A Fast Calculation Method for Economic Dispatch of Electro-Thermal Coupling System Considering the Dynamic Process of Heat Transfer
Abstract
:1. Introduction
2. Two-Port Model of Heat Transfer in Pipes
2.1. Dynamic Model of Heat Transfer Based on Implicit Up-Wind Difference Scheme
2.2. Two-Port Model of Branch Heat Transfer Dynamics
2.3. The General Term Formula of Coefficient Matrix of Two-Port Model
2.4. Two-Port Model of Heat Transfer Dynamics in Heating Network Pipeline
3. Formulation of EDETCS
3.1. Objective Function
3.2. Constraints
4. Case Study
4.1. Double Pipe Heating System
4.2. District Heating Network (DHN)
4.3. EDETCS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paul, C.; Sarkar, T.; Dutta, S.; Hazra, S.; Roy, P.K. Optimal Power Flow of Multi-objective Combined Heat and Power with Wind-Solar-Electric Vehicle-Tidal Using Hybrid Evolutionary Approach. Process Integr. Optim. Sustain. 2024, 8, 1337–1367. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, M.; Li, P.; Jiao, M.; Yu, Y.; Li, M. Robust look-ahead dispatch of electricity-heat integrated energy system considering the flexibility recovery period of heating networks. High Volt. Eng. 2023, 49, 3173–3186. [Google Scholar]
- Zhang, Y.; Liu, W.; Pang, Q.; Li, Y.; An, N.; Li, F. Multi-timescale trading strategies for the participation of multi-energy demand response in the consumption of blocked new energy sources. Electr. Power Constr. 2023, 44, 1–11. [Google Scholar]
- Zhang, L.; Zheng, D.; Lu, T.; Chen, Q.; Ye, J.; Xiong, Z. Low-carbon economic dispatching in industrial park considering dynamic constraints of CHP units. Electr. Power Constr. 2022, 43, 122–130. [Google Scholar]
- Wang, D.; Zhi, Y.-Q.; Jia, H.-J.; Hou, K.; Zhang, S.-X.; Du, W.; Wang, X.-D.; Fan, M.-H. Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes. Appl. Energy 2019, 240, 341–358. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Z.; Zheng, J.H.; Wu, Q.H.; Zhang, H. Robust Scheduling of Integrated Electricity and Heating System Hedging Heating Network Uncertainties. IEEE Trans. Smart Grid 2019, 11, 1543–1555. [Google Scholar] [CrossRef]
- Chen, F.; Yan, X.; Shao, Z.; Li, Y.; Zheng, X.; Zhang, H. Review on Modeling and Energy Flow Calculation Methods for Integrated Energy Systems. High Volt. Eng. 2024, 50, 1376–1391. [Google Scholar]
- Huang, Y.J.; Sun, Q.Y.; Li, Y.S.; Gao, W.; Gao, D.W. A multi-rate dynamic energy flow analysis method for integrated electricity-gas-heat system with different time-scale. IEEE Trans. Power Deliv. 2023, 38, 231–243. [Google Scholar] [CrossRef]
- Zeng, A.; Wang, J.; Zou, Y.; Wan, Y.; Hao, S.; Yuan, Y. Multi-time-scale optimal scheduling of integrated energy system considering heat storage characteristics of heating network. High Volt. Eng. 2023, 49, 4192–4202. [Google Scholar]
- Tan, J.; Wu, Q.; Hu, Q.; Wei, W.; Liu, F. Multi-objective Optimization Dispatch for Integrated Electro-heating Systems Including Network Transmission Losses. Power Syst. Technol. 2020, 44, 141–154. [Google Scholar]
- Tan, J.; Wu, Q.; Hu, Q.; Wei, W.; Liu, F. Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty. Appl. Energy 2020, 260, 114230. [Google Scholar] [CrossRef]
- Wang, Y.; You, S.; Zhang, H.; Zheng, X.; Zheng, W.; Miao, Q.; Lu, G. Thermal transient prediction of district heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation. Appl. Energy 2017, 206, 900–910. [Google Scholar] [CrossRef]
- Benonysson, A. Dynamic Modelling and Operational Optimization of District Heating Systems. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 1991. [Google Scholar]
- Benonysson, A.; Bohm, B.; Ravn, H.F. Operational optimization in a district-heating system. Energy Convers. Manag. 1995, 36, 297–314. [Google Scholar] [CrossRef]
- Lu, S. Research on Modeling and Operation Optimization of Heat and Electricity Integrated Energy Systems. Ph.D. Thesis, Southeast University, Nanjing, China, 2021. [Google Scholar]
