An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection
Abstract
:1. Introduction
2. Yolov8 Network Model
3. Selection of Data Sets
4. Yolov8 Improvements
4.1. Feature Fusion
4.2. Attention Mechanism
4.3. Improvement of Loss Function
5. Analysis of Results
5.1. Experimental Environment and Configuration
5.2. Evaluation Indicators
5.3. Comparative Experiment
5.4. Ablation Experiment
5.5. Result Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, M. Analysis of fire safety management issues and countermeasures in logistics warehouses. China Storage Transp. 2023, 128–129. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, S.; Wang, Y.; Chen, H.; Zhang, X.; Zhao, H. Fire Detection Algorithm Based on an Improved Strategy of YOLOv5 and Flame Threshold Segmentation. Comput. Mater. Contin. 2023, 75, 5639–5657. [Google Scholar]
- Xie, X.; Chen, K.; Guo, Y.; Tan, B.; Chen, L.; Huang, M. A Flame-Detection Algorithm Using the Improved YOLOv5. Fire 2023, 6, 313. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.; Yan, X.; Wu, H.; Li, K. Optimized Mixture Kernels Independent Component Analysis and Echo State Network for Flame Image Recognition. J. Electr. Eng. Technol. 2022, 17, 3553–3564. [Google Scholar]
- Pan, X.; Jia, N.; Mu, Y.; Gao, X. Review of small target detection research. Chin. J. Image Graph. 2023, 28, 2587–2615. [Google Scholar]
- Hu, Y.; Xia, Y. In-memory computing deployment optimization algorithm based on deep reinforcement learning. Comput. Appl. Res. 2023, 40, 2616–2620. [Google Scholar]
- Liu, Z.; Xu, H.; Zhu, X.; Li, C.; Wang, Z.; Cao, Y.; Dai, K. Bi-YOLO: An improved lightweight target detection algorithm based on YOLOv8. Comput. Eng. Sci. 2024, 46, 1444–1454. [Google Scholar]
- Zhou, D.; Hu, J.; Zhang, L.; Duan, F. Collaborative correction technology for missing data set labels for target detection. Comput. Eng. Appl. 2024, 60, 267–273. [Google Scholar]
- Wang, C.; Yang, S.; Zhou, L.; Hua, B.; Wang, S.; Lyu, J. Research on metal gear end face defect detection method based on adaptive multi-scale feature fusion network. J. Electron. Meas. Instrum. 2023, 37, 153–163. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. arXiv 2016, arXiv:1612.03144. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. arXiv 2019, arXiv:1911.09070. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507. [Google Scholar]
- Ouyang, D.; He, S. Efficient Multi-Scale Attention Module with Cross-Spatial Learning. arXiv 2023, arXiv:2305.13563. [Google Scholar]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. arXiv 2020, arXiv:2005.03572. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. arXiv 2019, arXiv:1911.08287. [Google Scholar] [CrossRef]
- Wang, Y.; Morariu, V.L.; Davis, L.S. Learning a Discriminative Filter Bank within a CNN for Fine-grained Recognition. arXiv 2016, arXiv:1611.09932. [Google Scholar]
- Shen, Z.; Lin, H.; Xiang’e, S.; Meihua, L. Infrared ship detection based on attention mechanism and multi-scale fusion. Prog. Lasers Optoelectron. 2023, 60, 256–262. [Google Scholar]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A Normalized Gaussian Wasserstein Distance for Tiny Object Detection. arXiv 2022, arXiv:2110.13389. [Google Scholar]
- Xu, X.; Gao, C. Improved lightweight infrared vehicle target detection algorithm of YOLOv7-tiny. Comput. Eng. Appl. 2024, 60, 74–83. [Google Scholar]
- Du, C.; Wang, X.; Dong, Z.; Wang, Y.; Jiang, Z. Improved YOLOv5s underground garage flame smoke detection method. Comput. Eng. Appl. 2023, 57, 784–794. [Google Scholar]
- Zhao, L.; Jiao, L.; Zhai, R.; Li, B.; Xu, M. Lightweight detection algorithm for bottle cap packaging defects based on YOLOv5. Prog. Laser Optoelectron. 2023, 60, 139–148. [Google Scholar]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. arXiv 2016, arXiv:1608.01471. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jiang, Z.; Zhao, L.; Li, S.; Jia, Y. Real-time object detection method based on improved YOLOv4-tiny. arXiv 2020, arXiv:2011.04244. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
Feature Fusion Module | mAP0.5/% | Single-Sheet Detection Time/ms | Weight Size/MB |
---|---|---|---|
FPN module | 89.5 | 14.8 | 6.2 |
BiFPN module | 90.4 | 15.0 | 4.2 |
Attention Mechanism | mAP0.5/% | Single-Sheet Detection Time/ms | Weight Size/MB |
---|---|---|---|
CBAM | 89.5 | 14.8 | 6.2 |
SENET | 89.1 | 15.3 | 6.2 |
EMA | 90.2 | 13.2 | 6.3 |
Method | Feature Fusion | Attention Mechanism | Loss Function | mAP0.5/% | Single-Frame Detection Time/ms | Model Size/MB |
---|---|---|---|---|---|---|
Yolov8n | 89.5 | 14.8 | 6.2 | |||
Improvement 1 | √ | 90.4 | 15.0 | 4.2 | ||
Improvement 2 | √ | 90.2 | 13.2 | 6.3 | ||
Improvement 3 | √ | 91.2 | 15.7 | 7.2 | ||
Improvement 4 | √ | √ | 90.8 | 13.5 | 4.5 | |
Improvement 5 | √ | √ | 91.3 | 13.7 | 7.0 | |
Improvement 6 | √ | √ | 91.2 | 15.1 | 4.4 | |
Improvement 7 | √ | √ | √ | 92.2 | 14.0 | 4.8 |
Neural Networks | mAP0.5/% | FPS/(frame/s) | Model Size/MB |
---|---|---|---|
YOLOv3-tiny | 70.5 | 91 | 8.2 |
YOLOv4-tiny | 72.3 | 107 | 10.6 |
YOLOv5s | 84.3 | 89 | 5.7 |
YOLOv7-tiny | 85.6 | 83 | 6.8 |
YOLOv8n | 89.5 | 67 | 6.2 |
Our | 92.2 | 71 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Li, Q.; Guan, Z.; Zhang, H.; Liu, Y. An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection. Processes 2024, 12, 1978. https://doi.org/10.3390/pr12091978
Du H, Li Q, Guan Z, Zhang H, Liu Y. An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection. Processes. 2024; 12(9):1978. https://doi.org/10.3390/pr12091978
Chicago/Turabian StyleDu, Hubin, Qiuyu Li, Ziqian Guan, Hengyuan Zhang, and Yongtao Liu. 2024. "An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection" Processes 12, no. 9: 1978. https://doi.org/10.3390/pr12091978
APA StyleDu, H., Li, Q., Guan, Z., Zhang, H., & Liu, Y. (2024). An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection. Processes, 12(9), 1978. https://doi.org/10.3390/pr12091978