Short-Term Optimal Scheduling of a Cascade Hydro-Photovoltaic System for Maximizing the Expectation of Consumable Electricity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objective Function
2.2. Constraint Condition
2.2.1. Hydropower Plant Constraint
- (1)
- Water balance constraint
- (2)
- Reservoir-level constraint
- (3)
- Initial and final water level control
- (4)
- Outbound traffic constraints
- (5)
- Hydropower plant output constraint
- (6)
- Water level–storage relationship
- (7)
- Tail water–discharge relationship
2.2.2. Unit Constraint
- (1)
- Unit output constraint
- (2)
- Constraints on generating the flow of the unit
- (3)
- Unit vibration zone constraints
- (4)
- Unit on and off duration constraints
- (5)
- Unit output climbing constraints
- (6)
- Unit output fluctuation restriction
- (7)
- Power generation head constraints
- (8)
- Head loss function
- (9)
- Relationship of unit power characteristics
2.2.3. Grid Constraints
- (1)
- Constraints on the range of cascade hydropower output
- (2)
- Sectional section constraint
2.3. Model Transformation
- (1)
- Constrained linearization of the unit vibration zone
- (2)
- Linearization of hydroelectric unit output fluctuation limitation constraints
2.4. Photovoltaic Output Scenario Construction
- (1)
- Discharge deviation treatment
- (2)
- Fuzzy cluster analysis
- (3)
- PV output scenarios
2.5. Solution Process
3. Results and Discussion
3.1. Engineering Background
3.2. Analysis of Results
3.2.1. PV Power Output Scenario Analysis
3.2.2. Analysis of the on and off State of Hydropower Plants
3.2.3. Cascade Hydropower Results Analysis
- (1)
- Power output process of cascade hydropower plants
- (2)
- Hydropower unit power output process
- (3)
- Water level process of hydropower plant
- (4)
- Output analysis of each section
3.2.4. Comparative Analysis of Complementary Effects
4. Conclusions
- (1)
- A refined model maximizes expected power consumption, using units as the smallest scheduling unit, improving detail over traditional hydropower plant-level models. It captures unit-specific characteristics like climbing abilities, vibration zones, starts/stops, and grid zones, aligning better with actual scheduling needs.
- (2)
- Coding methods were fused and innovated to enhance solving efficiency. The unit-level modeling increases solution complexity, so piecewise linear approximations, 0–1 integer variables, power generation head discretization, and other linearization techniques were adapted. This transformed the original MINLP and MILP models for quick, accurate solutions using commercial tools.
- (3)
- The expected model of short-term maximum absorbable power established in this paper can effectively improve the overall absorbable power of the complementary system. However, limited by the physical grid and the hydraulic and electrical constraints of cascade hydropower, the promotion capacity is limited under the guarantee of the power supply support capacity of the grid.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Description |
Hydro | Hydropower |
MINLP | Mixed-integer nonlinear programming |
MILP | Mixed-integer linear programming |
Prob | Probability |
WT | Wind turbine |
PV | Photovoltaic |
OHF | Output–head–flow |
Appendix A
Algorithm Coding Example
