Exploration of Methylmercury Adsorption on Montmorillonite Surfaces Through Density Functional Theory
Abstract
:1. Introduction
2. Modelling and Calculations
2.1. Material Surface Models
2.2. Calculation Methods
2.3. Calculation of Adsorption Energies
3. Results and Discussion
3.1. Analysis of Surface Adsorption Sites
3.2. Adsorption Configuration Analysis
- (1)
- The (001)–H1(T1, T2) configuration represents a stable arrangement formed when CH3Hg+ is adsorbed at the H1, T1, and T2 sites. The CH3 group is oriented upwards, while the Hg atom is positioned downwards. The calculated adsorption energy for this configuration is −51.7 kJ/mol.
- (2)
- The (001)–H2 and (001)–H3 configurations predominantly involve CH3Hg+ being attracted to O atoms on the surfaces while simultaneously being repelled by Si atoms. Hence, CH3Hg+ is adsorbed at a certain angle, resulting in low adsorption energies of −27.1 and −37.5 kJ/mol, respectively. Thus, the adsorption energy varies between −27 and −51.7 kJ/mol.
- (1)
- In the (010)–H3 configuration, CH3Hg+ is positioned between the hydroxyl groups ≡Al(OH2), ≡Al(OH), and ≡Si(OH), with the Hg atom being attracted to the oxygen atom of these groups.
- (2)
- Other adsorption configurations, namely (010)–Bn (where n = 1–5), (010)–Hn (where n = 1–2), and (010)–Tn (where n = 1–4), demonstrate a similarity: CH3Hg+ is adsorbed above the oxygen atom of ≡Al(OH) and the Hg atom forms a covalent bond with this oxygen atom. The adsorption energy of CH3Hg+ on the (010) surface varies between −119.4 and −154.3 kJ/mol. Meanwhile, the adsorption energy of water molecules on the (010) surface ranges from −30.72 to −82.56 kJ/mol [15].
3.3. Charge Analysis
3.4. Analysis of Partial Density of States (PDOS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Rodrigues, P.D.A.; Ferrari, R.G.; Santos, L.N.D.; Junior, C.A.C. Mercury in Aquatic Fauna Contamination: A Systematic Review on Its Dynamics and Potential Health Risks. J. Environ. Sci. 2019, 84, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, X.; Anderson, C.W.; Xing, Y.; Shang, L. Remediation of Mercury Contaminated Sites—A Review. J. Hazard. Mater. 2012, 221–222, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of Heavy Metal-polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Xie, Y.; Meng, Y.; Xia, J.; Feng, X. The Use of Calcium Carbonate-enriched Clay Minerals and Diammonium Phosphate as Novel Immobilization Agents for Mercury Remediation: Spectral Investigations and Field Applications. Sci. Total Environ. 2019, 646, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ou, J.; Wang, X.; Yan, Z.; Zhou, Y. Immobilization of Soil Cadmium Using Combined Amendments of Illite/Smectite Clay with Bone Chars. Environ. Sci. Pollut. Res. 2018, 25, 20723–20731. [Google Scholar] [CrossRef]
- Otunola, B.O.; Ololade, O.O. A Review on the Application of Clay Minerals as Heavy Metal Adsorbents for Remediation Purposes. Environ. Technol. Innov. 2020, 18, 100692. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Tsang, D.C.; Jin, F.; Hou, D. Green Remediation of Cd and Hg Contaminated Soil Using Humic Acid Modified Montmorillonite: Immobilization Performance Under Accelerated Ageing Conditions. J. Hazard. Mater. 2020, 387, 122005. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals By Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Mana, S.C.A.; Hanafiah, M.M.; Chowdhury, A.J.K. Environmental Characteristics of Clay and Clay-based Minerals. Geol. Ecol. Landsc. 2017, 1, 155–161. [Google Scholar]
- Du, J.; Fan, L.; Wang, Q.; Min, F. Adsorption of Cr(OH)n(3-n)+ (n=1-3) on Illite (001) and (010) Surfaces: A DFT Study. Processes 2021, 9, 2048. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; Chen, J. Understanding Cd2+ Adsorption Mechanism on Montmorillonite Surfaces By Combining DFT and MD. Processes 2022, 10, 1381. [Google Scholar] [CrossRef]
