Environmental Assessment of Solid Recovered Fuel Production from Screening Waste Using a Life Cycle Assessment Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Proposed Scenarios
- -
- Scenario 1 (S1): Disposal in landfill.
- -
- Scenario 2 (S2): Production of non-densified SRF with solar drying.
- -
- Scenario 3 (S3): Production of non-densified SRF with thermal drying.
- -
- Scenario 4 (S4): Production of densified SRF with solar drying.
- -
- Scenario 5 (S5): Production of densified SRF with thermal drying.
2.3. Inventory Analysis
- -
- Transport: only road transport to landfill was considered, whose environmental impact is fundamental to the LCA methodology. The distance from the waste collection point (Biofactoría Sur of Granada) to the destination landfill is 19.7 km. For the scenarios with SRF production, all the screening waste treatment would be carried out at the Biofactoría per se, so transport did not need to be considered in such cases.
- -
- Landfilling: it was not possible to obtain primary data on the emissions produced from the current disposal of screening waste in the specific landfill for Biofactoría Sur. Based on this, the authors have used secondary data for these emissions, obtained for similar landfills in Spain, generally for the disposal of organic municipal solid waste.
- -
- Drying: the objective of this process is to achieve approximately 15% moisture content in the screening waste, a percentage that some authors regard as ‘dry residue’, which would also meet the moisture requirements for use as fuel in some thermochemical processes [22]. This stage was defined for two drying processes to compare their potential environmental impact. Firstly, solar drying or bio-drying was carried out in a greenhouse containing a scarification roller and a system for moving air in and out [45]. Secondly, which is more established in drying processes, trommel drying was implemented, which is more efficient for waste with a large amount of water [38].
- -
- Shredding: triturating the already dry screening waste is a complicated task due to the high percentage of sanitary textiles and their resistance to grinding. The process aims to reduce and homogenise the particle size of the residue. Once this stage is completed, the residue becomes SRF without densification.
- -
- Densification: the output stream of the previous process, non-densified SRF, is the input stream of this process. This stage involves the conditioning of the SRF as pellets through compaction.
2.4. Life Cycle Impact Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A Review on Wastewater Sludge Valorisation and Its Challenges in the Context of Circular Economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of Sewage Sludge Using Anaerobic Digestion in Malaysia: Current State and Challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef]
- Boni, M.R.; Polettini, A.; Pomi, R.; Rossi, A.; Filippi, A.; Cecchini, G.; Frugis, A.; Leoni, S. Valorisation of Residues from Municipal Wastewater Sieving through Anaerobic (Co-)Digestion with Biological Sludge. Waste Manag. Res. 2021, 40, 814–821. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Bayat, R.; Hosseinzadeh-Bandbafha, H.; Afrasyabi, H.; Chau, K. Wing Modeling of Energy Consumption and Environmental Life Cycle Assessment for Incineration and Landfill Systems of Municipal Solid Waste Management—A Case Study in Tehran Metropolis of Iran. J. Clean. Prod. 2017, 148, 427–440. [Google Scholar] [CrossRef]
- European Parliament and Council Directive (EU). 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste. Off. J. Eur. Union 2018, 2018, 100–108. [Google Scholar]
- Ballesteros, I.; Duque, A.; Negro, M.J.; Coll, C.; Latorre-Sánchez, M.; Hereza, J.; Iglesias, R. Valorisation of Cellulosic Rejections from Wastewater Treatment Plants through Sugar Production. J. Environ. Manag. 2022, 312, 114931. [Google Scholar] [CrossRef]
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020.
