Two-Stage Anaerobic Digestion for Green Energy Production: A Review
Abstract
:1. Introduction
2. Two-Stage Anaerobic Digestion Description
3. Feedstocks (Substrates)
- 2.
- 3.
- 4.
- 5.
- Sugarbeet [60];
- 6.
- Slaughterhouse blood waste [61];
- 7.
- Cassava [62];
- 8.
- 9.
- 10.
- 11.
- Paperboard mill wastewater [71];
- 12.
- 13.
- Organic market waste [84];
- 14.
- 15.
- 16.
- Coffee waste [89];
- 17.
- Pharmaceutically active compounds [90];
- 18.
- Residual fermented solids obtained after biodiesel production [52] offer the possibility of integration among three biofuels of industrial interest (biodiesel, biohydrogen, and biomethane) according to the biorefinery principles, which target the maximum utilization of biomass to produce a variety of products;
- 19.
- Mixtures (co-digestion) of organic waste [3,91,92,93,94,95,96,97,98,99], such as swine manure and rice straw [54]; abattoir wastewater, heterogeneous fruit and vegetable solid waste, and their combination [85]; waste cooking oil and sewage sludge [100]; restaurant food waste and vinasse, a waste from the sugarcane industry [101]; and sewage sludge and waste from the agri-food sector (poultry manure and vinasse).
4. Process Parameters and Configurations in Biohythane Production
4.1. Reactor Configurations for Biohythane Production
4.2. Temperature
- Psychrophilic (below 20 °C),
- Mesophilic (20–45 °C),
- Thermophilic (55–70 °C).
Temperature in BR1 | Temperature in BR2 | Some Results | References |
---|---|---|---|
Mesophilic | Mesophilic | Substrate: protein-rich synthetic wastewater inoculated with anaerobic sludge. The biogas production began to decrease at the protein concentration of 12 g/L. The total VFA and ammoniacal nitrogen concentration increased with an increase in protein concentration in BR1, while the protein and COD removal percentage was higher in BR2. | [110] |
Mesophilic in CSTR | Mesophilic in CSTR | Substrate: sugarcane leaf; optimal conditions: BR1—HRT = 5 days; QH2 = 60.1 mL-H2/L.day; BR2—HRT = 25 days; QCH4 =238.6 mL-CH4/L.day; total energy recovery = 4.5 kJ/g-VS. | [58] |
Mesophilic in CSTR with recirculation pump | Mesophilic in CSTR with recirculation | Substrate: pharmaceutically active compounds with sewage sludge. Optimal conditions: BR1—OLR = 1.5 kg VS/m3 day; QH2 = 0.337 m3/kg VS; SRT = 14 days; BR2—OLR = 0.9 kg VS/m3 day; QCH4 = 0.433 m3/kg VS; SRT = 29 days. | [90] |
Mesophilic in CSTR | Mesophilic in internal circulation reactor | Substrate: molasses wastewater. Optimal conditions: BR1—OLR = 30 kg COD/(m3.day; QH2 = 2.41 L/(L.day) hydrogen content = 42%; BR2—OLR = 36 kg COD/(m3.day; QCH4 = 2.4 L/(L·d) with a methane content = 74.45%. The maximum of 71.06% of the substrate energy was converted to biogas (hydrogen and methane) at the OLR = 30 kg COD/m3·day. | [48] |
Mesophilic in CSTR | Mesophilic in CSTR | AcoD of restaurant food waste and vinasse, a waste from the sugarcane industry. The TS and TVS of the effluent generated in the first stage were reduced by 52% and 64%, respectively, constituting an excellent substrate for the production of biogas rich in methane (72.7%) in the second stage. | [100] |
Thermophilic | Mesophilic | Substrate: waste-activated sludge with antibiotic resistance genes (ARGs). The removal efficiency of TSAD to total ARGs was higher than that of one-stage AD. | [118] |
Thermophilic in CSTR | Mesophilic in CSTR with recirculation | AcoD of swine manure (SM) and rice straw (mixing ratio of 3:1); QCH4 = 0.44 ± 0.03 L/L.day; digestate recirculation increased total CH4 production, organic matter removal, and reaction by 9.92, 5.22, and 9.73–12.60%, respectively. The energy input of the system increased by 30.26%, and digestate recirculation improved the energy balance of the total system by 6.83%. | [92] |
Thermophilic in CSTR | Mesophilic in CSTR | Substrate: mixture of 50% sewage sludge and 50% wine vinasse. Maximum QCH4 = 1.8 L/L·day) at HRT = 2 days, maximum specific QCH4 = 159.4 mL CH4/g COD removed and archaea activity (11.6·10−9 L CH4/cells) at HRT = 4 days. | [98] |
Thermophilic in AFBR | Mesophilic in ATFBR | Substrate: sugarcane stillage. This combination achieved the best energetic yield: 5.5 kJ/g COD, which is 41% higher than in single-stage system for OLR 24.7 kg COD/m3.day. | [56] |
Thermophilic in BCAR | Mesophilic in BCAR | Substrate: poultry manure. Optimal performance obtained for OLR = 7.5 (g COD/L.day), COD = 43.0 (g COD/L), HRT = 5.75 (day). | [49] |
Thermophilic in UASBR | Mesophilic in CSTR | Optimum conditions for palm oil mill effluent treatment as in Table 2. The overall energy recovery was higher than one-stage hydrogen production and one-stage methane production. | [45] |
Mesophilic | Thermophilic | Substrate: highly concentrated winery effluents. Optimal conditions: BR1: OLR = 120 kg COD/(m3.day) (ensured the highest acetic acid concentration); BR2: QCH4 = 7.1 Nm3 CH4/m3.day; 348 L CH4/kg COD for OLR = 29.9 kg COD/m3.day. However, a lower removal of organic matter was observed under that condition. | [59] |
Mesophilic in CSTR | Thermophilic in CSTR | Substrate: waste-activated sludge. HRT of the BR1 is a crucial parameter to improve the performance of the BR2. | [29] |
Mesophilic in CSTR | Thermophilic in CSTR | Substrate: waste-activated sludge with low-energy sonication pretreatment. BR1—HRT = 3–5 days; BR2—HRT = 10 days; VS removal = 44 to 55%, (35–40% in single-stage); QCH4 = 0.2 Nm3/kgVS (+11%). | [119] |
Thermophilic AFBR | Thermophilic AFBR Mesophilic AFBR | Substrate: sugarcane stillage. Methane production up to 237% at 24.7 kg COD/m3day). Methane yield up to 118% at 24.7 kg COD/m3/day) for both mesophilic and thermophilic second-stage reactors when compared to single-stage methanogenesis. | [56] |
Thermophilic dark fermentation reactor | Thermophilic with recirculation | Substrate: waste-activated sludge. Biofuel and bioenergy were best recovered at a recirculation ratio of 0.11; 1.48 L H2/L.day, 0.88 L CH4/L.day, 106.2 mL H2/g VS, 161.3 mL CH4/g VS, 7.7 kJ/g VS, and 88.2 kJ/L.day were obtained depending on HRT. It has been shown that a low recirculation ratio can improve the performance. | [120] |
Thermophilic dark fermentation reactor | Thermophilic electromethanogenic reactor (2.5 V) | Substrate: waste-activated sludge. BR1—QH2 = 0.11 NL/g VS; H2 = 52%; BR2—methane yield = 0.39 NL/g VS (+40.5%); volumetric methane production rate = 1.16 NL/.day (+38.8%). | [121] |
Thermophilic AMBR | Thermophilic AMBR (V2/V1 = 2) | Substrate: tapioca starch-based synthetic high-strength wastewater. BR1—OLR = 6–8 kg COD/m3.day; HRT = 19.45 h; BR2—QCH4 = 1.5–1.9 LCH4/L.day; HRT = 38.92 h; COD removal efficiency = 89–92%. | [109] |
Psychrophilic | Psychrophilic | Higher amount of biogas is produced (0.800 m3/kgVS) than in mesophilic single-stage AD of food waste. | [80] |
HUSBR | UASBR | HRT = 5.7 to 2.8 h for BR1 and from 13.9 to 6.5 h for BR2. Good performance obtained for influent COD higher than 250 mg/L, while extreme wastewater dilution by rainfall caused an efficiency cut down. | [36] |
4.3. pH and Alkalinity
4.4. Inocula
4.5. Hydrogen Partial Pressure
4.6. Hydraulic Retention Time (HRT)
4.7. C/N Ratio
4.8. Trace Elements
4.9. Recirculation of the Effluent of a Methanogenic Reactor
5. Microbiology—Participating Microorganisms in TSAD
- (1)
- Physiological characteristics: Hydrogen producers can form spores under stress, many pretreatment methods such as heat, chemical addition, and pH shock, and they have been used for the screening of hydrogen producers.
