 101 (1.30 × 100) − | 1.50 × 10−2 (6.88 × 10−2) + | 1.54 × 100 (1.83 × 10−3) − | 4.03 × 10−2 (2.06 × 102) + | 1.51 × 10−1 (1.36 × 10−2) |
500 | 2.87 × 101 (8.26 × 10−1) − | 1.57 × 100 (1.47 × 10−3) − | 1.57 × 100 (1.05 × 10−3) − | 8.96 × 100 (1.90 × 10−1) − | 1.55 × 100 (1.65 × 10−3) | ||
1000 | 3.36 × 101 (6.07 × 10−1) − | 1.58 × 100 (1.61 × 10−3) − | 1.57 × 100 (5.60 × 10−4) ≈ | 1.83 × 101 (2.16 × 101) − | 1.57 × 100 (8.03 × 10−4) | ||
3 | 200 | 2.30 × 101 (3.53 × 100) − | 8.61 × 10−1 (3.38 × 10−4) − | 4.31 × 10−1 (4.10 × 10−2) + | 1.44 × 10−1 (7.15 × 10−2) + | 8.59 × 10−1 (3.45 × 10−3) | |
500 | 3.60 × 101 (2.95 × 100) − | 8.61 × 10−1 (1.30 × 10−4) − | 3.39 × 10−1 (1.35 × 10−2) + | 8.90 × 10−1 (3.93 × 10−4) − | 8.60 × 10−1 (3.83 × 10−4) | ||
1000 | 4.02 × 101 (2.09 × 100) − | 8.61 × 10−1 (7.28 × 10−4)≈ | 8.60 × 10−1 (1.28 × 10−3) ≈ | 8.97 × 10−1 (3.09 × 10−4) − | 8.60 × 10−1 (3.64 × 10−4) | ||
LSMOP4 | 2 | 200 | 6.56 × 10−1 (9.76 × 10−3) − | 1.33 × 10−1 (1.51 × 10−2) − | 6.98 × 10−2 (2.33 × 10−3) − | 1.69 × 10−1 (1.71 × 10−2) − | 5.78 × 10−2 (6.78 × 10−3) |
500 | 5.44 × 10−1 (1.90 × 10−3) − | 8.74 × 10−2 (6.83 × 10−3) − | 5.52 × 10−2 (3.05 × 10−3) − | 1.23 × 101 (6.23 × 10−1) − | 3.85 × 10−2 (2.05 × 10−3) | ||
1000 | 4.61 × 10−1 (6.97 × 10−4) − | 5.99 × 10−2 (5.57 × 10−3) − | 3.32 × 10−2 (1.18 × 10−3) − | 1.83 × 10−1 (4.97 × 100) − | 2.66 × 10−2 (6.49 × 10−4) | ||
3 | 200 | 3.26 × 10−1 (2.31 × 10−3) − | 3.15 × 10−1 (9.10 × 10−3) − | 2.95 × 10−1 (7.55 × 10−3) + | 6.23 × 10−1 (3.74 × 10−2) − | 2.97 × 10−1 (9.69 × 10−3) | |
500 | 1.94 × 10−1 (5.71 × 10−4) − | 2.14 × 10−1 (6.87 × 10−3) − | 2.20 × 10−1 (6.57 × 10−3) − | 3.11 × 10−1 (3.79 × 10−2) − | 1.79 × 10−1 (5.17 × 10−3) | ||
1000 | 1.20 × 10−1 (1.96 × 10−4) + | 1.39 × 10−1 (5.80 × 10−3) − | 1.45 × 10−1 (6.02 × 10−3) − | 3.36 × 10−1 (2.38 × 10−2) − | 1.24 × 10−1 (2.41 × 10−3) | ||
LSMOP5 | 2 | 200 | 1.42 × 101 (6.21 × 10−1) − | 7.42 × 10−1 (1.14 × 10−6) − | 7.31 × 10−1 (3.39 × 10−16) − | 2.01 × 100 (3.07 × 100) − | 7.35 × 10−1 (1.81 × 10−2) |
500 | 2.09 × 101 (5.02 × 10−1) − | 7.42 × 10−1 (1.14 × 10−6) − | 7.35 × 10−1 (3.39 × 10−16) − | 7.47 × 10−1 (1.90 × 10−1) − | 6.25 × 10−1 (3.63 × 10−2) | ||
