Combining Analytical Strategies to Provide Qualitative and Quantitative Analysis and Risk Assessment on Pharmaceuticals and Metabolites in Hospital Wastewaters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sample Preparation Technique
3.2. Screening Analysis
3.3. Compounds Quantification
3.4. Environmental Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WWTP | Wastewater treatment plant |
HWW | Hospital wastewater |
NSAID | Nonsteroidal anti-inflammatory drug |
SPE | Solid phase extraction |
DSPE | Dispersive solid phase extraction |
PSA | Primary-secondary amine |
C18 | Octadecyl bonded silica |
GCB | Graphitized carbon black |
HRMS | High-resolution mass spectrometry |
QTOF | Quadrupole time-of-flight |
QqQ | Triple quadrupole |
LC | Liquid chromatography |
RQ | Risk quotient |
PEC | Predicted environmental concentration |
MEC | Measured environmental concentration |
PNEC | Predicted no-effect concentration |
RQmix | Risk quotient from the mixture of pharmaceuticals |
CAN | Acetonitrile |
MeOH | Methanol |
HA | Hospital A |
HB | Hospital B |
SWW | Simulated wastewater |
TIC | Total ion count |
LOQ | Limit of quantification |
LOD | Limit of detection |
References
- World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2020; Volume 1, ISBN 9789240005105. [Google Scholar]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Occurrence, Sources and Fate of Pharmaceuticals and Personal Care Products in the Groundwater: A Review. Emerg. Contam. 2015, 1, 14–24. [Google Scholar] [CrossRef]
- Monteiro, S.C.; Boxall, A.B.A. Occurrence and Fate of Human Pharmaceuticals in the Environment. Rev. Environ. Contam. Toxicol. 2010, 202, 53–154. [Google Scholar]
- Qin, Q.; Chen, X.; Zhuang, J. The Fate and Impact of Pharmaceuticals and Personal Care Products in Agricultural Soils Irrigated with Reclaimed Water. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1379–1408. [Google Scholar] [CrossRef]
- Gardner, M.; Jones, V.; Comber, S.; Scrimshaw, M.D.; Coello-Garcia, T.; Cartmell, E.; Lester, J.; Ellor, B. Performance of UK Wastewater Treatment Works with Respect to Trace Contaminants. Sci. Total Environ. 2013, 456–457, 359–369. [Google Scholar] [CrossRef]
- BRASIL. Atlas Esgotos: Atualização Da Base de Dados de Estações de Tratamento de Esgotos; Agência Nacional de Águas: Brasilia, Brasil, 2020. [Google Scholar]
- Niemi, L.; Taggart, M.; Boyd, K.; Zhang, Z.; Gaffney, P.P.J.; Pfleger, S.; Gibb, S. Assessing Hospital Impact on Pharmaceutical Levels in a Rural ‘Source-to-Sink’ Water System. Sci. Total Environ. 2020, 737. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital Effluent: Investigation of the Concentrations and Distribution of Pharmaceuticals and Environmental Risk Assessment. Sci. Total Environ. 2012, 430, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Wielens Becker, R.; Ibáñez, M.; Cuervo Lumbaque, E.; Wilde, M.L.; Flores da Rosa, T.; Hernández, F.; Sirtori, C. Investigation of Pharmaceuticals and Their Metabolites in Brazilian Hospital Wastewater by LC-QTOF MS Screening Combined with a Preliminary Exposure and in Silico Risk Assessment. Sci. Total Environ. 2020, 699, 134218. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Dallegrave, A.; Becker, R.W.; Araújo, D.S.; Sirtori, C. Economically Feasible Strategy for Confirmation of Pharmaceuticals in Hospital Effluent Using Screening Analysis. Anal. Methods 2020, 12, 4691–4697. [Google Scholar] [CrossRef] [PubMed]
- Ngigi, A.N.; Magu, M.M.; Muendo, B.M. Occurrence of Antibiotics Residues in Hospital Wastewater, Wastewater Treatment Plant, and in Surface Water in Nairobi County, Kenya. Environ. Monit. Assess. 2020, 192, 18. [Google Scholar] [CrossRef]
- Oliveira, T.S.; Al Aukidy, M.; Verlicchi, P. Occurrence of Common Pollutants and Pharmaceuticals in Hospital Effluents. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2018; Volume 60, ISBN 978-3-319-62178-4. [Google Scholar]
