The Chemical and Rheological Properties of Corn Extrudates Enriched with Zn- and Se-Fortified Wheat Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Viscosity Determination
- -
- Initial gelatinization temperature of starch [°C];
- -
- Peak viscosity: maximum viscosity during gelatinization [BU];
- -
- Viscosity at 92 °C [BU];
- -
- Viscosity after 5 min at 92 °C [BU];
- -
- Viscosity at 50 °C [BU];
- -
- Viscosity after 1 min at 50 °C [BU];
- -
- Breakdown: calculated by subtracting the viscosity after 5 min at 92 °C from the peak viscosity, indicating stability during mixing at high temperatures (92 °C) [BU];
- -
- “Setback”: calculated by subtracting the viscosity after 5 min at 92 °C from the viscosity at 50 °C, indicating the tendency of the starch paste to retrograde [BU].
2.3. Total Starch Content and Degree of Starch Damage
2.4. Determination of Bioavailability of Zinc and Selenium
2.5. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Viscosity of Mixtures and Extrudates
3.2. Total Starch Content
3.3. Starch Damage
3.4. Bioavailabity of Zinc and Selenium
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kennedy, G.; Nantel, G.; Shetty, P. The scourge of ‘‘hidden hunger’’: Global dimensions of micronutrient deficiencies. Food Nutr. Agric. 2003, 32, 8–16. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; van den Berg, H.; Arthur, J.; Bast, A.; Dainty, J.; Faulks, R.M.; Gärtner, C.; Haenen, G.; Hollman, P.; Holst, B.; et al. Bioavailability and metabolism. Mol. Asp. Med. 2002, 23, 39–100. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Santos, C.N. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; Abd El-Salam, S.M.; Omran, A.A. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties. PLoS ONE 2011, 6, e25512. [Google Scholar] [CrossRef] [PubMed]
- Warburton, E.; Goenaga-Infante, H. Methane mixed plasma—Improved sensitivity of inductively coupled plasma mass spectrometry detection for selenium speciation analysis of wheat-based food. J. Anal. At. Spectrom. 2007, 22, 370–376. [Google Scholar] [CrossRef]
- Stangoulis, J.; Graham, R. Trace-element uptake and distribution in plants. J. Nutr. 2003, 133, 1502S–1505S. [Google Scholar]
- Hart, D.J.; Fairweather-Tait, S.J.; Broadley, S.J.; Dickinson, S.J.; Foot, I.; Knott, P.; McGrath, S.P.; Mowat, H.; Norman, K.; Scott, P.R.; et al. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem. 2011, 126, 1771–1778. [Google Scholar] [CrossRef]
- Félix-Medina, J.V.; Montes-Ávila, J.; Reyes-Moreno, C.; Perales-Sánchez, J.X.K.; Gómez Favela, M.A.; Aguilar-Palazuelos, E.; Gutiérrez-Dorado, R. Second-generation snacks with high nutritional and antioxidant value produced by an optimized extrusion process from corn/common bean flours mixtures. LWT 2020, 124, 109172. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Noguerol, A.T.; Martinez-Monzo, J. Use of insects and pea powder as alternative protein and mineral sources in extruded snacks. Eur. Food Res. Technol. 2020, 246, 703–712. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innov. Food Sci. Emerg. Technol. 2019, 52, 100–107. [Google Scholar] [CrossRef]
