Geometrical Evaluation of an Overtopping Wave Energy Converter Device Subject to Realistic Irregular Waves and Representative Regular Waves of the Sea State That Occurred in Rio Grande—RS
Abstract
:1. Introduction
2. Mathematical and Numerical Modeling
2.1. Generation of Realistic Irregular Waves
2.2. Generation of Representative Regular Waves
2.3. Model Verification
3. Problem Description
3.1. Computational Domain for Model Verification
3.2. Computational Domain for Geometric Evaluation of the Overtopping Device
3.3. Geometric Evaluation of the Overtopping Device Through the Constructal Design
- Performance indicator: a quantity to be maximized or minimized, which, in the present study, is the amount of water mass that entered in the converter reservoir;
- Geometric restrictions: the parameters that shall be kept constant, which are here the areas of the wave channel and the device ramp;
- Degrees of freedom: the geometric parameter that will be varied, in this case, is the ratio between height and length () of the overtopping device ramp.
4. Results and Discussions
4.1. Wave Generation Models Verification
4.2. Geometric Evaluation of the Overtopping Wave Energy Converter Device
4.3. Detailed Analysis of the Monitored Results
4.4. Visualization of Physical Phenomenon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
channel area [m2] | |
overtopping device ramp area [m2] | |
linear damping coefficient [s−1] | |
quadratic damping coefficient [m−1] | |
relative differences [%] | |
difference relative to the waves considered [%] | |
gravity acceleration vector [m/s2] | |
depth [m] | |
height of the ramp [m] | |
device submersion [m] | |
wave channel height [m] | |
maximum height of RI waves [m] | |
reservoir height [m] | |
significant height of RI waves [m] | |
final depth of the wave channel [m] | |
wave number [m−1] | |
component x of the wave number vector [m−1] | |
component z of the wave number vector [m−1] | |
length of the ramp [m] | |
numerical beach length [m] | |
wave channel length [m] | |
reservoir length [m] | |
M | water mass [kg] |
mass flow rate [kg] | |
approximate value of M [kg] | |
n | total number of data [-] |
directional spectrum of wave action density [m2/hz/rad] | |
numerical value [m] | |
static pressure [Pa] | |
reference value [m] | |
source term [m2/rad] | |
R2 | correlation coefficient [-] |
numerical beach sink term [N/m2] | |
mean period of the RI waves [s] | |
T | wave period [s] |
t | time [s] |
time interval considered [s] | |
horizontal velocity profile [m/s] | |
horizontal velocity component of 2nd Order Stokes Wave [m/s] | |
V | velocity along the z direction [m/s] |
velocity vector [m/s] | |
mesh elements [m] | |
time step [s] | |
horizontal coordinate axis [m] | |
starting position of the numerical beach [m] | |
ending position of the numerical beach [m] | |
vertical velocity profile [m/s] | |
vertical velocity component of 2nd Order Stokes Wave [m/s] | |
vertical coordinate axis [m] | |
vertical position of the channel bottom [m] | |
vertical positions of the FS [m] | |
volume fraction [-] | |
FS elevation caused by Airy’s Linear Wave [m] | |
FS elevation caused by 2nd Order Stokes Wave [m] | |
wave length [m] | |
fluid density [kg/m3] | |
strain rate tensor [n/m2] | |
dimensionless area fraction [-] | |
velocity potential [m2/s] | |
angular frequency [Hz] |
References
- Narula, K. The Mairtime Dimension of Sustainable Energy Security; Springer Nature: Singapore, 2018. [Google Scholar]
- Espindola, R.L.; Araújo, A.M. Wave energy resource of Brazil: An analysis from 35 years of ERA—Interim reanalysis data. PLoS ONE 2017, 12, e0183501. [Google Scholar] [CrossRef] [PubMed]