1000 | 2.41 × 101 (3.40 × 10−1) − | 7.42 × 10−1 (3.39 × 10−6)≈ | 7.42 × 10−1 (3.39 × 10−6) ≈ | 1.39 × 100 (9.28 × 10−1) − | 7.42 × 10−1 (3.39 × 10−6) ≈ | ||
3 | 200 | 1.17 × 101 (9.27 × 10−1) − | 5.41 × 10−1 (1.02 × 10−3) − | 4.99 × 10−1 (4.07 × 10−2) − | 4.40 × 10−1 (5.11 × 10−3) ≈ | 4.85 × 10−1 (2.55 × 10−2) | |
500 | 1.70 × 101 (6.15 × 10−1) − | 5.41 × 10−1 (4.66 × 10−5) − | 5.35 × 10−1 (9.71 × 10−3) − | 5.76 × 10−2 (2.85 × 10−3) − | 5.23 × 10−1 (8.26 × 10−3) | ||
1000 | 1.91 × 101 (5.97 × 10−1) − | 5.41 × 10−1 (7.27 × 10−5) − | 5.40 × 10−1 (1.22 × 10−3) − | 6.21 × 10−1 (5.57 × 10−4) − | 5.27 × 10−1 (5.05 × 10−3) | ||
LSMOP6 | 2 | 200 | 7.36 × 102 (6.12 × 102) − | 6.42 × 10−1 (7.36 × 10−2) − | 2.57 × 10−1 (1.12 × 10−3) + | 3.69 × 10−1 (1.71 × 102) + | 6.43 × 10−1 (6.24 × 10−2) |
500 | 2.24 × 103 (2.14 × 103) − | 7.33 × 10−1 (1.76 × 10−1) − | 2.20 × 10−1 (4.12 × 10−4) + | 1.23 × 101 (6.23 × 10−1) − | 6.00 × 10−1 (8.68 × 10−2) | ||
1000 | 2.99 × 103 (2.33 × 103) − | 6.82 × 10−1 (9.03 × 10−4) − | 3.12 × 10−1 (4.30 × 10−4) + | 1.89 × 10−1 (4.97 × 100) + | 6.26 × 10−1 (8.23 × 10−2) | ||
3 | 200 | 1.77 × 104 (3.58 × 103) − | 1.22 × 100 (3.15 × 10−3) − | 3.81 × 10−1 (2.20 × 10−2) + | 6.23 × 10−1 (3.74 × 10−2) + | 1.22 × 100 (4.17 × 10−3) | |
500 | 3.05 × 104 (6.34 × 103) − | 1.29 × 100 (2.01 × 10−3) − | 4.22 × 10−1 (1.11 × 10−2) + | 5.11 × 10−1 (3.79 × 10−2) + | 1.29 × 100 (2.83 × 10−3) | ||
1000 | 3.68 × 104 (7.07 × 103) − | 1.31 × 100 (1.31 × 10−3) − | 3.70 × 10−1 (4.20 × 10−2) + | 3.81 × 10−1 (2.38 × 10−2) + | 1.31 × 100 (2.96 × 10−3) | ||
LSMOP7 | 2 | 200 | 5.58 × 104 (6.03 × 103) − | 1.48 × 100 (2.34 × 10−3) − | 1.32 × 100 (3.20 × 10−3) + | 7.86 × 100 (3.59 × 102) − | 1.48 × 100 (1.90 × 10−3) |
500 | 1.06 × 105 (5.12 × 103) − | 1.51 × 100 (1.19 × 10−3) − | 1.50 × 100 (1.20 × 10−3) − | 3.81 × 100 (3.55 × 10−5) − | 1.48 × 100 (4.05 × 10−2) | ||
1000 | 1.33 × 105 (4.14 × 103) − | 1.51 × 100 (1.18 × 10−3) − | 1.51 × 100 (1.29 × 10−3) − | 2.50 × 100 (2.91 × 10−5) − | 1.51 × 100 (5.64 × 10−4) | ||
3 | 200 | 1.80 × 100 (3.92 × 10−2) − | 9.78 × 10−1 (4.70 × 10−2) − | 9.73 × 10−1 (2.55 × 10−2) − | 6.00 × 10−1 (2.25 × 10−1) − | 4.10 × 10−1 (3.81 × 10−2) | |
500 | 1.27 × 100 (9.73 × 10−3) − | 9.48 × 10−1 (1.26 × 10−1) − | 9.49 × 10−1 (4.26 × 10−2) − | 7.76 × 10−1 (2.41 × 10−5) − | 6.09 × 10−1 (7.02 × 10−2) | ||