- Sinaki, N.Y.; Koksel, F. Effects of dietary fibre source and content and extrusion conditions on the physicochemical composition and physical quality of fibre-enriched lentil snacks. Int. J. Food Sci. Technol. 2024, 59, 2236–2248. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Ma, Y.; Mai, S.; Li, C. Effects of Extrusion on Starch Molecular Degradation, Order-Disorder Structural Transition and Digestibility-A Review Foods. Foods 2022, 11, 2538. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, G.; Ren, Z.; He, Z.; Peng, H.; Zhang, D.; Ma, C. Impact of Extrusion Temperature on In Vitro Digestibility and Pasting Properties of Pea Flour. Plant Foods Hum. Nutr. 2021, 76, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Kesre, C.; Tugrul Masatcioglu, M. Physical characteristics of corn extrudates supplemented with red lentil bran. Food Sci. Technol. 2022, 153, 112530. [Google Scholar] [CrossRef]
- Gandhi, N.; Singh, B.; Singh, P.; Sharma, S. Functional, Rheological, Morphological, and Micro-Structural Properties of Extrusion-Processed Corn and Potato Starches, Starch. Starch-Stärke 2021, 73, 2000140. [Google Scholar] [CrossRef]
- Patil, S.; Kaur, C.; Puniya, M.K.; Mahapatra, A.; Dhakane, J.; Jalgaonkar, K.; Mahawar, M.K. Functional Properties of Extruded Corn Flour. Turk. J. Agric. Eng. Res. 2021, 2, 167–174. [Google Scholar] [CrossRef]
- Srivastava, S.; Jain, D.; Gupta, N. Optimization of extrusion parameters and feed composition for enhanced quality of millet extrudates. Ann. Arid Zone 2024, 63, 61–76. [Google Scholar] [CrossRef]
- Sule, S.; Okafor, G.I.; Momoh, O.C.; Gbaa, S.T.; Amonyeze, O.A. Applications of food extrusion technology. MOJ Food Process. Technol. 2024, 12, 74–84. [Google Scholar] [CrossRef]
- Kajić, N.; Jozinović, A.; Lončarić, Z.; Ačkar, Đ.; Šubarić, D.; Horvat, D.; Kovačević, M.; Heffer, H.; Babić, J. Textural and sensory characteristics of extruded corn snacks with the addition of zinc and selenium biofortified wheat. Poljoprivreda 2022, 28, 17–28. [Google Scholar] [CrossRef]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Planinić, M.; Pavoković, M.; Blažić, M. Effect of screw configuration, moisture 343 content and particle size of corn grits on properties of extrudates. Croat. J. Food Sci. Technol. 2012, 4, 95–101. [Google Scholar]
- ISO 6493:2000; Animal Feeding Stuffs. Determination of Starch Content. International Organization for Standardization: Geneva, Switzerland, 2000.
- AACC. Approved Methods of the AACC, 11th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2024. [Google Scholar]