- Deselnicu, D.C.; Militaru, G.; Deselnicu, V.; Zăinescu, G.; Albu, L. Towards a Circular Economy—A Zero Waste Programme for Europe. In Proceedings of the 7th International Conference on Advanced Materials and Systems, Bucharest, Romania, 18–20 October 2018. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef]
- Cadavid-Rodriguez, L.S.; Horan, N. Reducing the Environmental Footprint of Wastewater Screenings through Anaerobic Digestion with Resource Recovery. Water Environ. J. 2012, 26, 301–307. [Google Scholar] [CrossRef]
- Wid, N.; Horan, N.J. Anaerobic Digestion of Screenings for Biogas Recovery. In Anaerobic Digestion Processes; Horan, N., Yaser, A., Wid, N., Eds.; Green Energy and Technology; Springer: Singapore, 2018. [Google Scholar]
- Le Hyaric, R.; Canler, J.P.; Barillon, B.; Naquin, P.; Gourdon, R. Pilot-Scale Anaerobic Digestion of Screenings from Wastewater Treatment Plants. Bioresour. Technol. 2010, 101, 9006–9011. [Google Scholar] [CrossRef]
- Dong, L.; Qi, W.; Sun, Y. Semi-Dry Mesophilic Anaerobic Digestion of Water Sorted Organic Fraction of Municipal Solid Waste (WS-OFMSW). Bioresour. Technol. 2010, 101, 2722–2728. [Google Scholar] [CrossRef] [PubMed]
- De la Torre-Bayo, J.J.; Martín-Pascual, J.; Torres-Rojo, J.C.; Zamorano, M. Characterization of Screenings from Urban Wastewater Treatment Plants: Alternative Approaches to Landfill Disposal. J. Clean. Prod. 2022, 380, 134884. [Google Scholar] [CrossRef]
- ISO 21640:2021; AENOR Norma Española Combustibles Sólidos Recuperados Especificaciones y Clases. International Organization for Standardization: Geneva, Switzerland, 2021.
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Determination of the Material-Recyclable Share of SRF during Co-Processing in the Cement Industry. Resour. Conserv. Recycl. 2020, 156, 104696. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Havukainen, J.; Horttanainen, M. Impact of Utilizing Solid Recovered Fuel on the Global Warming Potential of Cement Production and Waste Management System: A Life Cycle Assessment Approach. Waste Manag. Res. 2020, 39, 561–572. [Google Scholar] [CrossRef]
- Kahawalage, A.C.; Melaaen, M.C.; Tokheim, L.-A. Opportunities and Challenges of Using SRF as an Alternative Fuel in the Cement Industry. Clean. Waste Syst. 2023, 4, 100072. [Google Scholar] [CrossRef]
- Di Lonardo, M.C.; Franzese, M.; Costa, G.; Gavasci, R.; Lombardi, F. The Application of SRF vs. RDF Classification and Specifications to the Material Flows of Two Mechanical-Biological Treatment Plants of Rome: Comparison and Implications. WASTE Manag. 2016, 47, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Kaartinen, T.; Sormunen, K.; Rintala, J. Case Study on Sampling, Processing and Characterization of Landfilled Municipal Solid Waste in the View of Landfill Mining. J. Clean. Prod. 2013, 55, 56–66. [Google Scholar] [CrossRef]
- Jesús, J.; Torre-bayo, D.; Torres-rojo, J.C.; Rodríguez, M.L.; Martín-pascual, J. Analyzing the Production, Quality, and Potential Uses of Solid Recovered Fuel from Screening Waste of Municipal Wastewater Treatment Plants. Process Saf. Environ. Prot. 2023, 172, 950–970. [Google Scholar] [CrossRef]
- Tang, Y.T.; Ma, X.Q.; Lai, Z.Y.; Chen, Y. Energy Analysis and Environmental Impacts of a MSW Oxy-Fuel Incineration Power Plant in China. Energy Policy 2013, 60, 132–141. [Google Scholar] [CrossRef]
- UNI EN ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Ferrari, A.M.; Volpi, L.; Settembre-Blundo, D.; García-Muiña, F.E. Dynamic Life Cycle Assessment (LCA) Integrating Life Cycle Inventory (LCI) and Enterprise Resource Planning (ERP) in an Industry 4.0 Environment. J. Clean. Prod. 2021, 286, 125314. [Google Scholar] [CrossRef]
- Khandelwal, H.; Dhar, H.; Thalla, A.K.; Kumar, S. Application of Life Cycle Assessment in Municipal Solid Waste Management: A Worldwide Critical Review. J. Clean. Prod. 2019, 209, 630–654. [Google Scholar] [CrossRef]
- Santolini, E.; Bovo, M.; Barbaresi, A.; Torreggiani, D.; Tassinari, P. Turning Agricultural Wastes into Biomaterials: Assessing the Sustainability of Scenarios of Circular Valorization of Corn Cob in a Life-Cycle Perspective. Appl. Sci. 2021, 11, 6281. [Google Scholar] [CrossRef]