- Li, K.; Kurniawan, A.; Christidis, G.; He, J.; Zhou, C. Interfacial Interactions Controlling Adsorption of Metal Cations on Montmorillonite. Am. Mineral. 2024, 109, 633–655. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, S.; Wang, X.; Feng, C. A Review of the Removal of Heavy Metal Ions in Wastewater by Modified Montmorillonite. Water Policy 2022, 24, 1590–1609. [Google Scholar] [CrossRef]
- Peng, C.; Min, F.; Liu, L.; Chen, J. A Periodic DFT Study of Adsorption of Water on Sodium-montmorillonite (001) Basal and (010) Edge Surface. Appl. Surf. Sci. 2016, 387, 308–316. [Google Scholar] [CrossRef]
- Peng, C.; Min, F.; Liu, L.; Chen, J. The Adsorption of CaOH+ on (001) Basal and (010) Edge Surface of Na-Montmorillonite: A DFT Study. Surf. Interface Anal. 2017, 49, 267–277. [Google Scholar] [CrossRef]
- Wardle, R.; Brindley, G.W. The Crystal Structures of Pyrophyllite, 1TC, and of Its Dehydroxylate. Am. Mineral. 1972, 57, 732–750. [Google Scholar]
- Delley, B. An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Pack, J.D. Special points for Brillon-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar]
- Beermann, T.; Brockamp, O. Structure Analysis of Montmorillonite Crystallites by Convergent-Beam Electron Diffraction. Clay Miner. 2005, 40, 1–13. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; Cai, S.; Fan, H.; Li, Y.; Chen, J.; Zeng, B. A DFT Study of Mn(II) Adsorption on Illite Surfaces. J. South China Norm. Univ. (Nat. Sci. Ed.) 2022, 54, 25–31. [Google Scholar]
- Kritayakornupong, C.; Plankensteiner, K.; Rode, B.M. Dynamics in the Hydration Shell of Hg2+ Ion: Classical and Ab Initio QM/MM Molecular Dynamics Simulations. Chem. Phys. Lett. 2003, 371, 438–444. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Zhang, Y.; Zhang, C.; Wang, R. Complexation of Carboxylate on Smectite Surfaces. Phys. Chem. Chem. Phys. 2017, 19, 18400–18406. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, Y.; Wang, G.; Min, F.; Qin, L. Atomic-Level Insights into the Adsorption of Rare Earth Y(OH)3−nn+ (n = 1–3) ions on kaolinite surface. Appl. Surf. Sci. 2019, 469, 357–367. [Google Scholar] [CrossRef]
- Ramadugu, S.K.; Mason, S.E. DFT Study Antimony(V) Oxyanion Adsorption on α-Al2O3 (1-102). J. Phys. Chem. 2015, 119, 18149–18159. [Google Scholar]
Parameters | (001)–H1 | (010)–B2 |
---|---|---|
Hg–OS1 bond length (Å) | 2.762 | 2.413 |
Hg–OS2 bond length (Å) | 3.361 | 3.739 |
Hg–OS3 bond length (Å) | 2.869 | 4.224 |
Hg–OS4 bond length (Å) | 3.482 | 3.901 |
Hg–OS5 bond length (Å) | 2.999 | 2.770 |
Hg–OS6 bond length (Å) | 3.224 | 2.469 |
Adsorption energy (kJ/mol) | −51.7 | −154.3 |
Parameters | (001)–H1 | (010)–B2 |
---|---|---|
Hg–OS1 Mulliken population value | 0.03 | 0.12 |
CH3Hg charge | 0.83 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Xiao, H.; Ren, B. Exploration of Methylmercury Adsorption on Montmorillonite Surfaces Through Density Functional Theory. Processes 2025, 13, 330. https://doi.org/10.3390/pr13020330
Du J, Xiao H, Ren B. Exploration of Methylmercury Adsorption on Montmorillonite Surfaces Through Density Functional Theory. Processes. 2025; 13(2):330. https://doi.org/10.3390/pr13020330
Chicago/Turabian StyleDu, Jia, Hanxi Xiao, and Bao Ren. 2025. "Exploration of Methylmercury Adsorption on Montmorillonite Surfaces Through Density Functional Theory" Processes 13, no. 2: 330. https://doi.org/10.3390/pr13020330
APA StyleDu, J., Xiao, H., & Ren, B. (2025). Exploration of Methylmercury Adsorption on Montmorillonite Surfaces Through Density Functional Theory. Processes, 13(2), 330. https://doi.org/10.3390/pr13020330