- Pecher, A.; Kofoed, J.P. Handbook of Ocean Wave Energy; Springer Open: Cham, Switzerland, 2017. [Google Scholar]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bejan, A.; Lorente, S. Constructal Theory of generation of configuration in nature and engineering. J. Appl. Phys. 2006, 100, 5. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. Design with Constructal Theory; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Horko, M. CFD Optimisation of an Oscillating Water Column Energy converter. Master’s Thesis, Ocean Engineering, School of Mechanical Engineering, The University of Western Australia, Perth, Australia, 2007. [Google Scholar]
- Gomes, M.; Das, N.; Lorenzini, G.; Rocha, L.A.O.; Dos Santos, E.D.; Isoldi, L.A. Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. J. Eng. Thermophys. 2018, 27, 173–190. [Google Scholar] [CrossRef]
- Lisboa, R.C.; Teixeira, P.R.; Didier, E. Regular and Irregular wave propagation analysis in a flume with numerical beach using a Navier-stokes based model. Defect Diffus. Forum 2017, 372, 81–90. [Google Scholar] [CrossRef]
- Zabihi, M.; Mazaheri, S.; Rezaee Mazyak, A. Wave generation in a numerical wave tank. Int. J. Coast. Offshore Environ. Eng. 2017, 2, 33–43. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Realistic wave generation and active wave absorption for Navier–Stokes models. Coastal Eng. 2013, 71, 102–118. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Simulating coastal engineering processes with OpenFOAM®. Coastal Eng. 2013, 71, 119–134. [Google Scholar] [CrossRef]
- Finnegan, W.; Goggins, J. Linear irregular wave generation in a numerical wave tank. Appl. Ocean Res. 2015, 52, 188–200. [Google Scholar] [CrossRef]
- Machado, B.N.; Oleinik, P.H.; Kirinus, E.P.; Dos Santos, E.D.; Rocha, L.A.O.; Gomes, M.; Das, N.; Conde, J.M.P.; Isoldi, L.A. WaveMIMO Methodology: Numerical Wave Generation of a Realistic Sea State. J. Appl. Comput. Mech. 2021, 1, 1–20. [Google Scholar] [CrossRef]
- Maciel, R.P.; Fragassa, C.; Machado, B.N.; Rocha, L.A.O.; Dos Santos, E.D.; Gomes, M.; Das, N.; Isoldi, L.A. Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition. J. Mar. Sci. Eng. 2021, 9, 896. [Google Scholar] [CrossRef]
- Tedd, J.; Kofoed, J.P. Measurements of overtopping flow time series on the Wave Dragon, wave energy converter. Renew. Energy 2009, 34, 711–717. [Google Scholar] [CrossRef]
- Parmeggiani, S.; Kofoed, J.P.; Friis-Madsen, E. Experimental Study Related to the Mooring Design for the 1.5 MW Wave Dragon WEC Demonstrator at DanWEC. Energies 2013, 6, 1863–1886. [Google Scholar] [CrossRef]
- Di Lauro, E.; Lara, J.L.; Maza, M.; Losada, I.J.; Contestabile, P.; Vicinanza, D. Stability analysis of a non-conventional breakwater for wave energy conversion. Coast. Eng. 2019, 145, 36–52. [Google Scholar] [CrossRef]
- Palma, G.; Formentin, S.M.; Zanuttigh, B.; Contestabile, P.; Vicinanza, D. Numerical Simulations of the Hydraulic Performance of a Breakwater-Integrated Overtopping Wave Energy Converter. J. Mar. Sci. Eng. 2019, 7, 38. [Google Scholar] [CrossRef]
- Contestabile, P.; Crispino, G.; Russo, S.; Gisonni, C.; Cascetta, F.; Vicinanza, D. Crown Wall Modifications as Response to Wave Overtopping under a Future Sea Level Scenario: An Experimental Parametric Study for an Innovative Composite Seawall. Appl. Sci. 2020, 10, 2227. [Google Scholar] [CrossRef]
- Di Lauro, E.; Maza, M.; Lara, J.L.; Losada, I.J.; Contestabile, P.; Vicinanza, D. Advantages of an innovative vertical breakwater with an overtopping wave energy converter. Coast. Eng. 2020, 159, 103713. [Google Scholar] [CrossRef]
- Musa, M.A.; Roslan, M.F.; Ahmad, M.F.; Muzathik, A.M.; Mustapa, M.A.; Fitriadhy, A.; Mohd, M.H.; Rahman, M.A.A. The Influence of Ramp Shape Parameters on Performance of Overtopping Breakwater for Energy Conversion. J. Mar. Sci. Eng. 2020, 8, 875. [Google Scholar] [CrossRef]
- Koutrouveli, T.I.; Di Lauro, E.; das Neves, L.; Calheiros-Cabral, T.; Rosa-Santos, P.; Taveira-Pinto, F. Proof of concept of a breakwater-integrated hybrid wave energy converter using a composite modelling approach. J. Mar. Sci. Eng. 2021, 9, 226. [Google Scholar] [CrossRef]