- Kiers, J.; Nout, R.; Rombouts, F. In vitro digestibility of processed and fermented soya bean, cowpea and maize. J. Sci. Food Agric. 2000, 80, 1325–1331. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, B.; Singh, N.; Singh, B. Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. J. Food Sci. Technol. 2019, 56, 2205–2212. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Shevkani, K.; Singh, N.; Singh, B. Physicochemical characterisation of corn extrudates prepared with varying levels of beetroot (Beta vulgaris) at different extrusion temperatures. Int. J. Food Sci. Technol. 2016, 51, 911–919. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Ma, C.; Wu, M.; Fan, Q.; Fu, Y.; Zhang, G.; Bian, X.; Zhang, N. Effects of Extrusion Technology on Physicochemical Properties and Microstructure of Rice Starch Added with Soy Protein Isolate and Whey Protein Isolate. Foods 2024, 13, 764. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, M.; Xing, B.; Liang, Y.; Zou, L.; Li, M.; Fan, X.; Ren, G.; Zhang, L.; Qin, P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll. 2023, 135, 108197. [Google Scholar] [CrossRef]
- Enríquez-Castroa, C.M.; Ramírez-Wonga, B.; Contreras-Jiménez, B.L.; Quintero-Ramos, A.; Figueroa-Cárdenas, J.D.; Vázquez-Laraf, F. Effect of extrusion on the crystallinity, viscosity, damage starch, and thermal properties of corn flour, masa, and tortilla. Appl. Food Res. 2022, 2, 100198. [Google Scholar] [CrossRef]
- Zamora, N.C. Effect of extrusion on the activity of anti-nutritional factors and in vitro digestibility of protein and starch in flours of Canavalia ensiformis. Arch. Latinoam. De Nutr. 2003, 53, 293–298. [Google Scholar]
- Arribas, C.; Cabellos, B.; Sánchez, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food Funct. 2017, 8, 3654–3663. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Rosell, C.M.; Steel, C.J. Effect of the addition of whole-grain wheat flour and of extrusion process parameters on dietary fibre content, starch transformation and mechanical properties of a ready-to-eat breakfast cereal. Int. J. Food Sci. Technol. 2015, 50, 1504–1514. [Google Scholar] [CrossRef]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Orkić, V.; Guberac, S.; Miličević, B. Food Industry By-Products as Raw Materials in the Production of Value-Added Corn Snack Products. Foods 2021, 10, 946. [Google Scholar] [CrossRef] [PubMed]
- Ačkar, Đ.; Jozinović, A.; Šubarić, D.; Babić, J.; Jokić, S.; Vračević, R. Influence of semolina moisture content on extrudate properties. Glas. Zaštite Bilja 2014, 37, 66–69. [Google Scholar]
- Platt-Lucero, L.C.; Ramírez-Wong, B.; Torres-Chávez, P.I.; López-Cervantes, J.; Sánchez-Machado, D.I.; Carvajal-Millán, E.; Morales-Rosas, I. Effect of xylanase on extruded nixtamalised corn flour and tortilla: Physicochemical and rheological characteristics. J. Food Process Eng. 2013, 36, 179–186. [Google Scholar] [CrossRef]
