Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem
Abstract
:1. Introduction
2. Preliminaries
2.1. The Ball–Plate Problem
2.2. Closed-Form Solutions
3. The Optimal Parametric Iteration Method
3.1. Preliminary
3.2. Semi-Analytical Solutions via OPIM Technique
4. Numerical versus OPIM Results
4.1. Case 1: ,
4.2. Case 2: ,
4.3. Case 3: ,
4.4. OPIM Solutions versus Iterative Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jurdjevic, V. The geometry of the plate-ball problem. Arch. Rational Mech. Anal. 1993, 124, 305–328. [Google Scholar] [CrossRef]
- Tudic, V.; Kralj, D.; Hoster, J.; Tropcic, T. Design and Implementation of a Ball–plate Control System and Python Script for Educational Purposes in STEM Technologies. Sensors 2022, 22, 1875. [Google Scholar] [CrossRef] [PubMed]
- Mickens, R.E. Iteration procedure for determining approximate solutions to nonlinear oscillation equations. J. Sound Vib. 1987, 116, 185–188. [Google Scholar] [CrossRef]
- Mickens, R.E. A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”. J. Sound Vib. 2005, 287, 1045–1051. [Google Scholar] [CrossRef]
- Lim, C.W.; Wu, B.S. A modified procedure for certain non-linear oscillators. J. Sound Vib. 2002, 257, 202–206. [Google Scholar] [CrossRef]
- Hu, H. Solutions of a quadratic nonlinear oscillator: Iteration procedure. J. Sound Vib. 2006, 298, 1159–1165. [Google Scholar] [CrossRef]
- Chen, Y.M.; Liu, J.K. A modified Mickens iteration procedure for nonlinear oscillators. J. Sound Vib. 2008, 314, 465–473. [Google Scholar] [CrossRef]
- El-Amrania, M.; Salhi, L.; Seaid, M.; Yakoubi, D. An iterative scheme for solving acoupled Darcy–convection–diffusion model. J. Math. Anal. Appl. 2023, 517, 126603. [Google Scholar] [CrossRef]
- Li, J. Uniformly accurate nested Picard iterative schemes for nonlinear Schrödinger equation with highly oscillatory potential. Appl. Numer. Math. 2023, 192, 132–151. [Google Scholar] [CrossRef]
- Hernandez-Veron, M.A.; Romero, N. Solving Wiener–Hopf problems via an efficient iterative scheme. J. Comput. Appl. Math. 2022, 405, 113083. [Google Scholar] [CrossRef]
- Hernandez–Veron, M.A.; Martinez, E. Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials. J. Comput. Appl. Math. 2022, 404, 113391. [Google Scholar] [CrossRef]
- Sharma, P.; Ramos, H.; Behl, R.; Kanwar, V. A new three-step fixed point iteration scheme with strong convergence and applications. J. Comput. Appl. Math. 2023, 430, 115242. [Google Scholar] [CrossRef]
- Liu, C.-S.; El-Zahar, E.R.; Chang, C.-W. Three novel fifth-order iterative schemes for solving nonlinear equations. Math. Comput. Simul. 2021, 187, 282–293. [Google Scholar] [CrossRef]
- Cordero, A.; Garrido, N.; Torregrosa, J.R.; Triguero-Navarro, P. An iterative scheme to obtain multiple solutions simultaneously. Appl. Math. Lett. 2023, 145, 108738. [Google Scholar] [CrossRef]
- Kapoor, M.; Khosla, S. Series Solution to Fractional Telegraph Equations Using an Iterative Scheme Based on Yang Transform. Differ. Equ. Dyn. Syst. 2024, 1–27. [Google Scholar] [CrossRef]
- Ghosh, B.; Mohapatra, J. An Iterative Scheme for Solving Arbitrary-Order Nonlinear Volterra Integro-Differential Equations Involving Delay. Iran. J. Sci. 2023, 47, 851–861. [Google Scholar] [CrossRef]