1000 | 1.10 × 100 (2.56 × 10−3) − | 9.23 × 10−1 (1.38 × 10−1) − | 8.64 × 10−1 (3.21 × 10−3) − | 7.76 × 10−1 (3.27 × 10−5) − | 6.88 × 10−1 (7.67 × 10−2) | ||
LSMOP8 | 2 | 200 | 1.40 × 101 (8.86 × 10−1) − | 7.42 × 10−1 (1.14 × 10−6) − | 7.42 × 10−1 (3.39 × 10−16) − | 7.88 × 10−1 (3.59 × 102) − | 2.86 × 10−1 (7.57 × 10−2) |
500 | 2.11 × 101 (4.21 × 10−1) − | 7.42 × 10−1 (1.14 × 10−6) − | 7.42 × 10−1 (3.39 × 10−16) − | 3.81 × 10−1 (3.55 × 10−5) − | 2.23 × 10−1 (1.91 × 10−2) | ||
1000 | 2.39 × 101 (4.73 × 10−1) − | 7.42 × 10−1 (1.14 × 10−6)≈ | 7.42 × 10−1 (3.39 × 10−16) ≈ | 8.50 × 10−1 (2.91 × 10−5) − | 7.42 × 10−1 (3.39 × 10−16) ≈ | ||
3 | 200 | 6.69 × 10−1 (1.07 × 10−2) − | 3.65 × 10−1 (4.56 × 10−3) − | 3.33 × 10−1 (2.40 × 10−2) − | 6.00 × 10−1 (2.25 × 10−1) − | 3.35 × 10−1 (3.09 × 10−2) | |
500 | 6.51 × 10−1 (6.13 × 10−3) − | 3.55 × 10−1 (1.59 × 10−2) − | 3.15 × 10−1 (1.74 × 10−2) − | 3.76 × 10−1 (2.41 × 10−5) − | 2.89 × 10−1 (5.22 × 10−2) | ||
1000 | 6.49 × 10−1 (4.56 × 10−3) − | 3.56 × 10−1 (9.05 × 10−3) − | 3.45 × 10−1 (1.13 × 10−2) − | 3.76 × 10−1 (3.27 × 10−5) − | 2.47 × 10−1 (4.49 × 10−2) | ||
LSMOP9 | 2 | 200 | 2.26 × 101 (1.92 × 100) − | 8.10 × 10−1 (1.14 × 10−6) − | 8.30 × 10−1 (0.00 × 100) − | 5.00 × 10−1 (3.11 × 101) − | 4.67 × 10−1 (8.06 × 10−2) |
500 | 4.32 × 101 (1.36 × 100) − | 8.10 × 10−1 (3.21 × 10−4) − | 5.19 × 10−1 (6.09 × 10−4) − | 8.42 × 10−1 (2.89 × 10−2) − | 5.33 × 10−1 (4.85 × 10−3) | ||
1000 | 5.24 × 101 (1.03 × 100) − | 8.09 × 10−1 (4.10 × 10−4) − | 6.02 × 10−1 (1.34 × 10−3) − | 3.61 × 100 (5.67 × 100) − | 6.20 × 10−1 (2.53 × 10−2) | ||
3 | 200 | 6.70 × 101 (5.47 × 100) − | 7.74 × 10−1 (3.80 × 10−1) + | 1.53 × 100 (4.52 × 10−16) − | 8.33 × 10−1 (2.22 × 10−1) + | 1.51 × 100 (9.96 × 10−2) | |
500 | 1.15 × 102 (5.42 × 100) − | 8.21 × 10−1 (4.13 × 10−1) + | 1.49 × 100 (1.20 × 10−1) − | 9.11 × 10−1 (3.05 × 10−2) + | 1.23 × 100 (1.69 × 10−1) | ||
1000 | 1.37 × 102 (3.51 × 100) − | 1.08 × 100 (4.00 × 10−1) + | 1.40 × 100 (1.89 × 10−1) − | 7.03 × 100 (1.94 × 10−1) − | 1.18 × 100 (1.20 × 10−1) | ||
+/−/≈ | 2/52/0 | 4/47/3 | 11/39/4 | 12/41/1 | / |
Problem | M | D | LSMOF | LSMOF-Three-Stage | LSMOF-AD |
---|---|---|---|---|---|