- Yu, L.; Ramaswamy, H.; Boye, J. Twin-screw Extrusion of corn flour and soy protein isolate (SPI) blends: A response surface analysis. Food Bioprocess Technol. 2012, 5, 485–497. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Bharadwaj, V.R.; Annapure, U.S.; Singhal, R.S. Effect of formulation and processing parameters on acrylamide formation: A case study on extrusion of blends of potato flour and semolina. LWT—Food Sci. Technol. 2011, 44, 1643–1648. [Google Scholar] [CrossRef]
- Kabir, J.A.; Azizi, M.H.; Abbastabarahangar, H.; Arabi, A. Effect of foxtail millet flour on physicochemical properties of refined wheat flour and dough rheological behavior. J. Food Sci. Technol. 2022, 19, 359–369. [Google Scholar]
- Coulibaly, A.; Kouakou, B.; Chen, J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Sci. Alert 2011, 1, 1–22. [Google Scholar] [CrossRef]
- Hejdysz, M.; Kaczmarek, S.A.; Bedford, M.R. The effect of different temperatures applied during extrusion on the nutritional value of faba bean and degradation of phytic P isomers. Anim. Feed Sci. Technol. 2022, 285, 115221. [Google Scholar] [CrossRef]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Ciołek, K.; Pruszynska-Oszmałek, E.; Stuper-Szablewska, K.; Rutkowski, A. The Effects of Protease Supplementation and Faba Bean Extrusion on Growth, Gastrointestinal Tract Physiology and Selected Blood Indices of Weaned Pigs. Animals 2022, 12, 563. [Google Scholar] [CrossRef]
- Augustin, M.A.; Cole, M.B. Towards a sustainable food system by design using faba bean protein as an example. Trends Food Sci. Technol. 2022, 125, 1–11. [Google Scholar] [CrossRef]
- Widderich, N.; Mayer, N.; Ruff, A.J.; Reckels, B.; Lohkamp, F.; Visscher, C.; Schwaneberg, U.; Kaltschmitt, M.; Liese, A.; Bubenheim, P. Conditioning of Feed Material Prior to Feeding: Approaches for a Sustainable Phosphorus Utilization. Sustainability 2022, 14, 3998. [Google Scholar] [CrossRef]
- Burk, R.F.; Norsworthy, B.K.; Hill, K.E.; Motley, A.K.; Byrne, D.W. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomark. Preview 2006, 15, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Leary, P.D.; Gregoire, B.R.; Finley, J.W.; Lindlauf, J.E.; Johnson, L.K. Selenium bioavailability from buckwheat bran in rats fed a modified AIN-93G torula yeast-based diet. J. Nutr. 2005, 135, 2627–2633. [Google Scholar] [CrossRef]
- Todd, S.E. Metabolism of Selenium in Cats and Dogs. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2006. [Google Scholar]
- Reeves, P.G.; Gregoire, B.R.; Garvin, D.F.; Hareland, G.A.; Lindlauf, J.E.; Johnson, L.K.; Finley, J.W. Determination of selenium bioavailability from wheat mill fractions in rats by using the slope-ratio assay and a modified Torula yeastbased diet. J. Agric. Food Chem. 2007, 55, 516–522. [Google Scholar] [CrossRef]
- Tangjaidee, P.; Xiang, J.; Yin, H.; Wen, X.; Quek, S.Y. Selenium, fibre, and protein enrichment of rice product: Extrusion variables and product properties. Food Qual. Saf. 2019, 3, 40–51. [Google Scholar] [CrossRef]