- Clemente, D.; Calheiros-Cabral, T.; Rosa-Santos, P.; Taveira-Pinto, F. Hydraulic and Structural Assessment of a Rubble-Mound Breakwater with a Hybrid Wave Energy Converter. J. Mar. Sci. Eng. 2021, 9, 922. [Google Scholar] [CrossRef]
- Martins, J.C.; Fragassa, C.; Goulart, M.M.; dos Santos, E.D.; Isoldi, L.A.; das Neves Gomes, M.; Rocha, L.A.O. Constructal Design of an Overtopping Wave Energy Converter Incorporated in a Breakwater. J. Mar. Sci. Eng. 2022, 10, 471. [Google Scholar] [CrossRef]
- An, S.H.; Kim, G.G.; Lee, J.H. Optimal Design of the Overtopping Wave Energy Converter Based on Fluid–Structure Interaction Simulation. J. Coast. Res. 2023, 116, 578–582. [Google Scholar] [CrossRef]
- Barros, A.S.; Fragassa, C.; Paiva, M.D.S.; Rocha, L.A.O.; Machado, B.N.; Isoldi, L.A.; Gomes, M.D.N.; dos Santos, E.D. Numerical Study and Geometrical Investigation of an Onshore Overtopping Device Wave Energy Converter with a Seabed Coupled Structure. J. Mar. Sci. Eng. 2023, 11, 412. [Google Scholar] [CrossRef]
- Goulart, M.M.; Martins, J.C.; Gomes, A.P.; Puhl, E.; Rocha, L.A.O.; Isoldi, L.A.; Gomes, M.d.N.; dos Santos, E.D. Experimental and numerical analysis of the geometry of a laboratory-scale overtopping wave energy converter using constructal design. Renew. Energy 2024, 236, 121497. [Google Scholar] [CrossRef]
- Hübner, R.G.; Fragassa, C.; Paiva, M.S.; Oleinik, P.H.; Gomes, M.N.; Rocha, L.A.O.; Santos, E.D.; Machado, B.N.; Isoldi, L.A. Numerical Analysis of an Overtopping Wave Energy Converter Subjected to the Incidence of Irregular and Regular Waves from Realistic Sea States. J. Mar. Sci. Eng. 2022, 10, 1084. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, H.; Cui, Y.; Kim, K. Experimental study on overtopping performance of a circular ramp wave energy converter. Renew. Energy 2017, 104, 163–176. [Google Scholar] [CrossRef]
- Maliki, A.Y.; Musa, M.A.; Ahmad, M.F.; Zamri, I.; Omar, Y. Comparison of numerical and experimental results for overtopping discharge of the OBREC wave energy converter. J. Eng. Sci. Technol. 2017, 12, 1337–1353. [Google Scholar]
- Liu, Z.; Han, Z.; Shi, H.; Yang, W. Experimental study on multi-level overtopping wave energy convertor under regular wave conditions. Int. J. Nav. Archit. Ocean Eng. 2018, 10, 651–659. [Google Scholar] [CrossRef]
- Hur, D.S.; Jeong, Y.M.; Lee, J.L.; Kim, I.H.; Lee, W.D. Energy generation efficiency due to wave overtopping on floating-overflow-type wave energy converter. J. Coast. Res. 2018, 85, 1341–1345. [Google Scholar] [CrossRef]
- Iuppa, C.; Cavallaro, L.; Musumeci, R.E.; Vicinanza, D.; Foti, E. Empirical overtopping volume statistics at an OBREC. Coast. Eng. 2019, 152, 103524. [Google Scholar] [CrossRef]
- Rosa-Santos, P.; Taveira-Pinto, F.; Clemente, D.; Cabral, T.; Fiorentin, F.; Belga, F.; Morais, T. Experimental Study of a Hybrid Wave Energy Converter Integrated in a Harbor Breakwater. J. Mar. Sci. Eng. 2019, 7, 33. [Google Scholar] [CrossRef]
- Cabral, T.; Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Belga, F.; Cestaro, H. Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater. Energies 2020, 13, 236. [Google Scholar] [CrossRef]
- Calheiros-Cabral, T.; Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F.; Ramos, V.; Morais, T.; Cestaro, H. Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter. Energy 2020, 213, 118845. [Google Scholar] [CrossRef]
- Simonetti, I.; Esposito, A.; Cappietti, L. Experimental Proof-of-Concept of a Hybrid Wave Energy Converter Based on Oscillating Water Column and Overtopping Mechanisms. Energies 2022, 15, 8065. [Google Scholar] [CrossRef]
- Jungrungruengtaworn, S.; Hyun, B.S. Influence of slot width on the performance of multi-stage overtopping wave energy converters. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 668–676. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Z.; Shi, H. Numerical study on overtopping performance of a multi-level breakwater for wave energy conversion. Ocean Eng. 2018, 150, 94–101. [Google Scholar] [CrossRef]