LSMOP1 | 2 | 100 | 7.48 × 10−2 (2.08 × 10−3) − | 3.97 × 100 (2.41 × 100) − | 2.94 × 10−2 (4.52 × 10−4) |
300 | 5.58 × 10−1 (1.38 × 10−4) − | 4.55 × 10−1 (2.59 × 10−5) + | 5.56 × 10−1 (5.62 × 10−4) | ||
600 | 5.64 × 10−1 (5.46 × 10−2) − | 2.92 × 10−1 (3.78 × 10−2) − | 2.11 × 10−1 (1.44 × 10−2) | ||
3 | 100 | 1.04 × 101 (5.35 × 10−1) − | 1.83 × 100 (1.46 × 10−1) − | 6.49 × 10−1 (1.35 × 10−2) | |
300 | 6.01 × 100 (6.33 × 10−1) − | 1.03 × 100 (6.51 × 10−1) − | 1.01 × 10−2 (3.68 × 10−3) | ||
600 | 2.27 × 10−1 (3.05 × 10−2) − | 4.41 × 10−2 (8.25 × 10−7) + | 5.22 × 10−2 (7.70 × 10−5) | ||
LSMOP2 | 2 | 100 | 5.32 × 100 (1.27 × 10−1) − | 7.50 × 101 (3.24 × 10−1) − | 1.27 × 10−2 (1.08 × 10−2) |
300 | 5.76 × 10−2 (4.56 × 10−4) + | 6.58 × 10−2 (7.86 × 10−4) ≈ | 8.64 × 10−2 (2.69 × 10−3) | ||
600 | 3.95 × 10−2 (1.03 × 10−3) − | 2.81 × 10−2 (9.96 × 10−4) + | 2.81 × 10−2 (1.07 × 10−3) | ||
3 | 100 | 1.32 × 10−1 (1.62 × 10−3) ≈ | 1.04 × 10−1 (2.78 × 10−4) + | 1.38 × 10−1 (5.04 × 10−3) | |
300 | 1.67 × 101 (3.07 × 10−4) − | 2.17 × 100 (1.08 × 10−2) − | 4.35 × 10−2 (2.50 × 10−2) | ||
600 | 1.57 × 10−1 (1.04 × 10−1) − | 1.53 × 10−1 (3.29 × 10−1) ≈ | 5.43 × 10−3 (2.41 × 10−4) | ||
LSMOP3 | 2 | 100 | 1.16 × 100 (6.11 × 10−1) − | 2.22 × 10−1 (1.22 × 10−2) − | 2.16 × 10−2 (1.46 × 10−2) |
300 | 2.28 × 100 (8.58 × 10−2) − | 1.90 × 10−2 (2.46 × 10−3) ≈ | 1.99 × 10−2 (6.81 × 10−3) | ||
600 | 1.53 × 100 (2.22 × 10−3) − | 1.53 × 100 (2.64 × 10−3) ≈ | 1.51 × 100 (1.36 × 10−2) | ||
3 | 100 | 7.13 × 100 (5.60 × 10−2) − | 1.62 × 100 (1.60 × 100) − | 8.60 × 10−1 (2.85 × 10−5) | |
300 | 3.06 × 10−1 (3.23 × 10−2) − | 4.29 × 10−1 (2.00 × 10−2) − | 4.97 × 10−2 (3.24 × 10−2) | ||
600 | 2.51 × 100 (1.58 × 10−1) − | 4.51 × 10−1 (3.97 × 10−1) − | 5.61 × 10−3 (4.94 × 10−4) | ||
LSMOP4 | 2 | 100 | 1.85 × 100 (1.02 × 10−2) − | 3.92 × 10−1 (1.07 × 10−2) − | 2.30 × 10−2 (1.13 × 10−2) |
300 | 3.72 × 100 (2.12 × 10−1) − | 5.83 × 10−2 (1.06 × 10−2) − | 2.02 × 10−2 (7.39 × 10−3) | ||
600 | 1.02 × 10−1 (1.83 × 10−3) − | 6.81 × 10−2 (5.87 × 10−3) + | 5.78 × 10−2 (6.78 × 10−3) | ||
3 | 100 | 4.00 × 10−1 (6.54 × 10−3) − | 3.08 × 10−1 (3.75 × 10−3) ≈ | 3.10 × 10−1 (5.95 × 10−3) | |
300 | 5.03 × 10−1 (2.19 × 10−2) − | 9.09 × 10−1 (3.97 × 10−2) − | 7.29 × 10−2 (3.37 × 10−2) | ||