- Li, L.; Jiang, H.X.; Campbell, M.; Blanco, M.; Jane, J. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydr. Polym. 2008, 3, 396–404. [Google Scholar] [CrossRef]
Sample | Non-Extruded Zn Samples | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 45.25 ± 20.01 a | 496.50 ± 21.92 d | 92.00 ± 0.00 a | 23.50 ± 6.36 a | 499.00 ± 18.38 d | 925.50 ± 12.02 b | 878.50 ± 17.65 c |
Corn:Wheat Zn 90:10 | 35.40 ± 3.25 a | 453.50 ± 7.78 c | 91.30 ± 0.71 a | 21.50 ± 9.19 a | 449.50 ± 3.54 c | 901.50 ± 10.61 b | 898.00 ± 0.00 c,d |
Corn:Wheat Zn 80:20 | 60.25 ± 33.30 a | 503.50 ± 0.71 d | 92.15 ± 0.21 a | 81.50 ± 2.12 b | 500.50 ± 6.36 d | 937.50 ± 27.58 b | 932.00 ± 14.14 d |
Corn:Wheat Zn 70:30 | 65.25 ± 39.67 a | 295.50 ± 17.68 a | 92.20 ± 0.42 a | 25.50 ± 36.06 a | 301.00 ± 15.56 a | 753.50 ± 10.61 a | 706.50 ± 12.02 a |
Corn:Wheat Zn 60:40 | 34.25 ± 0.78 a | 344.50 ± 12.02 b | 91.85 ± 0.35 a | 581.00 ± 4.24 a,b | 336.50 ± 12.02 b | 775.00 ± 9.90 a | 807.00 ± 19.80 b |
Sample | Non-Extruded Se Samples | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 45.25 ± 20.01 a | 496.50 ± 21.92 c | 92.00 ± 0.00 a,b | 23.50 ± 6.36 a | 499.00 ± 18.38 c | 925.50 ± 12.02 b,c | 878.50 ± 17.65 b |
Corn:Wheat Se 90:10 | 48.85 ± 8.27 a | 481.00 ± 24.04 c | 92.30 ± 0.14 b | 37.00 ± 1.41 a | 483.00 ± 22.63 c | 998.00 ± 31.11 c | 956.5 ± 34.65 c |
Corn:Wheat Se 80:20 | 61.40 ± 36.06 a | 392.00 ± 42.43 b | 91.50 ± 0.28 a | 33.50 ± 27.58 a | 284.50 ± 33.23 b | 902.00 ± 33.94 b | 863.5 ± 28.99 b |
Corn:Wheat Se 70:30 | 34.05 ± 1.20 a | 328.00 ± 12.73 a,b | 92.25 ± 0.49 b | 50.50 ± 2.12 a | 326.50 ± 13.44 a | 783.00 ± 57.98 a | 767.00 ± 21.21 a |
Corn:Wheat Se 60:40 | 75.55 ± 22.13 a | 283.50 ± 16.26 a | 92.60 ± 0.00 b | 34.50 ± 14.85 a | 287.00 ± 14.14 a | 701.50 ± 23.33 a | 712.00 ± 8.49 a |
Sample | Extruded Zn170 °C | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 30.65 ± 0.07 a | 132.00 ± 4.24 c | 52.65 ± 0.92 c | 57.00 ± 1.41 b | 46.00 ± 4.24 b | 170.50 ± 28.99 c | 178.00 ± 28.28 c |
Corn:Wheat Zn 90:10 170 °C | 33.10 ± 2.40 a | 89.00 ± 15.56 b | 48.80 ± 0.42 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 107.00 ± 2.83 b | 111.00 ± 2.83 b |
Corn:Wheat Zn 80:20 170 °C | 49.70 ± 0.00 a,b | 196.00 ± 1.41 d | 93.30 ± 0.00 d | 183.50 ± 0.71 c | 182.00 ± 0.00 c | 348.00 ± 2.83 d | 349.00 ± 4.24 d |
Corn:Wheat Zn 70:30 170 °C | 34.75 ± 0.07 a | 64.50 ± 4.95 a,b | 46.15 ± 0.78 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 57.00 ± 1.41 a | 61.00 ± 2.83 a |
Corn:Wheat Zn 60:40 170 °C | 56.65 ± 18.03 b | 57.50 ± 17.68 a | 92.75 ± 0.35 d | 52.00 ± 15.56 b | 50.50 ± 19.09 b | 186.50 ± 26.16 c | 180.50 ± 21.92 c |
Sample | Extruded Zn180 °C | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 31.40 ± 0.71 a | 123.00 ± 12.73 b | 49.15 ± 6.86 a | 25.00 ± 8.49 b | 11.50 ± 7.78 b | 133.00 ± 31.11 b | 138.00 ± 33.84 b |
Corn:Wheat Zn 90:10 180 °C | 32.55 ± 2.19 a | 106.50 ± 21.92 b | 49.10 ± 2.69 a | 30.00 ± 11.31 b | 15.50 ± 12.02 b | 139.50 ± 13.44 b | 146.50 ± 10.61 b |