- (2)
- Growth conditions: Hydrogen producers require slightly acidic conditions, while methanogens prefer a neutral pH.
- (3)
- Growth rate: Hydrogen-producing bacteria typically have a faster growth rate compared to methanogens.
- HPB have much faster growth kinetics than HCB.
- HPB are able to resist harsh environmental conditions due to protective spore formation, while HCB are very sensitive and do not have this capacity.
6. Mathematical Modeling
- -
- When historical data are not available and when no inhibition is detected, the analytical method shows great capability for the prediction of TAN;
- -
- When experimental data are available, ML techniques for modeling complex bioprocesses are efficient, as they are capable of predicting and modeling non-linear interactions that are hidden in datasets;
- -
- Since the SVM-based model can be trained with new daily data, the model can improve its performance as new data are gathered, independent of the operational conditions.
7. Control
8. Energy Considerations
9. Advantages and Disadvantages
9.1. Advantages
- (1)
- A methane yield of 189 mL g−1 CODadded and a COD removal of 50.8% were obtained at an OLR of 0.4 g COD L−1 d−1 and operational temperature of 26 °C. The addition of bamboo biocarriers in the digesters increased the methane yield by 103% at this OLR.
- (2)
- Methanobrevibacter and M. beijingense were the dominant archaea in the system using biocarriers. The authors concluded based on visual observations that significant microbial biofilms were created on these biocarriers.
- (3)
- The authors estimated that 13.4, 24.1, and 19.5 GJ d−1 can be recovered from typical slaughterhouses processing bovine, swine, and broiler chickens, respectively.
9.2. Disadvantages
10. Future Works
10.1. Integrating Meta-Omics Approaches
10.2. Gene Manipulation and Bioaugmentation
10.3. Artificial Intelligence
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wainaina, S.; Lukitawesa; Kumar Awasthi, M.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.L.; Chong, S.; Lim, J.W.; Chan, Y.J.; Chong, M.F.; Tiong, T.J.; Chin, J.K.; Pan, G.T. Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef]
- Hubenov, V.N.; Mihaylova, S.N.; Simeonov, I.S. Anaerobic co-digestion of waste fruits and vegetables and swine manure in a pilot-scale bioreactor. Bulg. Chem. Commun. 2015, 47, 788–792. [Google Scholar]
- Zhang, S.; Wang, Y.; Song, J.; Sheng, C.; Shang, Z.; Wang, R.; Wang, X.; Yang, G.; Feng, Y.; Ren, G. Investigation on the interactive effects between temperature and chemical composition of organic wastes on anaerobic co-digestion performance. Processes 2021, 9, 1682. [Google Scholar] [CrossRef]
- Simeonov, I. Laboratory studies and mathematical modeling of the anaerobic digestion in a cascade of two bioreactors. Ecol. Eng. Environ. Prot. 2005, 2, 51–57. (In Bulgarian) [Google Scholar]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Ausiello, A.; Micoli, L.; Turco, M.; Toscano, G.; Florio, C.; Pirozzi, D. Biohydrogen production by dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria. Int. J. Hydrogen Energy 2017, 42, 30599–30612. [Google Scholar] [CrossRef]
- Bakonyi, P.; Dharmaraja, J.; Shobana, S.; Koók, L.; Rózsenberszki, T.; Nemestóthy, N.; Bélafi-Bakó, K.; Kumar, G. Leachate valorization in anaerobic biosystems: Towards the realization of waste-to-energy concept via biohydrogen, biogas and bioelectrochemical processes. Int. J. Hydrogen Energy 2019, 44, 17278–17296. [Google Scholar] [CrossRef]
- Ruggeri, B.; Tommasi, T.; Sanfilippo, S. BioH2 & BioCH4 Through Anaerobic Digestion: From Research to Full-Scale Applications; Springer: London, UK, 2015. [Google Scholar]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Demirer, G.N.; Chen, S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 2005, 40, 3542–3549. [Google Scholar] [CrossRef]
- Chu, C.F.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int. J. Hydrogen Energy 2012, 37, 10611–10618. [Google Scholar] [CrossRef]
- Bertasini, D.; Battista, F.; Rizzioli, F.; Frison, N.; Bolzonella, D. Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: A critical overview. Renew. Energy 2023, 206, 386–396. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.C. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 2009, 34, 245–254. [Google Scholar] [CrossRef]
- Khan, M.; Ngo, H.H.; Guo, W.; Liu, Y.; Nghiem, L.D.; Hai, F.I.; Deng, L.J.; Wang, J.; Wu, Y. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Fac. Eng. Inf. Sci. Pap. Part B. 2016, 219, 738–748. [Google Scholar] [CrossRef]
- Sompong, O.; Mamimin, C.; Prasertsan, P. Biohythane production from organic wastes by two-stage anaerobic fermentation technology. In Advances in Biofuels and Bioenergy; Intech Open: London, UK, 2018; Volume 83. [Google Scholar]
- Bo, W.; Wenhui, L. Progress of Research on Two-Phase Anaerobic Fermentation of Hydrogen Production and Methanogenesis. Chem. Eng. Trans. 2018, 64, 337–342. [Google Scholar]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef]
- Nabaterega, R.; Kumar, V.; Khoei, S.; Eskicioglu, C. A review on two-stage anaerobic digestion options for optimizing municipal wastewater sludge treatment process. J. Environ. Chem. Eng. 2021, 9, 105502. [Google Scholar] [CrossRef]
- D’Silva, T.C.; Isha, A.; Chandra, R.; Vijay, V.K.; Subbarao, P.M.V.; Kumar, R.; Chaudhary, V.P.; Singh, H.; Khan, A.A.; Kovács, K.L.; et al. Enhancing methane production in anaerobic digestion through hydrogen assisted pathways–A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 151, 111536. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Teleken, J.G.; Meier, T.R.W.; Alves, H.J. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. J. Environ. Manag. 2021, 281, 111854. [Google Scholar] [CrossRef] [PubMed]
- Bertasini, D.; Battista, F.; Mancini, R.; Frison, N.; Bolzonella, D. Hydrogen and methane production through two stage anaerobic digestion of straw residues. Environ. Res. 2024, 247, 118101. [Google Scholar] [CrossRef]
- Sukphun, P.; Wongarmat, W.; Imai, T.; Sittijunda, S.; Chaiprapat, S.; Reungsang, A. Two-stage biohydrogen and methane production from sugarcane-based sugar and ethanol industrial wastes: A comprehensive review. Bioresour. Technol. 2023, 386, 129519. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, R. Critical Review on Two-Stage Anaerobic Digestion with H2 and CH4 Production from Various Wastes. Water 2024, 16, 1608. [Google Scholar] [CrossRef]
- Chorukova, E.; Simeonov, I. Mathematical modeling of the anaerobic digestion in two-stage system with production of hydrogen and methane including three intermediate products. Int. J. Hydrogen Energy 2020, 45, 11550–11558. [Google Scholar] [CrossRef]
- Rafieenia, R.; Pivato, A.; Lavagnolo, M.C. Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion. Int. J. Hydrogen Energy 2018, 43, 12013–12022. [Google Scholar] [CrossRef]
- Athanasoulia, E.; Melidis, P.; Aivasidis, A. Optimization of biogas production from waste activated sludge through serial digestion. Renew. Energy 2012, 47, 147–151. [Google Scholar] [CrossRef]