- Martins, J.C.; Goulart, M.M.; Gomes, M.D.N.; Souza, J.A.; Rocha, L.A.O.; Isoldi, L.A.; Dos Santos, E.D. Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design. Renew. Energy 2018, 118, 727–741. [Google Scholar] [CrossRef]
- Kralli, V.E.; Theodossiou, N.; Karambas, T. Optimal design of Overtopping Breakwater for Energy Conversion (OBREC) Systems using the harmony search algorithm. Front. Energy Res. 2019, 7, 80. [Google Scholar] [CrossRef]
- Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M. Numerical simulation of the overtopping-ramp design of a multistage overtopping wave energy breakwater hybrid device. J. Inn. Tech. Expl. Eng. 2019, 9, 4902. [Google Scholar] [CrossRef]
- Cavallaro, L.; Iuppa, C.; Castiglione, F.; Musumeci, R.E.; Foti, E. A Simple Model to Assess the Performance of an Overtopping Wave Energy Converter Embedded in a Port Breakwater. J. Mar. Sci. Eng. 2020, 8, 858. [Google Scholar] [CrossRef]
- Vidura, A.; Nurjaya, I.W.; Iqbal, M.; Jaya, I. Ocean wave measurement and wave energy calculation using overtopping power plant scheme. IOP Conf. Ser. Earth Environ. Sci. 2020, 429, 012047. [Google Scholar] [CrossRef]
- Li, Q.; Mi, J.; Li, X.; Chen, S.; Jiang, B.; Zuo, L. A self-floating oscillating surge wave energy converter. Energy 2021, 230, 120668. [Google Scholar] [CrossRef]
- Jungrungruengtaworn, S.; Thaweewat, N.; Hyun, B.S. Three-dimensional effects on the performance of multi-level overtopping wave energy converter. IOP Conf. Ser. Mater. Sci. Eng. 2021, 113, 012016. [Google Scholar] [CrossRef]
- Izzul, M.; Fadhli, M.; Azlan, M.; Noor, M. Parametric study on wave overtopping due to wedge angle and freeboard of wavecat wave energy converter. UMT J. Undergrad. Res. 2022, 4, 37–50. [Google Scholar] [CrossRef]
- Martins, J.C.; Goulart, M.M.; dos Santos, E.D.; Isoldi, L.A.; Gomes, M.D.N.; Rocha, L.A.O. Constructal Design of a Two Ramps Overtopping Wave Energy Converter Integrated into a Breakwater: Effect of the Vertical Distance between the Ramps over its Performance. Def. Dif. Forum 2022, 420, 242–258. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G. Overtopping performance of a multi-level CROWN wave energy convertor: A numerical study. Energy 2024, 294, 130795. [Google Scholar] [CrossRef]
- da Silva, S.A.; Martins, J.C.; dos Santos, E.D.; Rocha, L.A.O.; Machado, B.N.; Isoldi, L.A.; das Neves Gomes, M. Constructal Design Applied to an Overtopping Wave Energy Converter Locate on Paraná Coast in Brazil. Sustain. Mar. Struct. 2024, 6, 1–14. [Google Scholar] [CrossRef]
- Romanowski, A.; Tezdogan, T.; Turan, O. Development of a CFD methodology for the numerical simulation of irregular sea-states. Ocean Eng. 2019, 192, 106530. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Fluent Theory Guide, Release 20.2; ANSYS Inc.: Canonsburg, PA, USA, 2017. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics—The Finite Volume Method; Pearson Education Ltd.: London, UK, 2007. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VoF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Schlichting, H. Boundary Layer Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Srinivasan, V.; Salazar, A.J.; Saito, K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VoF) methodology. Appl. Math. Model. 2011, 35, 3710–3730. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, M.H.; Miyata, H.; Chun, H.H. Fully nonlinear numerical wave tank (NWT) simulations and wave run-up prediction around 3-D structures. Ocean Eng. 2003, 30, 1969–1996. [Google Scholar] [CrossRef]
- Foyhirun, C.; Kositgittiwong, D.; Ekkawatpanit, C. Wave Energy Potential and Simulation on the Andaman Sea Coast of Thailand. Sustainability 2020, 12, 3657. [Google Scholar] [CrossRef]