- Botchev, M.A.; Zhukov, V.T. Adaptive Iterative Explicit Time Integration for Nonlinear Heat Conduction Problems. Lobachevskii J. Math. 2024, 45, 12–20. [Google Scholar] [CrossRef]
- Mastryukov, A.F. A Difference Scheme for Wave Equation. Numer. Anal. Appl. 2024, 17, 58–66. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation. Processes 2018, 6, 130. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N. Nonlinear Dynamical Systems in Engineering; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Herisanu, N.; Marinca, V. Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method. Comput. Math. Appl. 2010, 60, 1607–1615. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N. The Optimal Homotopy Asymptotic Method—Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Marinca, V.; Herisanu, N. An application of the optimal homotopy asymptotic method to Blasius problem. Rom. J. Tech. Sci. Appl. Mech. 2015, 60, 206–215. [Google Scholar]
- Marinca, V.; Herisanu, N. Nonlinear dynamic analysis of an electrical machine rotor-bearing system by the optimal homotopy perturbation method. Comp. Math. Appl. 2011, 61, 2019–2024. [Google Scholar] [CrossRef]
- Marinca, V.; Ene, R.D.; Marinca, B. Optimal Homotopy Perturbation Method for nonlinear problems with applications. Appl. Comp. Math. 2022, 21, 123–136. [Google Scholar]
- Ene, R.D.; Pop, N. Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method. Mathematics 2023, 11, 3078. [Google Scholar] [CrossRef]
- Ene, R.D.; Pop, N. Approximate Closed-Form Solutions for a Class of Dynamical Systems involving a Hamilton–Poisson Part. Mathematics 2023, 11, 4811. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. Symmetries and properties of the Energy-Casimr mapping in the ball–plate problem. Adv. Math. Phys. 2017, 2017, 5164602. [Google Scholar] [CrossRef]
- Ene, R.D.; Pop, N. Semi-Analytical Closed-Form Solutions for Dynamical Rössler-Type System. Mathematics 2024, 12, 1308. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
t | ||||
---|---|---|---|---|
0 | 1.2351 | 1.8091 | 1.8596 | 6.9194 |
2/3 | 2.6619 | 4.2138 | 8.1428 | 2.9801 |
4/3 | 2.8862 | 6.4069 | 7.3662 | 2.5618 |
2 | 2.2258 | 3.5944 | 5.6622 | 2.1801 |
8/3 | 1.1788 | 2.2812 | 7.1642 | 2.5417 |
10/3 | 4.5917 | 3.9901 | 1.2899 | 8.9212 |
4 | 1.3316 | 4.0220 | 4.1812 | 3.3067 |
14/3 | 4.6334 | 5.0262 | 7.2531 | 5.6205 |
16/3 | 7.0563 | 6.0077 | 8.5102 | 2.1541 |
6 | 2.3220 | 5.8303 | 5.7180 | 2.8296 |
20/3 | 5.3760 | 1.0743 | 3.0893 | 2.9507 |
22/3 | 1.9927 | 9.4022 | 1.3341 | 1.7534 |
8 | 6.2533 | 7.1701 | 4.5568 | 1.3869 |
26/3 | 1.4354 | 5.8598 | 4.7210 | 1.9169 |
28/3 | 3.9143 | 5.9701 | 5.4250 | 2.9030 |
10 | 6.2781 | 3.4265 | 2.4479 | 1.1170 |
t | |||
---|---|---|---|
0 | 0.2893504211 | 0.2893504211 | 1.8596 |
2/3 | 0.1032910999 | 0.1032911813 | 8.1428 |
4/3 | 0.1011201382 | 0.1011200645 | 7.3662 |
2 | 0.2831897278 | 0.2831896712 | 5.6622 |
8/3 | 0.6273137782 | 0.6273138498 | 7.1642 |
10/3 | 1.0843038063 | 1.0843039353 | 1.2899 |
4 | 1.4174758199 | 1.4174758617 | 4.1812 |