- Forouzanmehr, F.; Solon, K.; Maisonnave, V.; Daniel, O.; Volcke, E.I.P.; Gillot, S.; Buffière, P. Sulfur transformations during two-stage anaerobic digestion and intermediate thermal hydrolysis. Sci. Total Environ. 2022, 810, 151247. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M.C.; Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Rossetti, S. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environ. Sci. Pollut. Res. 2015, 22, 7339–7348. [Google Scholar] [CrossRef] [PubMed]
- Salomoni, C.; Caputo, A.; Bonoli, M.; Francioso, O.; Rodriguez-Estrada, M.T.; Palenzona, D. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. Bioresour. Technol. 2011, 102, 6443–6448. [Google Scholar] [CrossRef] [PubMed]
- Sendjaja, A.Y.; Tan, Y.; Pathak, S.; Zhou, Y.; bin Abdul Majid, M.; Liu, J.L.; Ng, W.J. Regression based state space adaptive model of two-phase anaerobic reactor. Chemosphere 2015, 140, 159–166. [Google Scholar] [CrossRef]
- Sun, C.; Guo, L.; Zheng, Y.; Yu, D.; Jin, C.; Zhao, Y.; Yao, Z.; Gao, M.; She, Z. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). Bioresour. Technol. 2022, 343, 126160. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.; Hamilton, G.; Keller, J. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant. Water Sci. Technol. 2006, 53, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Béland, M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energy 2006, 31, 1980–1988. [Google Scholar] [CrossRef]
- Li, W.W.; Yu, H.Q. Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment. Engineering 2016, 2, 438–446. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Armstrong, E.; Gómez, M.; Soto, M. Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresour. Technol. 2008, 99, 7051–7062. [Google Scholar] [CrossRef]
- Ding, L.; Chen, Y.; Xu, Y.; Hu, B. Improving treatment capacity and process stability via a two-stage anaerobic digestion of food waste combining solid-state acidogenesis and leachate methanogenesis/recirculation. J. Clean. Prod. 2021, 279, 123644. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Lavagnolo, M.C.; Girotto, F.; Rafieenia, R.; Danieli, L.; Alibardi, L. Two-stage anaerobic digestion of the organic fraction of municipal solid waste–Effects of process conditions during batch tests. Renew. Energy 2018, 126, 14–20. [Google Scholar] [CrossRef]
- Nguyen, P.D.; Tran, N.S.T.; Nguyen, T.T.; Dang, B.T.; Le, M.T.T.; Bui, X.T.; Mukai, F.; Kobayashi, H.; Ngo, H.H. Long-term operation of the pilot scale two-stage anaerobic digestion of municipal biowaste in Ho Chi Minh City. Sci. Total Environ. 2021, 766, 142562. [Google Scholar] [CrossRef] [PubMed]
- Rocamora, I.; Wagland, S.T.; Villa, R.; Simpson, E.W.; Fernández, O.; Bajón-Fernández, Y. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresour. Technol. 2020, 299, 122681. [Google Scholar] [CrossRef] [PubMed]
- Markphan, W.; Mamimin, C.; Suksong, W.; Prasertsan, P.; Sompong, O. Comparative assessment of single-stage and two-stage anaerobic digestion for biogas production from high moisture municipal solid waste. PeerJ 2020, 8, e9693. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, K.L.; Torres–Lozada, P.; Chaparro, T.R. Beverage wastewater treatment by anaerobic digestion in two-stages for organic matter removal and energy production. Biomass Bioenergy 2021, 154, 106260. [Google Scholar] [CrossRef]
- Kamyab, B.; Zilouei, H. Investigating the efficiency of biogas production using modelling anaerobic digestion of baker’s yeast wastewater on two-stage mixed-UASB reactor. Fuel 2021, 285, 119198. [Google Scholar] [CrossRef]
- Krishnan, S.; Singh, L.; Sakinah, M.; Thakur, S.; Nasrul, M.; Otieno, A.; Wahid, Z.A. An investigation of two-stage thermophilic and mesophilic fermentation process for the production of hydrogen and methane from palm oil mill effluent. Environ. Prog. Sustain. Energy 2017, 36, 895–902. [Google Scholar] [CrossRef]
- Ramadhani, L.I.; Damayanti, S.I.; Sudibyo, H.; Azis, M.M.; Budhijanto, W. The Impact of Hydraulic Retention Time on the Biomethane Production from Palm Oil Mill Effluent (POME) in Two-Stage Anaerobic Fluidized Bed Reactor. Int. J. Renew. Energy Dev. 2021, 10, 11–16. [Google Scholar] [CrossRef]
- Chorukova, E.; Hubenov, V.; Gocheva, Y.; Simeonov, I. Two-Phase Anaerobic Digestion of Corn Steep Liquor in Pilot Scale Biogas Plant with Automatic Control System with Simultaneous Hydrogen and Methane Production. Appl. Sci. 2022, 12, 6274. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y. Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system from molasses wastewater. Water Sci. Technol. 2019, 79, 270–277. [Google Scholar] [CrossRef]
- Alejo, L.; Atkinson, J.; Guzmán-Fierro, V.; Roeckel, M. Effluent composition prediction of a two-stage anaerobic digestion process: Machine learning and stoichiometry techniques. Environ. Sci. Pollut. Res. 2018, 25, 21149–21163. [Google Scholar] [CrossRef] [PubMed]
- Aruna Devi, P.S.; Saravanaraja, M.; Nagarajan, K. Efficiency of two phase UASB reactor with internal packing column for the treatment of dairy effluent. Glob. J. Eng. Sci. Res. 2018, 5, 400–419. [Google Scholar]
- Calderón-Soto, L.F.; López-Gutiérrez, I.; Valencia-Ojeda, C.; Aguilar-López, R.; Alatriste-Mondragón, F.; Femat, R. Two-stage continuous biomethane production from enzymatic hydrolysate of agave bagasse: Modelling, identification and control. J. Process Control 2022, 120, 14–27. [Google Scholar] [CrossRef]
- Dos Santos, S.B.; de Oliveira Faber, M.; de Araujo Collaço, A.C.; Aguieiras, E.C.G.; Freire, D.M.G.; Langone, M.A.; Ferreira-Leitão, V.S. Sequential hydrogen and methane production using the residual biocatalyst of biodiesel synthesis as raw material. Int. J. Hydrogen Energy 2021, 46, 23658–23669. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrère, H.; Steyer, J.P. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy 2010, 35, 10660–10673. [Google Scholar] [CrossRef]
- Hailu, A.M.; Palani, S.G.; Asfaw, S.L.; Tegaye, T.A. Insight into microbial community diversity and composition of two-stage anaerobic digestion: Focusing methanogenic stage. Bioresour. Technol. Rep. 2021, 15, 100764. [Google Scholar] [CrossRef]
- Jasko, J.; Skripsts, E.; Dubrovskis, V.; Zabarovskis, E.; Kotelenecs, V. Biogas production from cheese whey in two phase anaerobic digestion. Eng. Rural Dev. 2011, 26, 373–376. [Google Scholar]
- Ramos, L.R.; Lovato, G.; Rodrigues, J.A.D.; Silva, E.L. Anaerobic digestion of vinasse in fluidized bed reactors: Process robustness between two-stage thermophilic-thermophilic and thermophilic-mesophilic systems. J. Clean. Prod. 2021, 314, 128066. [Google Scholar] [CrossRef]
- Rodriguez, C.R.; Alcaraz-Gonzalez, V.; Garcia-Sandoval, J.P.; Gonzalez-Alvarez, V.; Mendez-Acosta, H.O. Modelling and parameter estimation of a two-stage anaerobic digestion system for the treatment of tequila vinasses. In Proceedings of the 13th World Congress on Anerobic Digestion, Santiago de Compostela, Spain, 25–28 July 2013. [Google Scholar]
- Sukphun, P.; Ponuansri, C.; Wongarmat, W.; Sittijunda, S.; Promnuan, K.; Reungsang, A. Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production. Energies 2023, 16, 7861. [Google Scholar] [CrossRef]
- Vital-Jacome, M.A.; Buitrón, G. Thermophilic anaerobic digestion of winery effluents in a two-stage process and the effect of the feeding frequency on methane production. Chemosphere 2021, 272, 129865. [Google Scholar] [CrossRef] [PubMed]