- Mukherjee, C.; Denney, J.; Mbonimpa, E.G.; Slagley, J.; Bhowmik, R. A Review on Municipal Solid Waste-to-Energy Trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Yi, S.; Jang, Y.-C. Life Cycle Assessment of Solid Refuse Fuel Production from MSW in Korea. J. Mater. Cycles Waste Manag. 2018, 20, 19–42. [Google Scholar] [CrossRef]
- Corti, A.; Lombardi, L. Life Cycle Assessment Approach for Refuse Derived Fuel (RDF) Systems for Tuscany. WIT Trans. Biomed. Health 2001, 5, 289–298. [Google Scholar]
- Fyffe, J.R.; Breckel, A.C.; Townsend, A.K.; Webber, M.E. Use of MRF Residue as Alternative Fuel in Cement Production. Waste Manag. 2016, 47, 276–284. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, J.M.; Grindlay, A.L.; Serrano-Bernardo, F.; Rodriguez-Rojas, M.I.; Zamorano, M.; Fernández-González, J.M.; Grindlay, A.L.; Serrano-Bernardo, F.; Rodríguez-rojas, M.I.; Zamorano, M. Economic and Environmental Review of Waste-to-Energy Systems for Municipal Solid Waste Management in Medium and Small Municipalities. Waste Manag. 2017, 67, 360–374. [Google Scholar] [CrossRef]
- Lara-Topete, G.O.; Yebra-Montes, C.; Orozco-Nunnelly, D.A.; Robles-Rodríguez, C.E.; Gradilla-Hernández, M.S. An Integrated Environmental Assessment of MSW Management in a Large City of a Developing Country: Taking the First Steps Towards a Circular Economy Model. Front. Environ. Sci. 2022, 10, 838542. [Google Scholar] [CrossRef]
- Ferronato, N.; Baltrocchi, A.P.D.; Romagnoli, F.; Calle Mendoza, I.J.; Gorritty Portillo, M.A.; Torretta, V. Environmental Life Cycle Assessment of Biomass and Cardboard Waste-Based Briquettes Production and Consumption in Andean Areas. Energy Sustain. Dev. 2023, 72, 139–150. [Google Scholar] [CrossRef]
- Corominas, L.; Byrne, D.M.; Guest, J.S.; Hospido, A.; Roux, P.; Shaw, A.; Short, M.D. The Application of Life Cycle Assessment (LCA) to Wastewater Treatment: A Best Practice Guide and Critical Review. Water Res. 2020, 184, 116058. [Google Scholar] [CrossRef]
- Kovacs, E.; Hoaghia, M.A.; Senila, L.; Scurtu, D.A.; Varaticeanu, C.; Roman, C.; Dumitras, D.E. Life Cycle Assessment of Biofuels Production Processes in Viticulture in the Context of Circular Economy. Agronomy 2022, 12, 1320. [Google Scholar] [CrossRef]
- Laurent, A.; Clavreul, J.; Bernstad, A.; Bakas, I.; Niero, M.; Gentil, E.; Christensen, T.H.; Hauschild, M.Z. Review of LCA Studies of Solid Waste Management Systems—Part II: Methodological Guidance for a Better Practice. Waste Manag. 2014, 34, 589–606. [Google Scholar] [CrossRef] [PubMed]
- Malijonyte, V.; Dace, E.; Romagnoli, F.; Kliopova, I.; Gedrovics, M. A Comparative Life Cycle Assessment of Energy Recovery from End-of-Life Tires and Selected Solid Waste. Energy Procedia 2016, 95, 257–264. [Google Scholar] [CrossRef]
- Biofactoría Sur Granada: A Benchmark for Circular Economy in Europe. 2018. Available online: https://iambiente.es/2018/11/biofactoria-sur-granada-un-referente-de-economia-circular-en-europa/ (accessed on 25 July 2024).
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life Cycle Assessment (LCA) of Waste Management Strategies: Landfilling, Sorting Plant and Incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Bottausci, S.; Ungureanu-Comanita, E.D.; Gavrilescu, M.; Bonoli, A. Environmental Impacts Quantification of PVC Production. Environ. Eng. Manag. J. 2021, 20, 1693–1702. [Google Scholar] [CrossRef]
- Magrini, C.; Dal Pozzo, A.; Bonoli, A. Assessing the Externalities of a Waste Management System via Life Cycle Costing: The Case Study of the Emilia-Romagna Region (Italy). Waste Manag. 2022, 138, 285–297. [Google Scholar] [CrossRef]
- Zanni, S.; Cipolla, S.S.; di Fusco, E.; Lenci, A.; Altobelli, M.; Currado, A.; Maglionico, M.; Bonoli, A. Modeling for Sustainability: Life Cycle Assessment Application to Evaluate Environmental Performance of Water Recycling Solutions at the Dwelling Level. Sustain. Prod. Consum. 2019, 17, 47–61. [Google Scholar] [CrossRef]
- De la Torre Bayo, J.J.; Zamorano Toro, M.; Ruiz, L.M.; Torres Rojo, J.C.; Martín Pascual, J. Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste. Sustainability 2023, 15, 13841. [Google Scholar] [CrossRef]
- Yay, A.S.E. Application of Life Cycle Assessment (LCA) for Municipal Solid Waste Management: A Case Study of Sakarya. J. Clean. Prod. 2015, 94, 284–293. [Google Scholar] [CrossRef]
- UNI EN ISO 14040:2006; International Standard. Environmental Management—Life Cycle. International Organization for Standardization: Geneva, Switzerland, 2006.