- Pérez-Alvarez, I.; Islas-Flores, H.; Gómez-Oliván, L.M.; Barceló, D.; López De Alda, M.; Pérez Solsona, S.; Sánchez-Aceves, L.; SanJuan-Reyes, N.; Galar-Martínez, M. Determination of Metals and Pharmaceutical Compounds Released in Hospital Wastewater from Toluca, Mexico, and Evaluation of Their Toxic Impact. Environ. Pollut. 2018, 240, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Langford, K.H.; Thomas, K.V. Determination of Pharmaceutical Compounds in Hospital Effluents and Their Contribution to Wastewater Treatment Works. Environ. Int. 2009, 35, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Frédéric, O.; Yves, P. Pharmaceuticals in Hospital Wastewater: Their Ecotoxicity and Contribution to the Environmental Hazard of the Effluent. Chemosphere 2014, 115, 31–39. [Google Scholar] [CrossRef]
- Escher, B.I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C.S. Environmental Toxicology and Risk Assessment of Pharmaceuticals from Hospital Wastewater. Water Res. 2011, 45, 75–92. [Google Scholar] [CrossRef]
- Gómez, M.J.; Petrović, M.; Fernández-Alba, A.R.; Barceló, D. Determination of Pharmaceuticals of Various Therapeutic Classes by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry Analysis in Hospital Effluent Wastewaters. J. Chromatogr. A 2006, 1114, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M. Before the Injection—Modern Methods of Sample Preparation for Separation Techniques. J. Chromatogr. A 2003, 1000, 3–27. [Google Scholar] [CrossRef]
- Almeida, C.M.M. Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. Separations 2021, 8, 16. [Google Scholar] [CrossRef]
- Pavlović, D.M.; Babić, S.; Horvat, A.J.M.; Kaštelan-Macan, M. Sample Preparation in Analysis of Pharmaceuticals. TrAC Trends Anal. Chem. 2007, 26, 1062–1075. [Google Scholar] [CrossRef]
- Pérez-Lemus, N.; López-Serna, R.; Pérez-Elvira, S.I.; Barrado, E. Analytical Methodologies for the Determination of Pharmaceuticals and Personal Care Products (PPCPs) in Sewage Sludge: A Critical Review. Anal. Chim. Acta 2019, 1083, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Sadutto, D.; Álvarez-Ruiz, R.; Picó, Y. Systematic Assessment of Extraction of Pharmaceuticals and Personal Care Products in Water and Sediment Followed by Liquid Chromatography–Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2020, 412, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Pugajeva, I.; Rusko, J.; Perkons, I.; Lundanes, E.; Bartkevics, V. Determination of Pharmaceutical Residues in Wastewater Using High Performance Liquid Chromatography Coupled to Quadrupole-Orbitrap Mass Spectrometry. J. Pharm. Biomed. Anal. 2017, 133, 64–74. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review. Part Ii. TrAC Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Gurke, R.; Rossmann, J.; Schubert, S.; Sandmann, T.; Rößler, M.; Oertel, R.; Fauler, J. Development of a SPE-HPLC-MS/MS Method for the Determination of Most Prescribed Pharmaceuticals and Related Metabolites in Urban Sewage Samples. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2015, 990, 23–30. [Google Scholar] [CrossRef]
- Murrell, K.A.; Dorman, F.L. A Comparison of Liquid-Liquid Extraction and Stir Bar Sorptive Extraction for Multiclass Organic Contaminants in Wastewater by Comprehensive Two-Dimensional Gas Chromatography Time of Flight Mass Spectrometry. Talanta 2021, 221, 121481. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.M.; Reichert, J.F.; Martins, A.F. A Simultaneous Determination of Anti-Cancer Drugs in Hospital Effluent by DLLME HPLC-FLD, Together with a Risk Assessment. Chemosphere 2018, 201, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Lo, S.L.; Liou, Y.H.; Hu, C.Y. Removal of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) by Electrocoagulation-Flotation with a Cationic Surfactant. Sep. Purif. Technol. 2015, 152, 148–154. [Google Scholar] [CrossRef]
- Meneghini, V.; Corazza, G.; Magosso, H.A.; Merib, J.; Carasek, E. A Rapid Analytical Approach for Monitoring Pharmaceuticals in Hospital Wastewater—A Dpx-Based Procedure with Environmentally-Friendly Extraction Phase Coupled to High Performance Liquid Chromatography–Diode Array/Fluorescence Detectors. Separations 2021, 8, 109. [Google Scholar] [CrossRef]
- González-Curbelo, M.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Evolution and Applications of the QuEChERS Method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Nannou, C.I.; Boti, V.I.; Albanis, T.A. A Modified QuEChERS Approach for the Analysis of Pharmaceuticals in Sediments by LC-Orbitrap HRMS. Anal. Bioanal. Chem. 2019, 411, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Wasik, A.; Kot-Wasik, A.; Namiesnik, J. New Trends in Sample Preparation Techniques for the Analysis of the Residues of Pharmaceuticals in Environmental Samples. Curr. Anal. Chem. 2015, 12, 280–302. [Google Scholar] [CrossRef]