- Hussy, I.; Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 2005, 30, 471–483. [Google Scholar] [CrossRef]
- Wang, S.; Hawkins, G.L.; Kiepper, B.H.; Das, K.C. Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renew. Energy 2018, 126, 552–562. [Google Scholar] [CrossRef]
- Okudoh, V.; Trois, C.; Workneh, T.; Schmidt, S. The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review. Renew. Sustain. Energy Rev. 2014, 39, 1035–1052. [Google Scholar] [CrossRef]
- Illi, L.; Lecker, B.; Lemmer, A.; Müller, J.; Oechsner, H. Biological methanation of injected hydrogen in a two-stage anaerobic digestion process. Bioresour. Technol. 2021, 333, 125126. [Google Scholar] [CrossRef] [PubMed]
- Nizami, A.S.; Murphy, J.D. Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage. Environ. Sci. Technol. 2011, 45, 7561–7569. [Google Scholar] [CrossRef]
- Chu, C.Y.; Wang, Z.F. Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. Int. J. Hydrogen Energy 2017, 42, 30591–30598. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lay, C.H. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 2005, 30, 285–292. [Google Scholar] [CrossRef]
- Raposo, F.; Borja, R.; Sanchez, E.; Martın, M.A.; Martın, A. Performance and kinetic evaluation of the anaerobic digestion of two-phase olive mill effluents in reactors with suspended and immobilized biomass. Water Res. 2004, 38, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Sani, K.; Kongjan, P.; Pakhathirathien, C.; Cheirsilp, B.; Sompong, O.; Raketh, M.; Kana, R.; Jariyaboon, R. Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment. J. Water Process Eng. 2021, 39, 101661. [Google Scholar] [CrossRef]
- Sompong, O.; Prasertsan, P.; Intrasungkha, N.; Dhamwichukorn, S.; Birkeland, N.K. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. Int. J. Hydrogen Energy 2008, 33, 1221–1231. [Google Scholar]
- Farghaly, A.; Tawfik, A. Simultaneous hydrogen and methane production through multi-phase anaerobic digestion of paperboard mill wastewater under different operating conditions. Appl. Biochem. Biotechnol. 2017, 181, 142–156. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Di Perta, E.S.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.; Pirozzi, F. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Manag. 2015, 38, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Bolzonella, D.; Battista, F.; Cavinato, C.; Gottardo, M.; Micolucci, F.; Lyberatos, G.; Pavan, P. Recent developments in biohythane production from household food wastes: A review. Bioresour. Technol. 2018, 257, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, B.; Mazumder, D. Performance evaluation of three-stage anaerobic digestion (AD) for stabilization of fruit and vegetable waste (FVW). J. Indian Chem. Soc. 2018, 95, 65–80. [Google Scholar]
- Hassan, G.K.; Jones, R.J.; Massanet-Nicolau, J.; Dinsdale, R.; Abo-Aly, M.M.; El-Gohary, F.A.; Guwy, A. Increasing 2-Bio-(H2 and CH4) production from food waste by combining two-stage anaerobic digestion and electrodialysis for continuous volatile fatty acids removal. Waste Manag. 2021, 129, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Zhao, J.; Lei, Z.; Shimizu, K.; Zhang, Z. Addition of air-nanobubble water to mitigate the inhibition of high salinity on co-production of hydrogen and methane from two-stage anaerobic digestion of food waste. J. Clean. Prod. 2021, 314, 127942. [Google Scholar] [CrossRef]
- Hou, T.; Zhao, J.; Lei, Z.; Shimizu, K.; Zhang, Z. Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation. Sci. Total Environ. 2021, 761, 143234. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.A.A.; Banu, J.R.; Kannah, R.Y.; Yogalakshmi, K.N.; Kumar, G. Biohythane production from food processing wastes–challenges and perspectives. Bioresour. Technol. 2020, 298, 122449. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Suja, F.B.; Zain, S.M.; Pramanik, B.K. The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresour. Technol. Rep. 2019, 8, 100310. [Google Scholar] [CrossRef]
- Rusín, J.; Chamrádová, K.; Basinas, P. Two-stage psychrophilic anaerobic digestion of food waste: Comparison to conventional single-stage mesophilic process. Waste Manag. 2021, 119, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Han, S.K.; Song, Y.C.; Lee, C.Y. Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res. 2001, 35, 3441–3447. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Devi, G.N. Critical considerations in two-stage anaerobic digestion of food waste–A review. Renew. Sustain. Energy Rev. 2020, 119, 109587. [Google Scholar] [CrossRef]
- Yun, Y.M.; Lee, M.K.; Im, S.W.; Marone, A.; Trably, E.; Shin, S.R.; Kim, M.G.; Cho, S.K.; Kim, D.H. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresour. Technol. 2018, 248, 79–87. [Google Scholar] [CrossRef]
- Gómez Camacho, C.E.; Ruggeri, B.; Mangialardi, L.; Persico, M.; Luongo Malavé, A.C. Continuous two-step anaerobic digestion (TSAD) of organic market waste: Rationalising process parameters. Int. J. Energy Environ. Eng. 2019, 10, 413–427. [Google Scholar] [CrossRef]
- Yan, W.; Vadivelu, V.; Maspolim, Y.; Zhou, Y. In-situ alkaline enhanced two-stage anaerobic digestion system for waste cooking oil and sewage sludge co-digestion. Waste Manag. 2021, 120, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, S.; Joseph, K.; Sukumaran, V. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy 2009, 34, 8854–8858. [Google Scholar] [CrossRef]
- Ganesh, R.; Torrijos, M.; Sousbie, P.; Lugardon, A.; Steyer, J.P.; Delgenes, J.P. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Manag. 2014, 34, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Parawira, W.; Murto, M.; Read, J.S.; Mattiasson, B. A study of two-stage anaerobic digestion of solid potato waste using reactors under mesophilic and thermophilic conditions. Environ. Technol. 2007, 28, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Houbron, E.; Larrinaga, A.; Rustrian, E. Liquefaction and methanization of solid and liquid coffee wastes by two phase anaerobic digestion process. Water Sci. Technol. 2003, 48, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Altamirano, M.J.; Maza-Márquez, P.; Montemurro, N.; Pérez, S.; Rodelas, B.; Osorio, F.; Pozo, C. Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. Sci. Total Environ. 2021, 789, 147869. [Google Scholar] [CrossRef] [PubMed]
- Baldi, F.; Pecorini, I.; Iannelli, R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production. Renew. Energy 2019, 143, 1755–1765. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Wu, J.; Chen, X.; Liu, R.; Han, Y.; Xiao, B.; Yu, Z.; Peng, Y. Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation. Chemosphere 2021, 274, 129787. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Frunzo, L.; Giordano, A.; Liotta, F.; Panico, A.; Pirozzi, F. Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 2012, 11, 325–341. [Google Scholar] [CrossRef]
- Li, C.; Fang, H.H. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 2007, 37, 1–39. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Sydney, E.B.; de Paula, D.R.; Medeiros, A.B.P.; de Carvalho, J.C.; Molina, D.; Soccol, C.R. Hydrogen production by dark fermentation using a new low-cost culture medium composed of corn steep liquor and cassava processing water: Process optimization and scale-up. Bioresour. Technol. 2021, 320, 124370. [Google Scholar] [CrossRef] [PubMed]