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; Wegener Sleeswijk, A.; Udo De Haes, H.A.; de Bruijn, J.A.; van Duin, R.; Huijbregts, M.A.J. Life Cycle Assessment: An Operational Guide to the ISO Standards; Part 3: Scientific Background; Ministry of Housing, Spatial Planning and Environment (VROM): The Hague, The Netherlands; Centre of Environmental Science (CML): Leiden, The Netherlands, 2001.
- Nunes, A.O.; Viana, L.R.; Guineheuc, P.-M.; da Silva Moris, V.A.; de Paiva, J.M.F.; Barna, R.; Soudais, Y. Life Cycle Assessment of a Steam Thermolysis Process to Recover Carbon Fibers from Carbon Fiber-Reinforced Polymer Waste. Int. J. Life Cycle Assess. 2018, 23, 1825–1838. [Google Scholar] [CrossRef]
- Karolinczak, B.; Walczak, J.; Bogacka, M.; Zubrowska-Sudol, M. Life Cycle Assessment of Sewage Sludge Mono-Digestion and Co-Digestion with the Organic Fraction of Municipal Solid Waste at a Wastewater Treatment Plant. Sci. Total Environ. 2024, 907, 167801. [Google Scholar] [CrossRef] [PubMed]
- Rajcoomar, A.; Ramjeawon, T. Life Cycle Assessment of Municipal Solid Waste Management Scenarios on the Small Island of Mauritius. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2017, 35, 313–324. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Hagare, D.; Jayasena, V.; Swick, R.; Rahman, M.M.; Boyle, N.; Ghodrat, M. Recycling of Food Waste to Produce Chicken Feed and Liquid Fertiliser. Waste Manag. 2021, 131, 386–393. [Google Scholar] [CrossRef]
- Aryan, Y.; Yadav, P.; Samadder, S.R. Life Cycle Assessment of the Existing and Proposed Plastic Waste Management Options in India: A Case Study. J. Clean. Prod. 2019, 211, 1268–1283. [Google Scholar] [CrossRef]
- Mendes, M.R.; Aramaki, T.; Hanaki, K. Assessment of the Environmental Impact of Management Measures for the Biodegradable Fraction of Municipal Solid Waste in São Paulo City. Waste Manag. 2003, 23, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Liamsanguan, C.; Gheewala, S.H. The Holistic Impact of Integrated Solid Waste Management on Greenhouse Gas Emissions in Phuket. J. Clean. Prod. 2008, 16, 1865–1871. [Google Scholar] [CrossRef]
- Silva, V.; Contreras, F.; Bortoleto, A.P. Life-Cycle Assessment of Municipal Solid Waste Management Options: A Case Study of Refuse Derived Fuel Production in the City of Brasilia, Brazil. J. Clean. Prod. 2021, 279, 123696. [Google Scholar] [CrossRef]
- Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Life Cycle Assessment to Compare the Environmental Impact of Seven Contemporary Food Waste Management Systems. Bioresour. Technol. 2018, 248, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Fiorentino, G.; Giani, H.; Clausen, A.; Ulgiati, S. Refuse Recovered Biomass Fuel from Municipal Solid Waste. A Life Cycle Assessment. Appl. Energy 2017, 186, 211–225. [Google Scholar] [CrossRef]
- Yadav, P.; Samadder, S.R. Environmental Impact Assessment of Municipal Solid Waste Management Options Using Life Cycle Assessment: A Case Study. Environ. Sci. Pollut. Res. Int. 2018, 25, 838–854. [Google Scholar] [CrossRef]
- Fantozzi, F.; Buratti, C. Life Cycle Assessment of Biomass Chains: Wood Pellet from Short Rotation Coppice Using Data Measured on a Real Plant. Biomass Bioenergy 2010, 34, 1796–1804. [Google Scholar] [CrossRef]