Corn:Wheat Zn 80:20 180 °C | 31.35 ± 0.78 a | 111.00 ± 5.66 b | 44.45 ± 3.75 a | 22.00 ± 8.49 a,b | 10.00 ± 8.49 a,b | 99.00 ± 7.07 a,b | 105.50 ± 6.36 a,b |
Corn:Wheat Zn 70:30 180 °C | 38.00 ± 0.85 b | 39.00 ± 15.56 a | 44.45 ± 0.07 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 75.00 ± 15.56 a | 78.00 ± 18.38 a |
Corn:Wheat Zn 60:40 180 °C | 32.60 ± 0.28 a | 101.50 ± 14.85 b | 55.10 ± 6.93 a | 35.00 ± 9.90 b | 31.00 ± 4.24 b | 131.50 ± 2.12 b | 134.00 ± 5.66 b |
Sample | Extruded Zn 190 °C | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 30.75 ± 0.07 a | 70.50 ± 2.12 a,b | 42.65 ± 2.76 a | 4.00 ± 5.66 a,b | 8.00 ± 11.31 a | 140.50 ± 14.85 b,c | 146.00 ± 12.73 b,c |
Corn:Wheat Zn 90:10 190 °C | 31.00 ± 0.28 a | 139.50 ± 45.69 c | 40.45 ± 1.48 a | 50.50 ± 10.61 c | 33.00 ± 4.24 b | 151.00 ± 9.90 c | 155.50 ± 7.78 c |
Corn:Wheat Zn 80:20 190 °C | 31.20 ± 0.00 a | 116.50 ± 6.36 b, c | 45.35 ± 9.26 a | 25.00 ± 4.24 b | 11.50 ± 9.19 a | 108.50 ± 0.71 b,c | 110.00 ± 2.83 a,b,c |
Corn:Wheat Zn 70:30 190 °C | 35.15 ± 6.43 a | 6.00 ± 7.07 a | 40.75 ± 1.48 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 60.00 ± 19.80 a | 62.00 ± 26.87 a |
Corn:Wheat Zn 60:40 190 °C | 36.75 ± 6.86 a | 59.00 ± 28.28 a,b | 47.80 ± 1.84 a | 10.50 ± 14.85 a,b | 45.00 ± 6.36 a | 101.50 ± 27.58 a,b | 102.00 ± 31.11 a,b |
Sample | Extruded Se170 °C | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 30.65 ± 0.07 a | 132.00 ± 4.24 b | 52.65 ± 0.92 b | 57.00 ± 1.41 b | 46.00 ± 4.24 b | 170.50 ± 28.99 b | 178.00 ± 28.28 b |
Corn:Wheat Se 90:10 170 °C | 33.40 ± 0.00 a | 97.50 ± 4.95 b | 49.75 ± 2.47 a,b | 19.00 ± 1.41 a | 3.00 ± 0.00 a | 146.00 ± 2.83 b | 145.50 ± 0.71 b |
Corn:Wheat Se 80:20 170 °C | 31.65 ± 1.48 a | 122.00 ± 26.87 b | 50.85 ± 0.92 a,b | 50.50 ± 21.92 b | 35.00 ± 22.63 b | 164.50 ± 23.33 b | 171.00 ± 21.21 b |
Corn:Wheat Se 70:30 170 °C | 37.50 ± 0.28 b | 47.50 ± 10.61 a | 46.60 ± 1.98 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 77.50 ± 0.71 a | 85.00 ± 0.00 a |
Corn:Wheat Se 60:40 170 °C | 40.45 ± 3.18 b | 41.50 ± 3.54 a | 50.30 ± 2.12 a,b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 90.00 ± 4.24 a | 92.00 ± 1.41 a |
Sample | Extruded Se180 °C | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 31.40 ± 0.71 a | 123.00 ± 12.73 b | 49.15 ± 6.86 a | 25.00 ± 8.49 b | 11.50 ± 7.78 b | 133.00 ± 31.11 c | 138.00 ± 33.84 c |
Corn:Wheat Se 90:10 180 °C | 31.35 ± 0.07 a | 107.00 ± 2.73 b,c | 44.55 ± 2.90 a | 5.00 ± 7.07 a | 0.00 ± 0.00 a | 87.50 ± 9.19 a,b,c | 94.00 ± 9.90 b,c |
Corn:Wheat Se 80:20 180 °C | 35.00 ± 5.80 a | 63.50 ± 28.99 b | 39.45 ± 1.20 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 63.00 ± 16.97 a,b | 70.00 ± 16.97 a,b |
Corn:Wheat Se 70:30 180 °C | 32.70 ± 2.12 a | 81.50 ± 13.44 b,c | 46.10 ± 0.00 a | 8.00 ± 11.31 a,b | 1.50 ± 2.12 a | 109.00 ± 12.73 b,c | 120.00 ± 7.07 b,c |