- Notodarmojo, P.A.; Fujiwara, T.; Van, D.P. Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis. Energy 2022, 239, 122177. [Google Scholar] [CrossRef]
- Silva, F.M.; Mahler, C.F.; Oliveira, L.B.; Bassin, J.P. Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag. 2018, 76, 339–349. [Google Scholar] [CrossRef]
- Tena, M.; Perez, M.; Solera, R. Effect of hydraulic retention time on the methanogenic step of a two-stage anaerobic digestion system from sewage sludge and wine vinasse: Microbial and kinetic evaluation. Fuel 2021, 296, 120674. [Google Scholar] [CrossRef]
- Tsigkou, K.; Zagklis, D.; Tsafrakidou, P.; Zapanti, P.; Manthos, G.; Karamitou, K.; Zafiri, C.; Kornaros, M. Expired food products and used disposable adult nappies mesophilic anaerobic co-digestion: Biochemical methane potential, feedstock pretreatment and two-stage system performance. Renew. Energy 2021, 168, 309–318. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; de Alencar Neves, T.; Berni, M.; Dragone, G.; Mussatto, S.I.; Forster-Carneiro, T. Start-up phase of a two-stage anaerobic co-digestion process: Hydrogen and methane production from food waste and vinasse from ethanol industry. Biofuel Res. J. 2018, 5, 813–820. [Google Scholar] [CrossRef]
- Sillero, L.; Perez, M.; Solera, R. Optimisation of anaerobic co-digestion in two-stage systems for hydrogen, methane and biofertiliser production. Fuel 2024, 365, 131186. [Google Scholar] [CrossRef]
- Rasapoor, M.; Young, B.; Brar, R.; Sarmah, A.; Zhuang, W.Q.; Baroutian, S. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 2020, 261, 116497. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Dhar, B.R.; Nakhla, G.; Lee, H.S. A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 2017, 79, 656–668. [Google Scholar] [CrossRef]
- Komilis, D.; Barrena, R.; Grando, R.L.; Vogiatzi, V.; Sánchez, A.; Font, X. A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Rev. Environ. Sci. Biotechnol. 2017, 16, 347–360. [Google Scholar] [CrossRef]
- Liu, S.; Ge, X.; Xu, F.; Li, Y. Effect of total solids content on giant reed ensilage and subsequent anaerobic digestion. Process Biochem. 2016, 51, 73–79. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Sarma, P.N. Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. Int. J. Hydrogen Energy 2008, 33, 2156–2166. [Google Scholar]
- Chaikasem, S.; Jacob, P.; Visvanathan, C. Performance improvement in a two-stage thermophilic anaerobic membrane bioreactor using PVA-gel as biocarrier. Desalination Water Treat. 2015, 53, 2839–2849. [Google Scholar] [CrossRef]
- Ali, S.N.S.S.; Omar, R.; Man, H.C.; Idris, A.I.M.; Tajuddin, H.A.; Mahat, S.B.; Abdullah, L.C. Two-stage anaerobic digestion using protein-rich synthetic wastewater inoculated with anaerobic sludge. Desalination Water Treat. 2023, 302, 82–90. [Google Scholar]
- Sposob, M.; Nam, J.Y.; Park, J.G.; Kim, T.H.; Hwang, Y.; Jeong, S.M.; Yun, Y.M. Starvation pretreatment enhances sulfidogenic operation of two-stage anaerobic digestion system for biogas production with low H2S content. J. Clean. Prod. 2021, 290, 125166. [Google Scholar] [CrossRef]
- Van Niel, E.W.; Claassen, P.A.; Stams, A.J. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 2003, 81, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Holl, E.; Steinbrenner, J.; Merkle, W.; Krümpel, J.; Lansing, S.; Baier, U.; Oechsne, H.; Lemmer, A. Two-stage anaerobic digestion: State of technology and perspective roles in future energy systems. Bioresour. Technol. 2022, 360, 127633. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, L.R.; Christy, P.M. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Saratale, R.G.; Gopalakrishnan Kumar, G.; Banu, R.; Xia, A.; Periyasamy, S.; Saratale, G.D. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour. Technol. 2018, 262, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Ruffino, B.; Giuseppe Campo, G.; Cerutti, A.; Scibilia, G.; Eugenio Lorenzi, E.; Zanetti, M. Comparative analysis between a conventional and a temperature-phased anaerobic digestion system: Monitoring of the process, resources transformation and energy balance. Energy Convers. Manag. 2020, 223, 113463. [Google Scholar] [CrossRef]
- Shi, Z.; Zhao, R.; Wan, J.; Li, B.; Shen, Y.; Zhang, S.; Luo, G. Metagenomic analysis reveals the fate of antibiotic resistance genes in two-stage and one-stage anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2021, 406, 124595. [Google Scholar] [CrossRef] [PubMed]
- Gianico, A.; Braguglia, C.M.; Gallipoli, A.; Mininni, G. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: Performances and energy balance. Environ. Sci. Pollut. Res. 2015, 22, 7248–7256. [Google Scholar] [CrossRef] [PubMed]
- Kovalev, A.A.; Kovalev, D.A.; Nozhevnikova, A.N.; Zhuravleva, E.A.; Katraeva, I.V.; Grigoriev, V.S.; Litti, Y.V. Effect of low digestate recirculation ratio on biofuel and bioenergy recovery in a two-stage anaerobic digestion process. Int. J. Hydrogen Energy 2021, 46, 39688–39699. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kovalev, D.A.; Zhuravleva, E.A.; Katraeva, I.V.; Panchenko, V.; Fiore, U.; Litti, Y.V. Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode. Renew. Energy 2022, 181, 966–977. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L.; Hussy, I. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrogen Energy 2002, 27, 1339–1347. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; John Wiley & Sons: Weinheim, Germany, 2008. [Google Scholar]
- Lo, H.M.; Liu, M.H.; Pai, T.Y.; Liu, W.F.; Lin, C.Y.; Wang, S.C.; Banks, C.J.; Hung, C.H.; Chiag, C.F.; Hsu, H.S.; et al. Biostabilization assessment of MSW co-disposed with MSWI fly ash in anaerobic bioreactors. J. Hazard. Mater. 2009, 162, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Volpi, M.P.C.; Fuess, L.T.; Moraes, B.S. Anaerobic co-digestion of residues in 1G2G sugarcane biorefineries for enhanced electricity and biomethane production. Bioresour. Technol. 2021, 330, 124999. [Google Scholar] [CrossRef] [PubMed]
- Izadi, P.; Izadi, P.; Eldyasti, A.; Cheng, C.; Beckley, M. Influence of vitamin coupled with micronutrient supplement on the biomethane production, process stability, and performance of mesophilic anaerobic digestion. Biomass Bioenergy 2020, 141, 105706. [Google Scholar] [CrossRef]
- Wongarmat, W.; Sittijunda, S.; Mamimin, C.; Reungsang, A. Acidogenic phase anaerobic digestion of pretreated sugarcane filter cake for co-digestion with biogas effluent to enhance the methane production. Fuel 2022, 310 Pt C, 122466. [Google Scholar] [CrossRef]
- Rajendran, K.; Mahapatra, D.; Venkatraman, A.V.; Muthuswamy, S.; Pugazhendhi, A. Advancing anaerobic digestion through two-stage processes: Current developments and future trends. Renew. Sustain. Energy Rev. 2020, 123, 109746. [Google Scholar] [CrossRef]
- Jeihanipour, A.; Niklasson, C.; Taherzadeh, M.J. Enhancement of solubilization rate of cellulose in anaerobic digestion and its drawbacks. Process Biochem. 2011, 46, 1509–1514. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y.; Ndegwa, P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renew. Sustain. Energy Rev. 2021, 135, 110212. [Google Scholar] [CrossRef]