600 | 3.91 × 100 (9.56 × 10−2) − | 3.58 × 10−1 (3.53 × 10−1) − | 6.63 × 10−3 (1.38 × 10−3) | ||
LSMOP5 | 2 | 100 | 2.66 × 101 (5.94 × 10−1) ≈ | 3.17 × 10−2 (6.10 × 10−1) + | 3.27 × 10−2 (3.20 × 10−3) |
300 | 5.35 × 100 (1.18 × 10−1) − | 1.53 × 10−1 (2.92 × 10−2) + | 2.68 × 10−1 (1.60 × 10−2) | ||
600 | 7.42 × 10−1 (3.39 × 10−1) ≈ | 7.42 × 10−1 (3.39 × 10−1) ≈ | 7.42 × 10−1 (1.81 × 10−2) | ||
3 | 100 | 1.85 × 101 (5.71 × 10−1) − | 4.01 × 100 (2.89 × 10−1) − | 7.37 × 10−1 (1.90 × 10−1) | |
300 | 6.82 × 10−2 (4.03 × 10−2) − | 1.08 × 10−1 (3.24 × 10−2) + | 6.17 × 10−2 (2.22 × 10−2) | ||
600 | 5.43 × 100 (3.28 × 10−1) − | 3.16 × 10−1 (2.58 × 10−1) + | 5.82 × 10−1 (6.19 × 10−4) | ||
LSMOP6 | 2 | 100 | 2.66 × 101 (5.94 × 10−1) − | 3.67 × 10−1 (6.10 × 10−1) + | 3.27 × 10−2 (3.20 × 10−3) |
300 | 5.36 × 100 (1.18 × 10−1) − | 1.53 × 10−1 (2.92 × 10−2) + | 2.68 × 10−1 (1.60 × 10−2) | ||
600 | 3.57 × 10−1 (1.35 × 10−3) + | 3.71 × 10−1 (1.50 × 10−2) − | 6.43 × 10−1 (6.24 × 10−2) | ||
3 | 100 | 3.21 × 104 (8.29 × 10−3) − | 9.77 × 102 (9.31 × 10−2) − | 7.77 × 10−1 (2.33 × 10−2) | |
300 | 6.82 × 10−1 (4.03 × 10−2) − | 1.08 × 10−1 (3.24 × 10−2) − | 6.17 × 10−2 (2.22 × 10−2) | ||
600 | 5.43 × 100 (3.28 × 10−1) − | 3.16 × 10−1 (2.58 × 10−1) − | 5.82 × 10−2 (6.19 × 10−4) | ||
LSMOP7 | 2 | 100 | 3.33 × 10−1 (1.35 × 10−2) − | 6.21 × 10−1 (1.66 × 10−2) − | 3.79 × 10−2 (1.65 × 10−2) |
300 | 6.62 × 100 (1.56 × 10−1) − | 4.18 × 10−2 (7.31 × 10−2) + | 4.81 × 10−2 (1.09 × 10−2) | ||
600 | 1.47 × 100 (2.54 × 10−3) − | 1.43 × 100 (2.88 × 10−3) + | 1.44 × 100 (1.90 × 10−3) | ||
3 | 100 | 2.31 × 100 (1.47 × 10−3) − | 1.49 × 100 (2.39 × 10−1) − | 1.08 × 100 (4.06 × 10−2) | |
300 | 8.98 × 10−1 (1.82 × 10−2) − | 1.59 × 10−1 (5.48 × 10−2) − | 9.40 × 10−2 (2.24 × 10−2) | ||
600 | 6.88 × 100 (4.89 × 10−1) − | 7.29 × 10−1 (9.73 × 10−2) − | 6.68 × 10−2 (1.17 × 10−3) | ||
LSMOP8 | 2 | 100 | 4.03 × 10−1 (1.36 × 10−2) − | 7.08 × 10−2 (1.77 × 10−2) − | 4.24 × 10−2 (1.09 × 10−2) |
300 | 7.80 × 100 (2.66 × 10−1) − | 5.90 × 10−1 (1.94 × 10−1) − | 2.13 × 10−2 (8.73 × 10−3) | ||
600 | 7.42 × 10−1 (3.39 × 10−16) − | 7.42 × 10−1 (3.39 × 10−16) ≈ | 2.86 × 10−1 (7.57 × 10−2) | ||
3 | 100 | 7.77 × 10−1 (3.17 × 10−2) − | 6.40 × 10−1 (1.62 × 10−2) ≈ | 6.33 × 10−1 (2.99 × 10−2) | |