- //Introducing the CPLEX solver class in the Java environment
- import ilog.concert.IloException;
- import ilog.concert.IloNumVar;
- import ilog.concert.IloNumVarType;
- import ilog.cplex.IloCplex;
- public class MyTest {
- /**
- * obj = x1 + 5 × 2 + x3
- * −x1 + x2 + x3 <= 56;
- * x1 − 3 × 2 + x3 <= 39;
- * 0 <= x1 <= 40;
- * x2 ≥ 0;
- * x3 ≥ 0;
- */
- public static void main(String[] args) throws IloException {
- //Create a new solution model
- IloCplex cplex = new IloCplex();
- //Variable declaration, 3 variables
- int varNum = 3;
- IloNumVar [] vars = new IloNumVar[varNum];
- Double[] xishu = new double[]{1,5,1};
- Double[] mins = new double[]{0,0,0};
- Double[] maxs = new double[]{30, Double.MAX_VALUE, Double.MAX_VALUE};
- for (int i = 0; i < vars.length; i++){
- vars[i] = cplex.numVar(mins[i], maxs[i], IloNumVarType.Float);
- }
- //Objective function
- cplex.addMaximize(cplex.scalProd(vars, xishu));
- //Constraints handling
- cplex. addLe(cplex. Sum(cplex. prod(1.0, vars [0]), cplex. prod(1.0, vars [1]), cplex. prod(1.0, vars
- [2])), 56);
- cplex. addLe(cplex. sum(cplex. prod(1.0, vars [0]), cplex. prod(−3.0, vars [1]), cplex. prod(1.0, vars
- [2])), 39);
- //Model solving
- if(cplex.solve()){
- cplex.output().println(“Solution status = “ + cplex.getStatus());
- cplex.output().println(“Solution value = “ + cplex.getObjValue());
- //Output variable results
- double[] vals = cplex.getValues(vars);
- for (int i = 0; i < vals.length; i++){
- System.out.println(“i: “+i+”, value: “+vals[i]);
- }
- }
- cplex.end();
- }
- }
References
- Janak, J. Do renewable portfolio standards increase renewable energy capacity? Evidence from the United States. J. Environ. Manag. 2021, 287, 112261. [Google Scholar] [CrossRef]
- Weschenfelder, F.; Leite, G.N.P.; Costa, A.C.A.; Vilela, O.C.; Ribeiro, C.M.; Ochoa, A.A.V.; Araújo, A.M. A review on the complementarity between grid-connected solar and wind power systems. J. Clean. Prod. 2020, 257, 120617. [Google Scholar] [CrossRef]
- Zhang, J.T.; Cheng, C.T.; Yu, S.; Shen, J.J.; Wu, X.Y.; Su, H.Y. Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China. Energy 2022, 260, 125163. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.F.; Deng, Y.; Xing, X.L.; Yuan, Q.S.; Du, C.G.; Gan, J.W.; Zheng, Y.R.; Liu, Y.X.; Xia, Y.F.; et al. Impacts of cascade hydropower development on river ecosystem homeostasis: A review. J. Hydrol. 2024, 638, 131484. [Google Scholar] [CrossRef]
- Yang, Z.K.; Liu, P.; Cheng, L.; Liu, D.L.; Ming, B.; Li, H.; Xia, Q. Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China. Energy 2021, 236, 121519. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Ma, C.; Lian, J.J.; Pang, X.L.; Qiao, Y.N.; Chaima, E. Optimal photovoltaic capacity of large-scale hydro-photovoltaic complementary systems considering electricity delivery demand and reservoir characteristics. Energy Convers. Manag. 2019, 195, 597–608. [Google Scholar] [CrossRef]
- Shen, J.J.; Wang, Y.; Cheng, C.T.; Li, X.F.; Miao, S.M.; Zhang, Y.; Zhang, J.T. Research status and prospect of generation scheduling for hydropower-wind-solar energy complementary system. Proc. CSEE 2022, 42, 3871–3885. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, J.X.; Li, Q.T.; Wang, X.L.; Liu, Z.T.; Wang, X.B.; Wang, R.G. Optimal configuration of multi-energy complementary composite power plant and its application in generation expansion planning. Power Syst. Technol. 2021, 45, 3006–3015. [Google Scholar] [CrossRef]