- Ferraro, A.; Massini, G.; Miritana, V.M.; Rosa, S.; Signorini, A.; Fabbricino, M. A novel en-richment approach for anaerobic digestion of lignocellulosic biomass: Process perfor-mance enhancement through an inoculum habitat selection. Bioresour. Technol. 2020, 313, 123703. [Google Scholar] [CrossRef]
- Fanfoni, E.; Sinisgalli, E.; Fontana, A.; Soldano, M.; Garuti, M.; Morelli, L. Microbial Characterisation of a Two-Stage Anaerobic Digestion Process for Conversion of Agri-Based Feedstock in Biogas and Long-Chain Fatty Acids in a Circular Economy Framework. Fermentation 2024, 10, 293. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Ji, M. Effects of two-stage operation on stability and efficiency in co-digestion of food waste and waste activated sludge. Energies 2019, 12, 2748. [Google Scholar] [CrossRef]
- Kyazze, G.; Dinsdale, R.; Guwy, A.J.; Hawkes, F.R.; Premier, G.C.; Hawkes, D.L. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnol. Bioeng. 2007, 97, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Lay, J.J. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng. 2001, 74, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Mamimin, C.; Singkhala, A.; Kongjan, P.; Suraraksa, B.; Prasertsan, P.; Imai, T.; Sompong, O. Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int. J. Hydrogen Energy 2015, 40, 6319–6328. [Google Scholar] [CrossRef]
- Weiland, P. State of the art of solid-state digestion–recent developments. Solid-State Dig. State Art Furth. RD Requir. Gulzower Fachgespräche 2006, 24, 22–38. [Google Scholar]
- Yao, Y.; Huang, G.; An, C.; Chen, X.; Zhang, P.; Xin, X.; Shen, J.; Agnew, J. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. Renew. Sustain. Energy Rev. 2020, 119, 109494. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, R.; Li, Y.; Chen, L.; Han, R. Anaerobic digestion characteristics and key microorganisms associated with low-temperature rapeseed cake and sheep manure fermentation. Arch. Microbiol. 2022, 204, 188. [Google Scholar] [CrossRef] [PubMed]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Chorukova, E.; Simeonov, I.; Kabaivanova, L. Optimizing the ratio of working volumes of bioreactors in a two-stage anaerobic digestion system for production of hydrogen and methane. Ecol. Chem. Eng. S 2021, 28, 183–200. [Google Scholar]
- Akın, M.; Bartkiene, E.; Özogul, F.; Eyduran, S.P.; Trif, M.; Lorenzo, J.M.; Rocha, J.M. Conversion of organic wastes into biofuel by microorganisms: A bibliometric review. Clean. Circ. Bioeconomy 2023, 100053. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Barbosa, K.L.; dos Santos Malta, V.R.; Machado, S.S.; Junior, G.A.L.; da Silva, A.P.V.; Almeida, R.M.R.G.; da Luz, J.M.R. Bacterial cellulase from the intestinal tract of the sugarcane borer. Int. J. Biol. Macromol. 2020, 161, 441–448. [Google Scholar] [CrossRef]
- Lim, J.W.; Park, T.; Tong, Y.W.; Yu, Z. The microbiome driving anaerobic digestion and microbial analysis. Adv. Bioenergy 2020, 5, 1–61. [Google Scholar]
- Hassa, J.; Maus, I.; Off, S.; Pühler, A.; Scherer, P.; Klocke, M.; Schlüter, A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl. Microbiol. Biotechnol. 2018, 102, 5045–5063. [Google Scholar] [CrossRef]
- Liu, Y.; Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Kotsyurbenko, O.R. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol. Ecol. 2005, 53, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Szostak-Kotowa, J. Biodeterioration of textiles. Int. Biodeterior. Biodegrad. 2004, 53, 165–170. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Bayer, E.A.; Lamed, R.; White, B.A.; Flint, H.J. From cellulosomes to cellulosomics. Chem. Rec. 2008, 8, 364–377. [Google Scholar] [CrossRef]
- Nam, N.; Do, H.; Loan Trinh, K.; Lee, N. Metagenomics: An effective approach for exploring microbial diversity and functions. Foods 2023, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- Shuikan, A.; Alharbi, S.A.; Alkhalifah, D.H.M.; Hozzein, W.N. High-Throughput Sequencing and Metagenomic Data Analysis. In Metagenomics: Basics, Methods and Applications; Intech Open: London, UK, 2019; pp. 223–256. [Google Scholar]
- Najdenski, H.; Hubenov, V.; Simeonov, I.; Kussovski, V.; Dimitrova, L.; Petrova, P.; Kabaivanova, L. Microbial biodegradation as an option for waste utilization during long-term manned space missions. Bulg. Chem. Commun. 2020, 52, 379–386. [Google Scholar]
- Wang, Q.; Liang, Y.; Zhao, P.; Li, Q.X.; Guo, S.; Chen, C. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study. Sci. Rep. 2016, 6, 38245. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Guo, B.; Li, L.; Liu, Y. Role of syntrophic acetate oxidation and hydrogenotrophic methanogenesis in co-digestion of blackwater with food waste. J. Clean. Prod. 2021, 283, 125393. [Google Scholar] [CrossRef]
- Maspolim, Y.; Zhou, Y.; Guo, C.; Xiao, K.; Ng, W.J. Comparison of single-stage and two-phase anaerobic sludge digestion systems–Performance and microbial community dynamics. Chemosphere 2015, 140, 54–62. [Google Scholar] [CrossRef]
- Riviere, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 2009, 3, 700–714. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour. Technol. 2018, 247, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Demirel, B.; Yenigün, O. Two-phase anaerobic digestion processes: A review. J. Chem. Technol. Biotechnol. 2002, 77, 743–755. [Google Scholar] [CrossRef]
- Santos, F.S.; Ricci, B.C.; Neta, L.S.F.; Amaral, M.C. Sugarcane vinasse treatment by two-stage anaerobic membrane bioreactor: Effect of hydraulic retention time on changes in efficiency, biogas production and membrane fouling. Bioresour. Technol. 2017, 245, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Brock, T.D.; Madigan, M.T.; Martino, J.M.; Parker, J. Biology of Microrganisms; Prentice-Hall: New York, NY, USA, 1994. [Google Scholar]
- Stanier, R.Y.; Ingraham, J.L.; Wheelis, M.L.; Painter, P.R. The Microbial World; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Fang, H.; Zhang, T.; Liu, H. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 2002, 58, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Oremland, R.S. Biogeochemistry of Methanogenic Bacteria. In Biology of Anaerobic Microorganisms; Zehnder, A.J.B., Ed.; Wiley Press: New York, NY, USA, 1988; pp. 641–705. [Google Scholar]
- Dinova, N.; Peneva, K.; Belouhova, M.; Rangelov, J.; Schneider, I.; Topalova, Y. FISH analysis of microbial communities in a full-scale technology for biogas production. Eng. Life Sci. 2018, 18, 914–923. [Google Scholar] [CrossRef]
- Kabaivanova, L.; Hubenov, V.; Dimitrova, L.; Simeonov, I.; Wang, H.; Petrova, P. Archaeal and bacterial content in a two-stage anaerobic system for efficient energy production from agricultural wastes. Molecules 2022, 27, 1512. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg-Eliasson, K.; Westerholm, M.; Isaksson, S.; Schnürer, A. Anaerobic digestion of animal manure and influence of organic loading rate and temperature on process performance, microbiology, and methane emission from digestates. Front. Energy Res. 2021, 9, 740314. [Google Scholar] [CrossRef]
- Kim, H.H.; Saha, S.; Hwang, J.H.; Hosen, M.A.; Ahn, Y.T.; Park, Y.K.; Khan, M.A.; Jeon, B.H. Integrative biohydrogen-and biomethane-producing bioprocesses for comprehensive production of biohythane. Bioresour. Technol. 2022, 365, 128145. [Google Scholar] [CrossRef] [PubMed]