- Lourenço, N.; Nunes, L. Life-Cycle Assessment of Decentralized Solutions for Wastewater Treatment in Small Communities. Water Sci. Technol. 2021, 84, 1954–1968. [Google Scholar] [CrossRef] [PubMed]
- Goedkoop, M. SimaPro Database Manual: Methods Library; PRé Sustainability B.V.: Amersfoort, The Netherlands, 2008. [Google Scholar]
- Corona, B.; Miguel, G.S. Environmental Analysis of a Concentrated Solar Power (CSP) Plant Hybridised with Different Fossil and Renewable Fuels. Fuel 2015, 145, 63–69. [Google Scholar] [CrossRef]
- Abeliotis, K.; Kalogeropoulos, A.; Lasaridi, K. Life Cycle Assessment of the MBT Plant in Ano Liossia, Athens, Greece. Waste Manag. 2012, 32, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Atta, U.; Hussain, M.; Malik, R.N. Environmental Impact Assessment of Municipal Solid Waste Management Value Chain: A Case Study from Pakistan. Waste Manag. Res. 2020, 38, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, O.; Bisaillon, M.; Haraldsson, M.; Sundberg, J. Enhancement of Biogas Production from Food Waste and Sewage Sludge—Environmental and Economic Life Cycle Performance. J. Environ. Manag. 2016, 175, 33–39. [Google Scholar] [CrossRef]
- Christoforou, E. Chapter 7—Environmental Assessment of Biomass-to-Biofuels Mechanical Conversion Routes (Pelleting, Briquetting). In Environmental Assessment of Renewable Energy Conversion Technologies; Fokaides, P.A., Kylili, A., Morsink-Georgali, P.-Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 157–180. ISBN 978-0-12-817111-0. [Google Scholar]
Waste Fractions | Description | Volume from Total Solids (%) | Process Unit in SimaPro | Amount [kg] * |
---|---|---|---|---|
Sanitary textiles | Tampons, sanitary towels, wipes, etc. | 52.10 | Sanitary textiles | 0.1183 |
Paper and cardboard | Newspapers, brown corrugated cardboard, package paper rolls, office paper | 11.80 | Waste paperboard, sorted (GLO) market for cut-off, S | 0.0268 |
Organic | Leaves, flowers, plant parts, food scraps, etc. | 5.50 | Wood chips, wet, measured as dry mass (Europe without Switzerland) market for cut-off, S | 0.0125 |
Plastics | Plastic film, bottles, rigid plastic, packaging, condoms, wrapping and bags | 5.00 | Polystyrene, general purpose (GLO) market for cut-off, S | 0.0113 |
Other | Fractions that are very costly to separate, including inert debris, hair, organic matter and fine particulates (<20 mm) | 25.90 | Compost (GLO) market for cut-off, S + sand (RoW), market for sand cut-off, S | 0.0588 |
Inputs | Database Process Unit | Unit | Value | Notes |
---|---|---|---|---|
Transport | ||||
Materials | Raw screening waste | kg | 1 | Moisture of 77.3% |
Processes | Transport, truck < 10 t, EURO3, 20% LF, empty return/GLO energy | tkm | 0.039 | |
Landfill | ||||
Materials | Raw screening waste | kg | 1 | Moisture of 77.3% |
Processes | Screening from WWTP (waste scenario). Treatment of municipal solid waste, landfill, cut-off, S | p | 1 | |
Solar drying | ||||
Materials | Raw screening waste | kg | 1 | Moisture of 77.3% |
Processes | Greenhouse for solar drying | p | 1 | To evaporate 0.623 kg of wastewater |
Electricity | Electricity, high voltage {ES}|market for|cut-off, S | kWh | 0.040 | |
Thermal drying | ||||
Materials | Raw screening waste | kg | 1 | Moisture of 77.3% |
Processes | Trommel drying | p | 1 | To evaporate 0.623 kg of wastewater |
Electricity | Electricity, high voltage {ES}| market for|cut-off, S | kWh | 0.560 | |