Corn:Wheat Se 60:40 180 °C | 34.75 ± 6.29 a | 13.00 ± 18.38 a | 36.30 ± 8.63 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 33.50 ± 28.99 a | 35.50 ± 27.58 a |
Sample | Extruded Se190 °C | ||||||
Peak (BU) | Viscosity at 92 °C (BU) | Hot Viscosity (BU) | Cold Viscosity (BU) | Viscosity after Mixing at 50 °C (BU) | Breakdown (BU) | “Setback” (BU) | |
Corn grits | 30.75 ± 0.07 a | 70.50 ± 2.12 a,b | 42.65 ± 2.76 a | 4.00 ± 5.66 a,b | 8.00 ± 11.31 a | 140.50 ± 14.85 b,c | 146.00 ± 12.73 b,c |
Corn:Wheat Se 90:10 190 °C | 31.00 ± 0.28 a | 139.50 ± 45.69 c | 40.45 ± 1.48 a | 50.50 ± 10.61 c | 33.00 ± 4.24 b | 151.00 ± 9.90 c | 155.50 ± 7.78 c |
Corn:Wheat Se 80:20 190 °C | 31.20 ± 0.00 a | 116.50 ± 6.36 b | 45.35 ± 9.26 a | 25.00 ± 4.24 b | 11.50 ± 9.19 a | 108.50 ± 0.71 b,c | 110.00 ± 2.83 a,b,c |
Corn:Wheat Se 70:30 190 °C | 35.15 ± 6.43 a | 6.00 ± 7.07 a | 40.75 ± 1.48 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 60.00 ± 19.80 a | 62.00 ± 26.87 a |
Corn:Wheat Se 60:40 190 °C | 36.75 ± 6.86 a | 59.00 ± 28.28 a,b | 47.8 ± 1.84 a | 10.50 ± 14.85 a,b | 45.00 ± 6.36 a | 101.50 ± 27.58 a,b | 102.00 ± 31.11 a,b |
Sample | Starch Content (% d.m.) | |||
---|---|---|---|---|
Non-Extruded | Extruded | |||
170 °C | 180 °C | 190 °C | ||
Corn grits | 72.95 ± 0.32 d | 74.29 ± 0.31 d | 74.30 ± 0.08 e | 74.80 ± 0.07 e |
Corn: Wheat Zn 90:10 | 70.70 ± 0.53 c | 72.70 ± 0.68 c | 72.95 ± 0.06 d | 72.74 ± 0.07 d |
Corn: Wheat Zn 80:20 | 69.66 ± 0.04 b | 71.50 ± 0.02 b | 71.65 ± 0.19 c | 70.95± 0.58 c |
Corn: Wheat Zn 70:30 | 65.43 ± 0.08 a | 70.90 ± 0.02 b | 70.70 ± 0.34 b | 69.52 ± 0.03 b |
Corn: Wheat Zn 60:40 | 65.74 ± 0.21 a | 67.29 ± 0.33 a | 67.48 ± 0.06 a | 67.27 ± 0.08 a |
Corn: Wheat Se 90:10 | 72.93 ± 0.52 d | 73.68 ± 0.16 d | 73.66 ± 0.26 d | 73.98 ± 0.01 d |
Corn: Wheat Se 80:20 | 71.25 ± 0.28 c | 72.86 ± 0.45 c | 71.15 ± 0.25 c | 71.62 ± 0.08 c |
C.grits: Wheat Se 70:30 | 68.71 ± 0.44 b | 71.14 ± 0.33 b | 69.81 ± 0.11 b | 70.43 ± 0.17 b |
Corn: Wheat Se 60:40 | 67.44 ± 0.01 a | 68.32 ± 0.94 a | 67.85 ± 0.32 a | 68.68 ± 0.01 a |
Sample |
Total Content of Zn [mg/kg] |
Bioavailable Content of Zn [mg/kg] |
---|---|---|
Non-Extruded | ||
Corn grits | 3.07 ± 0.18 a | 1.34 ± 0.72 a |
Corn: Wheat Zn 90:10 | 7.03 ± 0.27 b | 2.43 ± 0.90 a,b |
Corn: Wheat Zn 80:20 | 13.60 ± 0.99 c | 2.26 ± 0.22 a,b |
Corn: Wheat Zn 70:30 | 14.93 ± 0.38 c | 3.36 ± 0.83 b,c |
Corn: Wheat Zn 60:40 | 21.01 ± 2.26 d | 4.02 ± 0.38 c |
Extruded 170 °C | ||
Corn grits | 3.36 ± 0.12 a | 1.11 ± 0.24 a |
Corn: Wheat Zn 90:10 | 9.05 ± 0.29 b | 1.77 ± 0.18 a |
Corn: Wheat Zn 80:20 | 15.15 ± 0.06 c | 1.92 ± 0.58 a |
Corn: Wheat Zn 70:30 | 20.40 ± 0.30 d | 1.40 ± 0.41 a |
Corn: Wheat Zn 60:40 | 22.43 ± 0.29 e | 1.37 ± 0.82 a |
Extruded 180 °C | ||
Corn grits | 3.45 ± 0.12 a | 1.28 ± 0.27 a |
Corn: Wheat Zn 90:10 | 7.59 ± 0.47 b | 1.43 ± 0.98 a |
Corn: Wheat Zn 80:20 | 12.97 ± 0.57 c | 1.91 ± 0.49 a |
Corn: Wheat Zn 70:30 | 18.05 ± 0.27 d | 1.40 ± 0.33 a |