- Krauss, M.; Singer, H.; Hollender, J. LC-High Resolution MS in Environmental Analysis: From Target Screening to the Identification of Unknowns. Anal. Bioanal. Chem. 2010, 397, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Bade, R.; Rousis, N.I.; Bijlsma, L.; Gracia-Lor, E.; Castiglioni, S.; Sancho, J.V.; Hernandez, F. Screening of Pharmaceuticals and Illicit Drugs in Wastewater and Surface Waters of Spain and Italy by High Resolution Mass Spectrometry Using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS. Anal. Bioanal. Chem. 2015, 407, 8979–8988. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Ibáñez, M.; Bade, R.; Bijlsma, L.; Sancho, J.V. Investigation of Pharmaceuticals and Illicit Drugs in Waters by Liquid Chromatography-High-Resolution Mass Spectrometry. TrAC Trends Anal. Chem. 2014, 63, 140–157. [Google Scholar] [CrossRef]
- Letzel, T.; Bayer, A.; Schulz, W.; Heermann, A.; Lucke, T.; Greco, G.; Grosse, S.; Schüssler, W.; Sengl, M.; Letzel, M. LC-MS Screening Techniques for Wastewater Analysis and Analytical Data Handling Strategies: Sartans and Their Transformation Products as an Example. Chemosphere 2015, 137, 198–206. [Google Scholar] [CrossRef]
- Cuervo Lumbaque, E.; Cardoso, R.M.; Dallegrave, A.; Dos Santos, L.O.; Ibáñez, M.; Hernández, F.; Sirtori, C. Pharmaceutical Removal from Different Water Matrixes by Fenton Process at Near-Neutral PH: Doehlert Design and Transformation Products Identification by UHPLC-QTOF MS Using a Purpose-Built Database. J. Environ. Chem. Eng. 2018, 6, 3951–3961. [Google Scholar] [CrossRef]
- Kaufmann, A. High-Resolution Mass Spectrometry for Bioanalytical Applications: Is This the New Gold Standard? J. Mass Spectrom. 2020, 55, e4533. [Google Scholar] [CrossRef] [PubMed]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS Analysis and Characterization of Polyphenols in Food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef]
- Hernández, F.; Ibáñez, M.; Botero-Coy, A.-M.; Bade, R.; Bustos-López, M.C.; Rincón, J.; Moncayo, A.; Bijlsma, L. LC-QTOF MS Screening of More than 1,000 Licit and Illicit Drugs and Their Metabolites in Wastewater and Surface Waters from the Area of Bogotá, Colombia. Anal. Bioanal. Chem. 2015, 407, 6405–6416. [Google Scholar] [CrossRef] [PubMed]
- Lumbaque, E.C.; da Silva, B.A.; Böck, F.C.; Helfer, G.A.; Ferrão, M.F.; Sirtori, C. Total Dissolved Iron and Hydrogen Peroxide Determination Using the PhotoMetrixPRO Application: A Portable Colorimetric Analysis Tool for Controlling Important Conditions in the Solar Photo-Fenton Process. J. Hazard. Mater. 2019, 378, 120740. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.W.; Cardoso, R.M.; Dallegrave, A.; Ruiz-Padillo, A.; Sirtori, C. Quantification of Pharmaceuticals in Hospital Effluent: Weighted Ranking of Environmental Risk Using a Fuzzy Hybrid Multicriteria Method. Chemosphere 2023, 338, 139368. [Google Scholar] [CrossRef]
- Cuervo Lumbaque, E.; Wielens Becker, R.; Salmoria Araújo, D.; Dallegrave, A.; Ost Fracari, T.; Lavayen, V.; Sirtori, C. Degradation of Pharmaceuticals in Different Water Matrices by a Solar Homo/Heterogeneous Photo-Fenton Process over Modified Alginate Spheres. Environ. Sci. Pollut. Res. 2019, 26, 6532–6544. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.M.; Becker, R.W.; Jachstet, L.A.; Scunderlick, D.; Dallegrave, A.; Ruiz-Padillo, A.; Sirtori, C. Qualitative Evaluation of Pharmaceuticals and Metabolites in Hospital Effluent: Influence of Sample Preparation Technique and Outranking by Environmental Risk Using the ELECTRE Method. Sci. Total Environ. 2022, 834, 155119. [Google Scholar] [CrossRef] [PubMed]
- Cuervo Lumbaque, E.; Cardoso, R.M.; de Araújo Gomes, A.; Malato, S.; Sánchez Pérez, J.A.; Sirtori, C. Removal of Pharmaceuticals in Hospital Wastewater by Solar Photo-Fenton with Fe3+-EDDS Using a Pilot Raceway Pond Reactor: Transformation Products and in Silico Toxicity Assessment. Microchem. J. 2021, 164, 106014. [Google Scholar] [CrossRef]
- European Medicines Agency EMEA Guidance for RA; European Medicines Agency: Amsterdam, The Netherlands, 2006; pp. 1–12.