- Teke, G.M.; Anye Cho, B.; Bosman, C.E.; Mapholi, Z.; Zhang, D.; Pott, R.W.M. Towards industrial biological hydrogen production: A review. World J. Microbiol. Biotechnol. 2024, 40, 37. [Google Scholar] [CrossRef]
- Evans, P.N.; Boyd, J.A.; Leu, A.O.; Woodcroft, B.J.; Parks, D.H.; Hugenholtz, P.; Tyson, G.W. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 2019, 17, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhong, L.; Tian, Y.; Bai, X.; Liu, J. Identification of Cellulose-Degrading Bacteria and Assessment of Their Potential Value for the Production of Bioethanol from Coconut Oil Cake Waste. Microorganisms 2024, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Nasr, N.; Hafez, H.; El Naggar, M.H.; George Nakhla, G. Application of artificial neural networks for modeling of biohydrogen production. Int. J. Hydrogen Energy 2013, 38, 3189–3195. [Google Scholar] [CrossRef]
- Wade, M.J. Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes. Processes 2020, 8, 888. [Google Scholar] [CrossRef]
- Tejasen, S.; Taruyanon, K. Modelling of two-stage anaerobic treating wastewater from a molasses-based ethanol distillery with the IWA anaerobic digestion model no. 1. Eng. J. 2010, 14, 25–36. [Google Scholar] [CrossRef]
- Diop, S.; Chorukova, E.; Simeonov, I. Modeling and specific growth rates estimation of a two-stage anaerobic digestion process for hydrogen and methane production. IFAC-Pap. 2017, 50, 12641–12646. [Google Scholar] [CrossRef]
- Simeonov, I.; Chorukova, E. Mathematical modeling of the anaerobic digestion with production of hydrogen and methane. In Proceedings of the 4th International Conference on Water, Energy and Environment (ICWEE), Burgas, Bulgaria, 32–38 June 2016. [Google Scholar]
- Borisov, M.; Denchev, D.; Simeonov, I. Mathematical modelling of a two-stage anaerobic digestion process with hydrogen and methane production using ADM1. Ecol. Eng. Environ. Prot. 2020, 1, 18–29. [Google Scholar] [CrossRef]
- Borisov, M.; Dimitrova, N.; Simeonov, I. Mathematical Modelling and Stability Analysis of a Two-phase Biosystem. Processes 2020, 8, 791. [Google Scholar] [CrossRef]
- Borisov, M.; Dimitrova, N.; Simeonov, I. Mathematical modelling of anaerobic digestion with hydrogen and methane production. IFAC-Pap. 2016, 49, 231–238. [Google Scholar]
- Mo, P.; Guo, B.; Batstone, D.; Makinia, J.; Li, Y. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes—A comprehensive review. Water Res. 2023, 244, 120504. [Google Scholar] [CrossRef] [PubMed]
- Donoso-Bravo, A.; Gajardo, P.; Sebbah, M.; Vicencio, D. Comparison of performance in an anaerobic digestion process: One-reactor vs two-reactor configurations. Math. Biosci. Eng 2019, 16, 2447–2465. [Google Scholar] [CrossRef] [PubMed]
- Erdirencelebi, D.; Yalpir, S. Adaptive network fuzzy inference system modeling for the input selection and prediction of anaerobic digestion effluent quality. Appl. Math. Model. 2011, 35, 3821–3832. [Google Scholar] [CrossRef]
- Roeva, O.; Roeva, G.; Chorukova, E. Crow Search Algorithm for Modelling an Anaerobic Digestion Process: Algorithm Parameter Influence. Mathematics 2024, 12, 2317. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Vavouraki, A.I.; Kornaros, M. Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: A lab-scale evaluation using batch tests. Bioresour. Technol. 2014, 162, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, C.; Bolzonella, D.; Fatone, F.; Cecchi, F.; Pavan, P. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 2011, 102, 8605–8611. [Google Scholar] [CrossRef] [PubMed]
- Intanoo, P.; Rangsanvigit, P.; Malakul, P.; Chavadej, S. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour. Technol. 2014, 173, 256–265. [Google Scholar] [CrossRef]
- Schievano, A.; Tenca, A.; Lonati, S.; Manzini, E.; Adani, F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 2014, 124, 335–342. [Google Scholar] [CrossRef]
- Gurubel, K.J.; Sanchez, E.N.; Coronado-Mendoza, A.; Zuniga-Grajeda, V.; Sulbaran-Rangel, B.; Breton-Deval, L. Inverse optimal neural control via passivity approach for nonlinear anaerobic bioprocesses with biofuels production. Optim. Control Appl. Methods 2019, 40, 848–858. [Google Scholar] [CrossRef]
- Bastin, G.; Dochain, D. Adaptive Control of Bioreactors. In On-Line Estimation and Adaptive Control of Bioreactors; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Tun, K.J.G.; Rodríguez-Reyes, J.J.; León-Becerril, E.; Sánchez, E.U.M. Optimal fault tolerant control strategy of a continuous fermentative bioprocess for biogas production. IFAC-Pap. 2024, 58, 717–722. [Google Scholar]
- He, D.; Wang, H.; Tian, Y.; Christov, N.; Simeonov, I. Trajectory tracking of two-stage anaerobic digestion process: A predictive control with guaranteed performance and saturated input, based on ultra-local model. J. Process Control 2023, 129, 103039. [Google Scholar] [CrossRef]
- Christov, N.; Wang, H.; Simeonov, I. Extremum seeking control of two-stage anaerobic digestion system: A mini review. Ecol. Eng. Environ. Prot. 2021, 2, 12–25. [Google Scholar] [CrossRef]
- Christov, N.; Wang, H.; Simeonov, I. Recent results in two-stage anaerobic digestion systems control: A mini review. Ecol. Eng. Environ. Prot. 2024, 2, 36–50. [Google Scholar] [CrossRef]
- Tian, Y.; Pan, N.; Hu, M.; Wang, H.; Simeonov, I.; Kabaivanova, L.; Christov, N. Newton-Based Extremum Seeking for Dynamic Systems Using Kalman Filtering: Application to Anaerobic Digestion Process Control. Mathematics 2023, 11, 251. [Google Scholar] [CrossRef]
- Nsair, A.; Onen Cinar, S.; Alassali, A.; Abu Qdais, H.; Kuchta, K. Operational parameters of biogas plants: A review and evaluation study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Sevillano, C.A.; Pesantes, A.A.; Peña Carpio, E.; Martínez, E.J.; Gómez, X. Anaerobic digestion for producing renewable energy—The evolution of this technology in a new uncertain scenario. Entropy 2021, 23, 145. [Google Scholar] [CrossRef]
- Weinrich, S.; Nelles, M. Basics of Anaerobic Digestion—Biochemical Conversion and Process Modelling; DBFZ-Report; DBFZ: Leipzig, Germany, 2021; Volume 40. [Google Scholar]
- Simeonov, I.; Kabaivanova, L.; Chorukova, E. Two-stage anaerobic digestion of organic wastes: A review. Ecol. Eng. Environ. Prot. 2021, 3, 38–56. [Google Scholar] [CrossRef]
- Pan, N.; Wang, H.; Tian, Y.; Chorukova, E.; Simeonov, I.; Christov, N. Theoretical comparative studies of the biogaz yields from one-stage and two-stage anaerobic digestion processes. Ecol. Eng. Environ. Prot. 2022, 2, 45–55. [Google Scholar] [CrossRef]
- Abdur Rawoof, S.A.A.; Senthil Kumar, P.; Vo, D.-V.N.; Devaraj, T.; Subramanian, S. Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review. Renewble Sustain. Energy Rev. 2021, 152, 111700. [Google Scholar] [CrossRef]
- Kalogiannis, A.; Vasiliadou, I.A.; Spyridonidis, A.; Diamantis, V.; Stamatelatou, K. Biogas production from chicken manure wastes using an LBR-CSTR two-stage system: Process efficiency, economic feasibility, and carbon dioxide footprint. J. Chem. Technol. Biotechnol. 2022, 97, 2952–2961. [Google Scholar] [CrossRef]
- Lembo, G.; Signorini, A.; Marone, A.; Carbone, C.; Agostini, A. Hydrogen and Methane Production by Single- and Two-Stage Anaerobic Digestion of Second Cheese Whey: Economic Performances and GHG Emissions Evaluation. Energies 2022, 15, 7869. [Google Scholar] [CrossRef]