- Wang, K.; Wu, X.; Wang, X.; Dang, P. Two-stage stochastic optimal scheduling for multi-microgrid networks with natural gas blending with hydrogen and low carbon incentive under uncertain environment. J. Energy Storage 2023, 72, 108319. [Google Scholar] [CrossRef]
- Luo, B.; Miao, S.M.; Qiu, Y.W.; Gao, L.; Chen, G.; Wang, L. Operation safety analysis method for cascaded hydro-photovoltaic complementary generation system and its application. Sichuan Electr. Power Technol. 2021, 44, 1–6. [Google Scholar] [CrossRef]
- Ming, B.; Li, Y.; Liu, P.; Wang, Y.M.; Ma, C.H.; Huang, Q. Long-term optimal operation of hydro-solar hybrid energy systems nested with short-term energy curtailment risk. J. Hydraul. Eng. 2021, 56, 712–722. [Google Scholar] [CrossRef]
- Yuan, W.N.; Huang, X.F.; Xian, Y.H.C.; Li, D.C.; Li, X. Compensation benefit sharing of hydro-photovoltaic complementary energy based on CRITIC-TOPSIS method. Power Syst. Technol. 2024, 48, 2003–2011. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Guo, S.; Cheng, L.; Zhou, Y.; Gao, S.; Li, H. Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China. Appl. Energy 2018, 228, 1341–1352. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Chen, S.J.; Ma, G.W.; Han, X.Y.; Wang, L. Short-term complementary operation of hydro-photovoltaic integrated system considering power generation and output fluctuation. Trans. China Electrotech. Soc. 2020, 35, 2769–2779. [Google Scholar]
- Luo, B.; Chen, Y.C.; Liu, Z.W.; Miao, S.M.; Wang, H.R.; Zhang, H. Short-term Optimal Dispatch Model for Maximizing Expectation of Accommodation Power of Cascade Hydro-Photovoltaic Complementary System. Autom. Electr. Power Syst. 2023, 47, 66–75. [Google Scholar] [CrossRef]
- Shen, J.J.; Cheng, C.T.; Cao, R.; Lu, J.Y. Key issues and development in large-scale hydropower absorption and peak regulation. Autom. Electr. Power Syst. 2018, 42, 174–183. [Google Scholar] [CrossRef]
- Miao, S.M.; Luo, B.; Liu, B.X.; Shen, J.J.; Cheng, C.T. Short-term coordination model for large and small hydropower consumption considering economy and reliability. Autom. Electr. Power Syst. 2018, 42, 101–109. [Google Scholar] [CrossRef]
- Xu, F.; Li, L.L.; Chen, Z.X.; Tu, M.F.; Ding, Q. Generation scheduling model and application with fluctuation reduction of unit output. Autom. Electr. Power Syst. 2012, 36, 45–50. [Google Scholar]
- Zhong, H.Y.; Huang, Q.; Ming, B.; Liu, P.; Yang, Y.; Wang, Z. An efficient method for deriving reservoir operating rules by coupling ensemble forecasting information. J. Hydroelectr. Eng. 2021, 40, 44–55. [Google Scholar] [CrossRef]
- Cheng, C.T. Function remolding of hydropower systems for carbon neutral and its key problems. Autom. Electr. Power Syst. 2021, 45, 29–36. [Google Scholar] [CrossRef]
- Su, C.G.; Wang, P.L.; Wu, X.Y.; Cheng, C.T.; Wang, J.Y. A compact MILP model for short-term peak shaving of cascaded hydropower plants considering unit commitment. Power Syst. Technol. 2018, 42, 1883–1891. [Google Scholar] [CrossRef]
- Shen, J.J.; Cheng, C.T.; Cheng, X.; Lund, J.R. Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid. Energy 2016, 95, 433–446. [Google Scholar] [CrossRef]