- Mansour, F.; Al-Hindi, M.; Saad, W.; Salam, D. Environmental Risk Analysis and Prioritization of Pharmaceuticals in a Developing World Context. Sci. Total Environ. 2016, 557–558, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Lien, L.T.Q.; Hoa, N.Q.; Chuc, N.T.K.; Thoa, N.T.M.; Phuc, H.D.; Diwan, V.; Dat, N.T.; Tamhankar, A.J.; Lundborg, C.S. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use-a One Year Study from Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 588. [Google Scholar] [CrossRef]
- Ghernaout, D.; Elboughdiri, N. Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Appl. Eng. 2020, 4, 1–6. [Google Scholar]
- Paulus, G.K.; Hornstra, L.M.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N.; Medema, G. The Impact of On-Site Hospital Wastewater Treatment on the Downstream Communal Wastewater System in Terms of Antibiotics and Antibiotic Resistance Genes. Int. J. Hyg. Environ. Health 2019, 222, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and Antibiotic Resistant Genes (ARGs) in Groundwater: A Global Review on Dissemination, Sources, Interactions, Environmental and Human Health Risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef]
- Minden, V.; Deloy, A.; Volkert, A.M.; Leonhardt, S.D.; Pufal, G. Antibiotics Impact Plant Traits, Even at Small Concentrations. AoB Plants 2017, 9, plx010. [Google Scholar] [CrossRef]
- ter Kuile, B.H.; Kraupner, N.; Brul, S. The Risk of Low Concentrations of Antibiotics in Agriculture for Resistance in Human Health Care. FEMS Microbiol. Lett. 2016, 363, fnw210. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological Effects, Environmental Fate and Risks of Pharmaceutical and Personal Care Products in the Water Environment: A Review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef]
- Triebskorn, R.; Casper, H.; Heyd, A.; Eikemper, R.; Köhler, H.-R.; Schwaiger, J. Toxic Effects of the Non-Steroidal Anti-Inflammatory Drug Diclofenac. Aquat. Toxicol. 2004, 68, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Bartoskova, M.; Dobsikova, R.; Stancova, V.; Zivna, D.; Blahova, J.; Marsalek, P.; Zelnickova, L.; Bartos, M.; Casuscelli di Tocco, F.; Faggio, C. Evaluation of Ibuprofen Toxicity for Zebrafish (Danio Rerio) Targeting on Selected Biomarkers of Oxidative Stress. Neuro Endocrinol. Lett. 2013, 34, 102–108. [Google Scholar]
- Gómez-Oliván, L.M.; Galar-Martínez, M.; Islas-Flores, H.; García-Medina, S.; SanJuan-Reyes, N. DNA Damage and Oxidative Stress Induced by Acetylsalicylic Acid in Daphnia Magna. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2014, 164, 21–26. [Google Scholar] [CrossRef]
- Ding, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J.; Gan, J. Toxicity, Degradation and Metabolic Fate of Ibuprofen on Freshwater Diatom Navicula Sp. J. Hazard. Mater. 2017, 330, 127–134. [Google Scholar] [CrossRef]
- Fonseca, V.F.; Duarte, I.A.; Duarte, B.; Freitas, A.; Pouca, A.S.V.; Barbosa, J.; Gillanders, B.M.; Reis-Santos, P. Environmental Risk Assessment and Bioaccumulation of Pharmaceuticals in a Large Urbanized Estuary. Sci. Total Environ. 2021, 783, 147021. [Google Scholar] [CrossRef] [PubMed]
- Świacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Świeżak, J. Presence of Pharmaceuticals and Their Metabolites in Wild-Living Aquatic Organisms—Current State of Knowledge. J. Hazard. Mater. 2022, 424, 127350. [Google Scholar] [CrossRef]
- Maculewicz, J.; Kowalska, D.; Świacka, K.; Toński, M.; Stepnowski, P.; Białk-Bielińska, A.; Dołżonek, J. Transformation Products of Pharmaceuticals in the Environment: Their Fate, (Eco)Toxicity and Bioaccumulation Potential. Sci. Total Environ. 2022, 802, 149916. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sorensen, B.; Holten Lutzhoft, H.C.; Andersen, H.R.; Ingerslev, F. Environmental Risk Assessment of Antibiotics: Comparison of Mecillinam, Trimethoprim and Ciprofloxacin. J. Antimicrob. Chemother. 2000, 46, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119. [Google Scholar] [CrossRef] [PubMed]
- Cortez, F.S.; da Silva Souza, L.; Guimarães, L.L.; Almeida, J.E.; Pusceddu, F.H.; Maranho, L.A.; Mota, L.G.; Nobre, C.R.; Moreno, B.B.; de Souza Abessa, D.M.; et al. Ecotoxicological Effects of Losartan on the Brown Mussel Perna Perna and Its Occurrence in Seawater from Santos Bay (Brazil). Sci. Total Environ. 2018, 637–638, 1363–1371. [Google Scholar] [CrossRef]
- Isidori, M.; Parrella, A.; Pistillo, P.; Temussi, F. Effects of Ranitidine and Its Photoderivatives in the Aquatic Environment. Environ. Int. 2009, 35, 821–825. [Google Scholar] [CrossRef]
- Tomic, Z.; Milijasevic, B.; Sabo, A.; Dusan, L.; Jakovljevic, V.; Mikov, M.; Majda, S.; Vasovic, V. Diclofenac and Ketoprofen Liver Toxicity in Rat. Eur. J. Drug Metab. Pharmacokinet. 2008, 33, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Panini, A.; Pernice, C.; Raso, M.G.; Barbieri, V. Neurologic Toxicity of Lidocaine during Awake Intubation in a Patient with Tongue Base Abscess. Case Report. Am. J. Otolaryngol. 2014, 35, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Suarez, C.R.; Phillip Ow, E. Chloramphenicol Toxicity Associated with Severe Cardiac Dysfunction. Pediatr. Cardiol. 1992, 13, 48–51. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Singh, D.K. Insight into the Amoxicillin Resistance, Ecotoxicity, and Remediation Strategies. J. Water Process Eng. 2021, 39, 101858. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef] [PubMed]
- Całus-Makowska, K.; Dziubińska, J.; Grosser, A.; Grobelak, A. Application of the Fenton and Photo-Fenton Processes in Pharmaceutical Removal: New Perspectives in Environmental Protection. Desalination Water Treat 2025, 321, 100949. [Google Scholar] [CrossRef]
Cartridge | Sorbent Amount (mg) | Compounds Detected |
---|---|---|
Hydroxylated, amide-free surfaces and a nonpolar PS-DVB core (Bond Elut Plexa) | 500 | 26 |
200 | 32 | |
Functionalized polymeric reversed-phase sorbent (Strata-X) | 200 | 32 |
Styrene-divinylbenzene polymer modified with a proprietary nonpolar surface (Bond Elut PPL) | 1 | 13 |
Polymeric reversed-phase sorbent (Oasis HLB) | 200 | 29 |
60 | 29 |
Analyte | Recovery (%) | LOD a (µg L−1) | LOQ a (µg L−1) | R2 | ||
---|---|---|---|---|---|---|
5 µg L−1 | 20 µg L−1 | 60 µg L−1 | ||||
5-Hidroxythiabendazole | 110 | 106 | 106 | 0.03 | 0.10 | 0.9967 |
Albendazole sulfoxide a | 97 | 113 | 89 | 0.71 | 2.37 | 0.9954 |