- Chen, Y.; Guo, Q.; Sun, H.; Pan, Z. Integrated heat and electricity dispatch for district heating networks with constant mass flow: A generalized phasor method. IEEE Trans. Power Syst. 2020, 36, 426–437. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, N.; Botterud, A.; Kang, C. On an equivalent representation of the dynamics in district heating networks for combined electricity-heat operation. IEEE Trans. Power Syst. 2020, 35, 560–570. [Google Scholar] [CrossRef]
- Hao, L.; Xu, F.; Chen, Q.; Wei, M.; Chen, L.; Min, Y. A thermal-electrical analogy transient model of district heating pipelines for integrated analysis of thermal and power systems. Appl. Therm. Eng. 2018, 139, 213–221. [Google Scholar] [CrossRef]
- Chen, B.; Sun, H.; Yin, G.; Wu, W.; Guo, Q.; Chen, Y.; Pan, Z.; Wang, B. Energy circuit theory of integrated energy system analysis(II): Hydraulic circuit and thermal circuit. Proc. CSEE 2020, 40, 2133–2142. [Google Scholar]
- Chen, Y.; Sun, H.; Guo, Q. Energy Circuit Theory of Integrated Energy System Analysis (V): Integrated Electricity-Heat-Gas Dispatch. Proc. CSEE 2020, 40, 7928–7937+8230. [Google Scholar]
- Yang, J.; Zhang, N.; Kang, C. Analysis theory of generalized electric circuit for multi-energy networks -part one branch model. Autom. Electr. Power Syst. 2020, 44, 21–32. [Google Scholar]
- Yang, J.; Zhang, N.; Kang, C. Analysis theory of generalized electric circuit for multi-energy networks -part two network model. Autom. Electr. Power Syst. 2020, 44, 10–21. [Google Scholar]
- Chu, Z.; Zhao, L.; Sun, J.; Sun, X. Thermoelectric optimization of an integrated energy system with hydrogen energy storage considering thermal energy dynamic balance. Power Syst. Prot.Control 2023, 51, 1–12. [Google Scholar]
- Yao, S.; Gu, W.; Lu, S.; Zhou, S.; Wu, Z.; Pan, G.; He, D. Dynamic Optimal Energy Flow in the Heat and Electricity Integrated Energy System. IEEE Trans. Sustain. Energy 2020, 12, 179–190. [Google Scholar] [CrossRef]
Parameter | A/m2 | λ/(W/(m∙°C) | m/(kg/s) | L/km | Ta/°C |
---|---|---|---|---|---|
Value | 0.05 | 0.25 | 36 | 5 | 0 |
Model | Time/s |
---|---|
The two-port model | 0.012 |
The implicit upwind difference method | 0.22 |
Pipe | A/m2 | λ/(W/(m∙°C) | m/(kg/s) | L/km | Ta/°C |
---|---|---|---|---|---|
1, 6 | 0.05 | 0.25 | 36 | 5 | 0 |
2, 5 | 0.05 | 0.25 | 14 | 3.5 | 0 |
3, 4 | 0.05 | 0.25 | 7 | 2.5 | 0 |
Model | Time/s |
---|---|
The two-port model | 0.057 |
The implicit upwind difference method | 2.68 |
Unit | Pmin/MW | Pmax/MW | Cost Coefficients | |
---|---|---|---|---|
aG/Yuan | bG/(Yuan/MW) | |||
G1 | 100 | 220 | 13.5 | 177 |
G2 | 10 | 100 | 40 | 130 |
Output of CHP | Pmin/ MW | Pmax/ MW | Cost Coefficients |
---|---|---|---|
achp/(Yuan/MW2), bchp/(Yuan/MW), cchp/Yuan, dchp/(Yuan/MW2), echp/(Yuan/MW), fchp/(Yuan/MW2), | |||
electric power | 45 | 125 | 0.0032, 17.7, 181, 0.00085, 4.2, 0.00125 |
Node | Node | A/m2 | λ/(W/(m∙°C) | m/(kg/s) | L/km | Ta/°C |
---|---|---|---|---|---|---|
1 | 2 | 0.5 | 0.25 | 360 | 3.5 | 0 |
2 | 3 | 0.5 | 0.25 | 150 | 1.75 | 0 |
3 | 4 | 0.5 | 0.25 | 100 | 1.75 | 0 |
2 | 5 | 0.5 | 0.25 | 210 | 1.75 | 0 |
3 | 6 | 0.5 | 0.25 | 50 | 0.75 | 0 |
Model | Operation Cost/Yuan | Wind Curtailment Cost/Yuan |
---|---|---|
Model 1 | 101,596 | 10,303 |
Model 2 | 97,408 | 4379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Lin, Q.; Yang, Z.; Liu, Q.; Zou, H. A Fast Calculation Method for Economic Dispatch of Electro-Thermal Coupling System Considering the Dynamic Process of Heat Transfer. Processes 2025, 13, 175. https://doi.org/10.3390/pr13010175
Chen J, Lin Q, Yang Z, Liu Q, Zou H. A Fast Calculation Method for Economic Dispatch of Electro-Thermal Coupling System Considering the Dynamic Process of Heat Transfer. Processes. 2025; 13(1):175. https://doi.org/10.3390/pr13010175
Chicago/Turabian StyleChen, Jingyan, Qinting Lin, Zilong Yang, Qingming Liu, and Hongbo Zou. 2025. "A Fast Calculation Method for Economic Dispatch of Electro-Thermal Coupling System Considering the Dynamic Process of Heat Transfer" Processes 13, no. 1: 175. https://doi.org/10.3390/pr13010175
APA StyleChen, J., Lin, Q., Yang, Z., Liu, Q., & Zou, H. (2025). A Fast Calculation Method for Economic Dispatch of Electro-Thermal Coupling System Considering the Dynamic Process of Heat Transfer. Processes, 13(1), 175. https://doi.org/10.3390/pr13010175