- Su, C.G.; Cheng, C.T.; Wang, P.L.; Shen, J.J.; Wu, X.Y. Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants. Appl. Energy 2019, 242, 285–293. [Google Scholar] [CrossRef]
- Cheng, C.T.; Wu, X.Y.; Shen, J.J.; Liao, S.L. Short-term optimal operation methods of large-scale hydropower plants I: General overview. J. Hydraul. Eng. 2011, 42, 1017–1024. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Tang, J.; Wang, J.; Wang, J.; Qiu, M.Q. Study on the operating condition diagnosis method of hydropower station equipment based on fuzzy clustering analysis. J. Phys. 2022, 2303, 012079. [Google Scholar] [CrossRef]
Hydropower Plant Number | Adjustment Performance | Unit Number | Single Unit Capacity/MW | Vibration Zone/MW | Unit Start/Stop Duration/h | Duration of Stabilized Output/h | Water Flow Stagnation Time/h |
---|---|---|---|---|---|---|---|
1 | Multi-year conditioning | 1, 2, 3 | 200 | (45, 90) | 2 | 1 | |
2 | Seasonal adjustments | 1, 2, 3, 4 | 190 125 | (40, 110) (30, 80) | 2 2 | 1 1 | 1 |
3 | Daily regulations | 1, 2, 3 | 200 | (0, 130) | 2 | 1 | 2 |
4 | Incomplete annual reconciliation | 1, 2, 3, 4, 5 | 250 250 | (50, 70) and (80, 90) (30, 80) and (140, 170) | 2 2 | 1 1 | 1 |
Section Number | Voltage Level/kV | Includes Cascade Hydropower Plants and Units | Capacity Limit/MW | |
---|---|---|---|---|
Hydropower Plant | Unit Number | |||
1 | 500 | 1 2 | 1, 2, 3 1 | 900 |
2 | 500 | 2 3 | 2, 3, 4 1, 2, 3 | 1500 |
3 4 | 220 220 | 4 4 | 1, 2, 3 4, 5 | 750 500 |
Hydropower Plant | Optimal Operating Number |
---|---|
1 | 3 |
2 | 4 |
3 | 3 |
4 | 4 |
Model | Expectation of the Amount of Electricity that Can Be Consumed/(MW·h) | Amount of Electricity Discarded/(MW·h) | Water Consumption/Million m3 | Water Consumption Rate/(m3·(kW·h)−1) | |||
---|---|---|---|---|---|---|---|
Cascade Hydropower Plant | PV Cluster 1 | Photovoltaic Group 2 | Total | ||||
Text model | 61,440.2 | 2306.53 | 4586.54 | 68,333.25 | 290.15 | 23,503.29 | 3.82 |
Comparison model | 61,440.2 | 1270.84 | 4759.01 | 67,470.04 | 1166.33 | 22,924.89 | 3.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Miao, J.; Wu, J.; Zhao, L.; Wang, Y.; Meng, F.; Wei, C.; Zhang, X.; Zhu, B. Short-Term Optimal Scheduling of a Cascade Hydro-Photovoltaic System for Maximizing the Expectation of Consumable Electricity. Processes 2025, 13, 328. https://doi.org/10.3390/pr13020328
Hu S, Miao J, Wu J, Zhao L, Wang Y, Meng F, Wei C, Zhang X, Zhu B. Short-Term Optimal Scheduling of a Cascade Hydro-Photovoltaic System for Maximizing the Expectation of Consumable Electricity. Processes. 2025; 13(2):328. https://doi.org/10.3390/pr13020328
Chicago/Turabian StyleHu, Shuzhe, Jinniu Miao, Jingyang Wu, Liqian Zhao, Yue Wang, Fanyan Meng, Chao Wei, Xiaoqin Zhang, and Benrui Zhu. 2025. "Short-Term Optimal Scheduling of a Cascade Hydro-Photovoltaic System for Maximizing the Expectation of Consumable Electricity" Processes 13, no. 2: 328. https://doi.org/10.3390/pr13020328
APA StyleHu, S., Miao, J., Wu, J., Zhao, L., Wang, Y., Meng, F., Wei, C., Zhang, X., & Zhu, B. (2025). Short-Term Optimal Scheduling of a Cascade Hydro-Photovoltaic System for Maximizing the Expectation of Consumable Electricity. Processes, 13(2), 328. https://doi.org/10.3390/pr13020328