Chloramphenicol | 70 | 101 | 109 | 0.01 | 0.04 | 0.9981 |
Ciprofloxacin | 120 | 108 | 79 | 1.13 | 3.77 | 0.9986 |
Clindamycin | 73 | 120 | 84 | 0.92 | 3.09 | 0.9985 |
Diazepam | 88 | 115 | 88 | 0.10 | 0.34 | 0.9960 |
Erythromycin | 118 | 118 | 106 | 0.17 | 0.56 | 0.9985 |
Ethisterone | <LOQ | 111 | 87 | 2.73 | 9.09 | 0.9959 |
Levamisole | 97 | 105 | 119 | 0.06 | 0.21 | 0.9964 |
Levofloxacin | <LOQ | 112 | 83 | 1.82 | 6.05 | 0.9964 |
Lincomycin | 93 | 102 | 99 | 0.41 | 1.36 | 0.9991 |
Metoprolol | <LOQ | 114 | 86 | 5.01 | 16.71 | 0.9995 |
Ofloxacin | <LOQ | 119 | 83 | 1.77 | 5.89 | 0.9964 |
Oxolinic acid | 112 | 112 | 92 | 0.54 | 1.79 | 0.9955 |
Praziquantel | 70 | 105 | 99 | 0.01 | 0.01 | 0.9977 |
Progesterone | 87 | 106 | 120 | 0.90 | 3.01 | 0.9967 |
Sulfadiazine | 103 | 109 | 108 | 0.56 | 1.88 | 0.9989 |
Sulfadoxine | 117 | 117 | 106 | 0.80 | 2.65 | 0.9969 |
Sulfamethazine | 76 | 108 | 101 | 0.59 | 1.98 | 0.9952 |
Sulfathiazole | 86 | 106 | 104 | 0.74 | 2.46 | 0.9963 |
Trimethoprim | <LOQ | 113 | 92 | 1.85 | 6.17 | 0.9953 |
Analyte | Concentration (µg L−1) | |
---|---|---|
HA | HB | |
5-Hidroxythiabendazole | <LOQ | 1.32 ± 1.14 |
Albendazole sulfoxide | 4.63 ± 0.73 | 1.17 ± 0.06 |
Chloramphenicol | 1.56 ± 0.01 | 1.33 ± 0.01 |
Ciprofloxacin | 172.50 ± 20.46 | 150.69 ± 2.32 |
Clindamycin | 23.20 ± 1.05 | 35.50 ± 0.07 |
Diazepam | 2.23 ± 0.95 | 68.61 ± 1.80 |
Erythromycin | <LOQ | <LOQ |
Ethisterone | <LOQ | <LOQ |
Levamisole | <LOQ | <LOQ |
Levofloxacin | 239.64 ± 7.86 | 3.45 ± 0.32 |
Lincomycin | 3.00 ± 0.04 | 5.90 ± 0.28 |
Metoprolol | 213.33 ± 0.72 | 164.04 ± 1.95 |
Ofloxacin | 239.64 ± 8.58 | 3.45 ± 0.32 |
Oxolinic acid | <LOQ | <LOQ |
Praziquantel | <LOQ | <LOQ |
Progesterone | <LOQ | <LOQ |
Sulfadiazine | <LOQ | 1.87 ± 0.06 |
Sulfadoxine | <LOQ | <LOQ |
Sulfamethazine | <LOQ | <LOQ |
Sulfathiazole | <LOQ | <LOQ |
Trimethoprim | 50.17 ± 1.52 | 169.89 ± 4.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Mühlen, L.; Demarco, M.; Sirtori, C.; Zanella, R.; Prestes, O.D. Combining Analytical Strategies to Provide Qualitative and Quantitative Analysis and Risk Assessment on Pharmaceuticals and Metabolites in Hospital Wastewaters. Processes 2025, 13, 307. https://doi.org/10.3390/pr13020307
von Mühlen L, Demarco M, Sirtori C, Zanella R, Prestes OD. Combining Analytical Strategies to Provide Qualitative and Quantitative Analysis and Risk Assessment on Pharmaceuticals and Metabolites in Hospital Wastewaters. Processes. 2025; 13(2):307. https://doi.org/10.3390/pr13020307
Chicago/Turabian Stylevon Mühlen, Lisandro, Marisa Demarco, Carla Sirtori, Renato Zanella, and Osmar Damian Prestes. 2025. "Combining Analytical Strategies to Provide Qualitative and Quantitative Analysis and Risk Assessment on Pharmaceuticals and Metabolites in Hospital Wastewaters" Processes 13, no. 2: 307. https://doi.org/10.3390/pr13020307
APA Stylevon Mühlen, L., Demarco, M., Sirtori, C., Zanella, R., & Prestes, O. D. (2025). Combining Analytical Strategies to Provide Qualitative and Quantitative Analysis and Risk Assessment on Pharmaceuticals and Metabolites in Hospital Wastewaters. Processes, 13(2), 307. https://doi.org/10.3390/pr13020307