Trituration | ||||
Materials | Dry screening waste | kg | 0.377 | Moisture of 15% |
Processes | Chipper, stationary, electric {GLO}| chipper production, stationary, electric|cut-off, S | p | 1 | A water loss of 0.3% is considered |
Electricity | Electricity, high voltage {ES}| market for|cut-off, S | kWh | 0.014 | |
Densification | ||||
Materials | Non-densified SRF | kg | 0.376 | |
Processes | Pelletiser [45] | p | 1 | A water loss of 3% is considered |
Electricity | Electricity, high voltage {ES}| market for|cut-off, S | kWh | 0.001 | |
Diesel | Diesel {Europe without Switzerland}|market for|cut-off, S | kg | 0.004 |
Impact Category | Unit | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|---|
ADP | kg Sbeq | 4.40 × 10−6 | 1.33 × 10−5 | 35 × 10−5 | 1.93 × 10−5 | 1.95 × 10−5 |
% | 6.3 | 19.1 | 19.3 | 27.5 | 27.8 | |
ADP (fossil) | MJ | 29.0 | 28.8 | 30.6 | 41.7 | 43.6 |
% | 16.7 | 16.6 | 17.6 | 24.0 | 25.1 | |
GWP100a | kg CO2eq | 2.41 | 1.27 | 1.43 | 1.83 | 1.99 |
% | 26.9 | 14.2 | 16.0 | 20.5 | 22.3 | |
ODP | kg CFC-11eq | 5.05 × 10−7 | 1.56 × 10−6 | 1.56 × 10−6 | 2.25 × 10−6 | 2.26 × 10−6 |
% | 6.2 | 19.1 | 19.2 | 27.7 | 27.8 | |
HTP | kg 1.4-DBeq | 5.19 × 10−1 | 6.43 × 10−1 | 7.06 × 10−1 | 9.28 × 10−1 | 9.90 × 10−1 |
% | 13.7 | 17.0 | 18.6 | 24.5 | 26.2 | |
FAETP | kg 1.4-DBeq | 2.11 | 4.87 × 10−1 | 5.42 × 10−1 | 7.02 × 10−1 | 7.56 × 10−1 |
% | 45.9 | 10.6 | 11.8 | 15.3 | 16.5 | |
MAETP | kg 1.4-DBeq | 1.40 × 103 | 1.35 × 103 | 1.60 × 103 | 1.94 × 103 | 2.19 × 103 |
% | 16.5 | 15.9 | 18.9 | 22.9 | 25.8 | |
TETP | kg 1.4-DBeq | 3.18 × 10−3 | 1.61 × 10−3 | 1.81 × 10−3 | 2.32 × 10−3 | 2.52 × 10−3 |
% | 27.8 | 14.1 | 15.8 | 20.3 | 22.0 | |
PO | kg C2H4eq | 6.30 × 10−4 | 3.02 × 10−4 | 3.45 × 10−4 | 4.36 × 10−4 | 4.79 × 10−4 |
% | 28.7 | 13.8 | 15.7 | 19.9 | 21.8 | |
AP | kg SO2eq | 9.94 × 10−3 | 4.65 × 10−3 | 5.82 × 10−3 | 6.69 × 10−3 | 7.86 × 10−3 |
% | 28.4 | 13.3 | 16.6 | 19.1 | 22.5 | |
EP | kg PO4eq | 4.93 × 10−3 | 1.26 × 10−3 | 1.52 × 10−3 | 1.80 × 10−3 | 2.07 × 10−3 |
% | 42.6 | 10.9 | 13.1 | 15.6 | 17.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Torre Bayo, J.J.; Zamorano, M.; Torres-Rojo, J.C.; Pennellini, S.; Martín-Pascual, J.; Bonoli, A. Environmental Assessment of Solid Recovered Fuel Production from Screening Waste Using a Life Cycle Assessment Approach. Processes 2024, 12, 1814. https://doi.org/10.3390/pr12091814
De la Torre Bayo JJ, Zamorano M, Torres-Rojo JC, Pennellini S, Martín-Pascual J, Bonoli A. Environmental Assessment of Solid Recovered Fuel Production from Screening Waste Using a Life Cycle Assessment Approach. Processes. 2024; 12(9):1814. https://doi.org/10.3390/pr12091814
Chicago/Turabian StyleDe la Torre Bayo, Juan Jesús, Montserrat Zamorano, Juan C. Torres-Rojo, Sara Pennellini, Jaime Martín-Pascual, and Alessandra Bonoli. 2024. "Environmental Assessment of Solid Recovered Fuel Production from Screening Waste Using a Life Cycle Assessment Approach" Processes 12, no. 9: 1814. https://doi.org/10.3390/pr12091814
APA StyleDe la Torre Bayo, J. J., Zamorano, M., Torres-Rojo, J. C., Pennellini, S., Martín-Pascual, J., & Bonoli, A. (2024). Environmental Assessment of Solid Recovered Fuel Production from Screening Waste Using a Life Cycle Assessment Approach. Processes, 12(9), 1814. https://doi.org/10.3390/pr12091814