14/3 | 1.2690283219 | 1.2690282493 | 7.2531 |
16/3 | 0.8179409154 | 0.8179408303 | 8.5102 |
6 | 0.4137082021 | 0.4137081449 | 5.7180 |
20/3 | 0.1584184708 | 0.1584184399 | 3.0893 |
22/3 | 0.0789735113 | 0.0789735246 | 1.3341 |
8 | 0.1875346655 | 0.1875347111 | 4.5568 |
26/3 | 0.4682902423 | 0.4682902896 | 4.7210 |
28/3 | 0.8912895213 | 0.8912895158 | 5.4250 |
10 | 1.3240366947 | 1.3240366703 | 2.4479 |
t | |||
---|---|---|---|
0 | 0.3401219466 | 0.3401219466 | 1.4332 |
1 | 0.4736249701 | 0.4736249707 | 5.6057 |
2 | 0.4663420042 | 0.4663420037 | 5.3576 |
3 | 0.3295734711 | 0.3295734711 | 1.6075 |
4 | 0.2607145843 | 0.2607145843 | 2.0405 |
5 | 0.3489310602 | 0.3489310601 | 7.3811 |
6 | 0.4788049550 | 0.4788049552 | 2.4489 |
7 | 0.4598070583 | 0.4598070584 | 1.1693 |
8 | 0.3213952917 | 0.3213952916 | 7.2704 |
9 | 0.2618232075 | 0.2618232075 | 1.9846 |
10 | 0.3579406175 | 0.3579406174 | 9.9838 |
t | |||
---|---|---|---|
0 | 1.2120256565 | 1.2120256564 | 2.8498 |
1 | 1.6123394336 | 1.6123394313 | 2.3431 |
2 | 2.1997295278 | 2.1997295281 | 2.3885 |
3 | 2.7369569941 | 2.7369569938 | 3.4806 |
4 | 3.0163903678 | 3.0163903678 | 2.8598 |
5 | 2.9493294559 | 2.9493294579 | 2.0125 |
6 | 2.5553295952 | 2.5553295977 | 2.5374 |
7 | 1.9697421940 | 1.9697421948 | 7.7861 |
8 | 1.4287007553 | 1.4287007563 | 9.8604 |
9 | 1.1420051499 | 1.1420051443 | 5.5923 |
10 | 1.2010666437 | 1.2010666513 | 7.6534 |
t | |||
---|---|---|---|
0 | 0.4636476090 | 0.4636476077 | 1.2868 |
9/5 | 0.8460278121 | 0.8460287376 | 9.2546 |
18/5 | 0.9723999843 | 0.9724014226 | 1.4383 |
27/5 | 1.0173122060 | 1.0173114776 | 7.2840 |
36/5 | 1.0438455818 | 1.0438430202 | 2.5615 |
9 | 1.0893262516 | 1.0893231020 | 3.1496 |
54/5 | 1.2176298207 | 1.2176255150 | 4.3056 |
63/5 | 1.6058674831 | 1.6058603571 | 7.1260 |
72/5 | 2.7109554512 | 2.7109452066 | 1.0244 |
81/5 | 4.8014656171 | 4.8014740981 | 8.4809 |
18 | 6.3883807767 | 6.3883687842 | 1.1992 |
t | |||
---|---|---|---|
0 | 0.45 | 0.45 | 0.45 |
0.35 | 0.5605299381 | 0.5605299043 | 0.5605299603 |
0.7 | 0.6019399952 | 0.6019399315 | 0.6019389881 |
1.05 | 0.6097536372 | 0.6097534668 | 0.6097448748 |
1.4 | 0.5961041764 | 0.5961041112 | 0.5960756769 |
1.75 | 0.5416320669 | 0.5416320764 | 0.5416749615 |
2.1 | 0.4088241222 | 0.4088245497 | 0.4101268423 |
2.45 | 0.1751981381 | 0.1751989192 | 0.1832389471 |
2.8 | −0.1336579636 | −0.1336581146 | −0.1101295639 |
3.15 | −0.4483418224 | −0.4483418574 | −0.4177692516 |
3.5 | −0.6986536891 | −0.6986538977 | −0.6351428426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, R.-D.; Pop, N. Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem. Processes 2024, 12, 1977. https://doi.org/10.3390/pr12091977
Ene R-D, Pop N. Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem. Processes. 2024; 12(9):1977. https://doi.org/10.3390/pr12091977
Chicago/Turabian StyleEne, Remus-Daniel, and Nicolina Pop. 2024. "Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem" Processes 12, no. 9: 1977. https://doi.org/10.3390/pr12091977
APA StyleEne, R. -D., & Pop, N. (2024). Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem. Processes, 12(9), 1977. https://doi.org/10.3390/pr12091977