300 | 1.08 × 100 (3.36 × 10−2) − | 1.55 × 10−1 (8.14 × 10−2) − | 1.34 × 10−1 (3.45 × 10−2) | ||
600 | 8.61 × 100 (2.50 × 10−1) − | 1.47 × 100 (7.01 × 10−1) − | 8.37 × 10−3 (3.83 × 10−3) | ||
LSMOP9 | 2 | 100 | 5.10 × 10−1 (9.83 × 10−1) − | 9.67 × 10−1 (3.32 × 10−2) − | 3.08 × 10−2 (7.02 × 10−3) |
300 | 1.04 × 101 (2.84 × 10−1) − | 1.21 × 10−1 (4.17 × 10−1) + | 1.55 × 10−1 (1.12 × 10−2) | ||
600 | 8.10 × 10−1 (0.00 × 100) − | 8.10 × 10−1 (0.00 × 100) ≈ | 7.67 × 10−1 (8.06 × 10−2) | ||
3 | 100 | 1.27 × 100 (7.69 × 100) − | 2.18 × 10−1 (5.85 × 10−1) + | 1.47 × 100 (1.41 × 10−1) | |
300 | 6.05 × 10−1 (8.55 × 10−1) − | 1.05 × 10−1 (5.01 × 10−2) − | 5.70 × 10−2 (1.96 × 10−2) | ||
600 | 1.26 × 101 (4.11 × 10−1) − | 1.18 × 100 (2.84 × 10−1) − | 1.94 × 10−1 (1.29 × 10−2) | ||
+/−/≈ | 2/49/3 | 12/33/9 | / |
Node Number | Task Number |
---|---|
1 | 4, 6 |
2 | 2, 5 |
3 | 3 |
4 | 1 |
5 | 7, 8 |
Name | Frequency/GHz | Memory/GB | Bandwidth/Mbps | Disk/TB |
---|---|---|---|---|
Controller | 3.2 | 32 | 100 | 4 |
Node 1 | 2.4 | 48 | 100 | 2 |
Node 2 | 2.4 | 48 | 100 | 2 |
Node 3 | 3.2 | 48 | 100 | 2 |
Node 4 | 3.2 | 32 | 100 | 2 |
Node 5 | 3.2 | 64 | 100 | 8 |
Node 6 | 2.4 | 32 | 100 | 2 |
Node 7 | 3.2 | 48 | 100 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Ding, W.; Zhu, M.; Shi, W.; Jiang, G. LSMOF-AD: Three-Stage Optimization Approach with Adaptive Differential for Large-Scale Container Scheduling. Processes 2024, 12, 1531. https://doi.org/10.3390/pr12071531
Chen M, Ding W, Zhu M, Shi W, Jiang G. LSMOF-AD: Three-Stage Optimization Approach with Adaptive Differential for Large-Scale Container Scheduling. Processes. 2024; 12(7):1531. https://doi.org/10.3390/pr12071531
Chicago/Turabian StyleChen, Mingshan, Weichao Ding, Mengyang Zhu, Wen Shi, and Guoqing Jiang. 2024. "LSMOF-AD: Three-Stage Optimization Approach with Adaptive Differential for Large-Scale Container Scheduling" Processes 12, no. 7: 1531. https://doi.org/10.3390/pr12071531
APA StyleChen, M., Ding, W., Zhu, M., Shi, W., & Jiang, G. (2024). LSMOF-AD: Three-Stage Optimization Approach with Adaptive Differential for Large-Scale Container Scheduling. Processes, 12(7), 1531. https://doi.org/10.3390/pr12071531