Corn: Wheat Zn 60:40 | 22.24 ± 1.18 e | 1.69 ± 0.29 a |
Extruded 190 °C | ||
Corn grits | 3.51 ± 0.09 a | 1.43 ± 0.30 a,b |
Corn: Wheat Zn 90:10 | 8.61 ± 0.37 b | 2.08 ± 0.46 b |
Corn: Wheat Zn 80:20 | 15.04 ± 0.77 c | 1.72 ± 0.24 a,b |
Corn: Wheat Zn 70:30 | 18.49 ± 0.22 d | 1.70 ± 0.36 a,b |
Corn: Wheat Zn 60:40 | 23.01 ± 0.37 e | 1.40 ± 0.27 a |
Sample |
Total Content of Se [mg/kg] |
Bioavailable Content of Se [mg/kg] |
---|---|---|
Non-Extruded | ||
Corn grits | 21.89 ± 0.00 a | 0.04 ± 0.01 a |
Corn: Wheat Se 90:10 | 84.74 ± 0.00 b | 0.27 ± 0.14 b |
Corn: Wheat Se 80:20 | 111.86 ± 0.01 c | 0.27 ± 0.17 b |
Corn: Wheat Se 70:30 | 192.01 ± 0.01 d | 0.23 ± 0.13 a,b |
Corn: Wheat Se 60:40 | 254.59 ± 0.02 e | 0.25 ± 0.12 a,b |
Extruded 170 °C | ||
Corn grits | 30.55 ± 0.01 a | 0.55 ± 0.12 a |
Corn: Wheat Se 90:10 | 92.81 ± 0.00 b | 0.37 ± 0.27 a |
Corn: Wheat Se 80:20 | 160.51 ± 0.01 c | 0.41 ± 0.12 a |
Corn: Wheat Se 70:30 | 222.27 ± 0.01 d | 0.51 ± 0.10 a |
Corn: Wheat Se 60:40 | 304.48 ± 0.03 e | 0.53 ± 0.07 a |
Extruded 180 °C | ||
Corn grits | 28.00 ± 0.00 a | 0.54 ± 0.15 a |
Corn: Wheat Se 90:10 | 86.08 ± 0.00 b | 0.37 ± 0.25 a |
Corn: Wheat Se 80:20 | 131.46 ± 0.01 c | 0.41 ± 0.14 a |
Corn: Wheat Se 70:30 | 180.41 ± 0.01 d | 0.50 ± 0.10 a |
Corn: Wheat Se 60:40 | 267.08 ± 0.01 e | 0.51 ± 0.12 a |
Extruded 190 °C | ||
Corn grits | 22.90 ± 0.00 a | 0.55 ± 0.06 a |
Corn: Wheat Se 90:10 | 96.33 ± 0.01 b | 0.29 ± 0.20 a |
Corn: Wheat Se 80:20 | 140.69 ± 0.04 c | 0.39 ± 0.15 a |
Corn: Wheat Se 70:30 | 211.69 ± 0.01 d | 0.53 ± 0.13 a |
Corn: Wheat Se 60:40 | 289.37 ± 0.02 e | 0.47 ± 0.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajić, N.; Babić, J.; Jozinović, A.; Lončarić, Z.; Puljić, L.; Banožić, M.; Kovač, M.; Šoronja-Simović, D.; Nikolić, I.; Petrović, J. The Chemical and Rheological Properties of Corn Extrudates Enriched with Zn- and Se-Fortified Wheat Flour. Processes 2024, 12, 1945. https://doi.org/10.3390/pr12091945
Kajić N, Babić J, Jozinović A, Lončarić Z, Puljić L, Banožić M, Kovač M, Šoronja-Simović D, Nikolić I, Petrović J. The Chemical and Rheological Properties of Corn Extrudates Enriched with Zn- and Se-Fortified Wheat Flour. Processes. 2024; 12(9):1945. https://doi.org/10.3390/pr12091945
Chicago/Turabian StyleKajić, Nikolina, Jurislav Babić, Antun Jozinović, Zdenko Lončarić, Leona Puljić, Marija Banožić, Mario Kovač, Dragana Šoronja-Simović, Ivana Nikolić, and Jovana Petrović. 2024. "The Chemical and Rheological Properties of Corn Extrudates Enriched with Zn- and Se-Fortified Wheat Flour" Processes 12, no. 9: 1945. https://doi.org/10.3390/pr12091945
APA StyleKajić, N., Babić, J., Jozinović, A., Lončarić, Z., Puljić, L., Banožić, M., Kovač, M., Šoronja-Simović, D., Nikolić, I., & Petrović, J. (2024). The Chemical and Rheological Properties of Corn Extrudates Enriched with Zn- and Se-Fortified Wheat Flour. Processes, 12(9), 1945. https://doi.org/10.3390/pr12091945