- Coats, E.R.; Searcy, E.; Feris, K.; Shrestha, D.; McDonald, A.G.; Briones, A.; Magnuson, T.; Prior, M. An integrated two-stage anaerobic digestion and biofuel production process to reduce life cycle GHG emissions from US dairies. Biofuels Bioprod. Biorefining 2013, 7, 459–473. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Tian, Y.; Christov, N.; Kabaivanova, L.; Simeonov, I. An UKF-based Extremum Seeking Control of Two-Stage Anaerobic Digestion Process. In Proceeding of the 2021 International Conference Automatics and Informatics (ICAI) (IEEE), Varna, Bulgaria, 30 September—2 October 2021; pp. 62–67. [Google Scholar]
- Zhang, J.; Mao, L.; Nithya, K.; Loh, K.C.; Dai, Y.; He, Y.; Tong, Y.W. Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste. Appl. Energy 2019, 249, 28–36. [Google Scholar] [CrossRef]
- Adarme, O.F.H.; Baêta, B.E.L.; Torres, M.C.; Tapiero, F.C.O.; Gurgel, L.V.A.; de Queiroz Silva, S.; de Aquino, S.F. Biogas production by anaerobic co-digestion of sugarcane biorefinery byproducts: Comparative analyses of performance and microbial community in novel single-and two-stage systems. Bioresour. Technol. 2022, 354, 127185. [Google Scholar]
- Basak, B.; Patil, S.M.; Kumar, R.; Ahn, Y.; Ha, G.-S.; Park, Y.-K.; Khan, M.A.; Chung, W.J.; Chang, S.W.; Jeon, B.-H. Syntrophic bacteria- and Methanosarcina-rich acclimatized microbiota with better carbohydrate metabolism enhances biomethanation of fractionated lignocellulosic biocomponents. Bioresour. Technol. 2022, 360, 127602. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; B Whitman, W.B. Transplanting the pathway engineering toolbox to methanogens. Curr. Opin. Biotechnol. 2019, 59, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Andrade Cruz, I.; Chuenchart, W.; Long, F.; Surendra, K.C.; Andrade, L.R.S.; Bilal, M.; Liu, H.; Figueiredo, R.T.; Khanal, S.K.; Ferreira, L.F.R. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresour. Technol. 2022, 345, 126433. [Google Scholar] [CrossRef]
- Rohit Gupta, P.; Ouderji, Z.H.; Uzma; Yu, Z.; William, T.; Sloan, W.T.; You, S. Machine learning for sustainable organic waste treatment: A critical review. npj Mater. Sustain. 2024, 2, 5. [Google Scholar] [CrossRef]
- Jia, R.; Song, Y.C.; Piao, D.M.; Kim, K.; Lee, C.Y.; Park, J. Exploration of deep learning models for real-time monitoring of state and performance of anaerobic digestion with online sensors. Bioresour. Technol. 2022, 363, 127908. [Google Scholar] [CrossRef]
- Kazemi, P.; Steyer, J.P.; Bengoa, C.; Font, J.; Giralt, J. Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes. Processes 2020, 8, 67. [Google Scholar] [CrossRef]
- Khan, M.; Chuenchart, W.; Surendra, K.C.; Khanal, S.K. Applications of artificial intelligence in anaerobic co-digestion: Recent advances and prospects. Bioresour. Technol. 2023, 370, 128501. [Google Scholar] [CrossRef] [PubMed]
BR1 | BR2 | Some Results | References |
---|---|---|---|
UASBR (thermophilic conditions) | CSTR (mesophilic conditions) | Optimum conditions for palm oil mill effluent treatment: BR1—HRT = 22 days; OLR = 275 gCOD/L.day; QH2 = 215 L H2/kgCOD BR2—HRT = 5 days; QCH4 = 320 L CH4/kgCOD; total energy of 15.43 MJ kgCOD; total COD removal efficiency = 94% | [45] |
Optimum conditions: BR1—HRT = 4.1 h; pH = 5.5 ± 0.1; T0 = 35 ± 1 °C; COD removal efficiency = 19 (%) for OLR = 29.3 kg COD/(m3 d); SO42 removal efficiency = 84 (%); BR2—HRT = 6 h; pH = 7.2–7.5; T0 = 35 ± 1 °C; QCH4 = 4.91 L/L.d); CH4 content = 63% for OLR = 16.1 kg COD/(m3 d); COD removal efficiency = 95 (%) | [111] | ||
CSTR | ASBR | Optimum conditions for palm oil mill effluent treatment: BR1—HRT = 3 days with QH2 = 106.13 mL H2/g-CODadded for OLR = 0.5 g-COD; BR2—HRT = 35 days for QCH4 = 334.56 mL CH4/g-CODadded; COD removal = 66.27%; Energy yield (CH4 + H2) achieved from TSAD is approximately 38.95% higher than single-stage AD | [69] |
CSTR | UASBR | Treatment of Baker’s yeast wastewater containing about 20 g COD/L organic compounds: OLR = 1.55 mg COD/cm3—COD removal = 9.05%; OLR = 4.1 mg COD/cm3—COD removal = 35.98%; Qbiogas = 113.4 L for 40 days | [44] |
For food waste, COD removal efficiency = 96%; for OLR = 15.8 g COD/L.d; QCH4 increased to 5.5 L/L day | [81] | ||
Optimal ratio D1/D2 = 5333 for hydrolysate of agave bagasse | [51] | ||
Solid-bed reactor (thermo- and mesophilic conditions) | UASBR (thermo and mesophilic conditions) | To treat solid potato waste completely within a short period of time, thermophilic conditions are preferred (OLR = 36 g COD L/L.day), but to obtain higher methane yields (QCH4 = 0.49 L CH4/gCOD/L degraded), mesophilic conditions are preferable | [88] |
CSTR | IC reactor | Optimum conditions: BR1—HRT = 6 h for QH2 = 2.41 L/L.day with a H2 content = 42% for OLR = 30 kg COD/m3.day; BR2—HRT = 12 h for QCH4 = 2.4 L/(L.day) with a CH4 content = 74.45% for OLR = 36 kg COD/m3 day | [48] |
Stages | Mesophilic Conditions (30–35 °C) | Thermophilic Conditions (55–60 °C) | Extreme Thermophilic Conditions (70–90 °C) |
---|---|---|---|
1st: hydrogen production (Bacteria) | Clostridium sp. Enterobacter sp. Citrobacter sp. Bacillus sp. | Thermoanaerobacterium sp. Clostridium sp. Thermoanaerobacter sp. | Caldanaerobacter sp. Caloramator sp. Thermotoga sp. |
2nd: methane production (Bacteria) | Clostridium sp. Bacillus sp. Desulfobacterium sp. | Clostridium sp. Thermoanaerobacterium sp. Desulfomicrobium sp. | Caloramator sp. |
2nd: methane production (Archaea) | Methanobacterium sp. Methanoculleus sp. Methanospirillum sp. Methanococcus sp. Methanobacter sp. | Methanothermobacter sp. Methanosarcina sp. | Methanothermus sp. Methanothermococcus sp. |
Hydraulic retention time for H2 reactor (days) | 2.5 |
Dilution rate D1 (days−1) | 0.4 |
Hydraulic retention time for CH4 reactor (days) | 25 |
Dilution rate D2 (days−1) | 0.04 |
Hydrogen production (dm3 L−1day−1) | 0.241 |
Methane production (dm3 L−1day−1) | 0.405 |
Total energy production (kWh/day) | 0.005028 |
Hydraulic retention time for H2 reactor (days) | 0.25 | 1 | 1.5 |
Dilution rate D1 (days−1) | 4 | 1 | 0.667 |
Hydraulic retention time for CH4 reactor (days) | 2.5 | 10 | 15 |
Dilution rate D2 (days−1) | 0.4 | 0.1 | 0.0667 |
Hydrogen production (L L−1day−1) | 1.67 | 0.49 | 0.19 |
Methane production (L L−1day−1) | 4.52 | 1.31 | 0.99 |
Total energy production (kWh/day) | 0.0004997 | 0.14472 | 0.108 |
Efficiency η (%) | 49 | 56 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeonov, I.; Chorukova, E.; Kabaivanova, L. Two-Stage Anaerobic Digestion for Green Energy Production: A Review. Processes 2025, 13, 294. https://doi.org/10.3390/pr13020294
Simeonov I, Chorukova E, Kabaivanova L. Two-Stage Anaerobic Digestion for Green Energy Production: A Review. Processes. 2025; 13(2):294. https://doi.org/10.3390/pr13020294
Chicago/Turabian StyleSimeonov, Ivan, Elena Chorukova, and Lyudmila Kabaivanova. 2025. "Two-Stage Anaerobic Digestion for Green Energy Production: A Review" Processes 13, no. 2: 294. https://doi.org/10.3390/pr13020294
APA StyleSimeonov, I., Chorukova, E., & Kabaivanova, L. (2025). Two-Stage Anaerobic Digestion for Green Energy Production: A Review. Processes, 13(2), 294. https://doi.org/10.3390/pr13020294