- Issa, R.I. Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Oleinik, P.H.; Tavares, G.P.; Machado, B.N.; Isoldi, L.A. Transformation of water wave spectra into time series of surface elevation. Earth 2021, 2, 997–1005. [Google Scholar] [CrossRef]
- Airy, G.B. Tides and Waves; Encyclopædia Metropolitana: London, UK, 1845. [Google Scholar]
- Awk, T. TOMAWAC User Manual Version 7.2., 7.2.3 ed.; The Telemac-Mascaret Consortium; Telemac: Chambéry, France, 2017. [Google Scholar]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- McCormick, M.E. Ocean Engineering Mechanics: With Applications; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Ye, Z.; Ma, X.; Yang, N.; Cui, L. Assessment of wave energy resources in the Pearl River estuary of China. Desalin. Water Treat. 2023, 298, 222–232. [Google Scholar] [CrossRef]
- Arguilé-Pérez, B.; Ribeiro, A.S.; Costoya, X.; deCastro, M.; Gómez-Gesteira, M. Suitability of wave energy converters in northwestern Spain under the near future winter wave climate. Energy 2023, 278, 127957. [Google Scholar] [CrossRef]
- Chakrabarti, S.K. Handbook of Offshore Engineering; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Bukit Batok, Singapore, 1991. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Oleinik, P.H.; Maciel, R.P.; dos Santos, E.D.; Rocha, L.A.O.; Machado, B.N.; Isoldi, L.A. Numerical method for the characterization of sea states using realistic irregular waves on computational fluid dynamics simulations for application on wave energy converters. Sustain. Energy Tech. Assess. 2025, 73, 104093. [Google Scholar] [CrossRef]
- Paiva, M.S. Simulação Numérica de Um Conversor de Energia das Ondas do Mar em Energia Elétrica do Tipo Galgamento Considerando Dados Realísticos de Estado de Mar Encontrados na Costa do Município de Rio Grande. Master’s Thesis, Matemática Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2023. (In Portuguese). [Google Scholar]
- Cardoso, S.D.; Marques, W.C.; Kirinus, E.D.P.; Stringari, C.E. Levantamento Batimétrico Usando Cartas Náuticas. In Proceedings of the 13ª Mostra da Produção Universitária, Rio Grande, Brazil, 14–17 October 2014. (In Portuguese). [Google Scholar]
- Barreiro, T.G. Estudo da Interação de Uma Onda Monocromática Com um Conversor de Energia. Master’s Thesis, Engenharia Mecânica, Universidade de Nova Lisboa, Lisbon, Portugal, 2009. (In Portuguese). [Google Scholar]
- Dos Santos, E.D.; Isoldi, L.A.; Gomes, M.D.N.; Rocha, L.A. The constructal design applied to renewable energy systems. In Sustainable Energy Technologies; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Schiefer, H.; Schiefer, F. Statistics for Engineers—An Introduction with Examples from Practice; Springer: Wiesbaden, Germany, 2021. [Google Scholar]
Parameters | Numerical Inputs | |
---|---|---|
Solver | Pressure-Based | |
Pressure–Velocity Coupling | PISO | |
Spatial Discretization | Gradient Evaluation | Green–Gauss-Cell-Based |
Pressure | PRESTO | |
Momentum | First Order Upwind | |
Volume Fraction | Geo-Reconstruct | |
Temporal Differencing Scheme | First Order Implicit | |
Under-Relaxation Factors | Pressure | 0.3 |
Momentum | 0.7 | |
Residual | Continuity | 10–3 |
x-velocity | ||
z-velocity | ||
Regime Flow | Laminar |
Characteristic | Nomenclature | Magnitude |
---|---|---|
Height | (m) | 1.14 |
Length | (m) | 31.50 |
Period | (s) | 4.50 |
Depth | (m) | 13.29 |
(m) | (m) | |
---|---|---|
0.30 | 6.8606 | 22.8685 |
0.31 | 6.9740 | 22.4967 |
0.32 | 7.0856 | 22.1424 |
0.33 | 7.1954 | 21.8043 |
0.34 | 7.3036 | 21.4813 |
0.35 | 7.4103 | 21.1726 |
0.36 | 7.5154 | 20.8760 |
0.37 | 7.6190 | 20.5920 |
0.38 | 7.7213 | 20.3192 |
0.39 | 7.8222 | 20.0570 |
0.40 | 7.9219 | 19.8047 |
0.41 | 8.0203 | 19.5617 |
0.42 | 8.1175 | 19.3274 |
RI Waves (kg) | (%) | RR Waves (kg) | (%) | (%) | |
---|---|---|---|---|---|
0.30 | 200,820.77 | - | 144,054.72 | - | –28.26 |
0.31 | 182,093.85 | –9.32 | 128,128.68 | –11.05 | –29.63 |
0.32 | 161,409.70 | –11.35 | 109,880.09 | –14.24 | –31.92 |
0.33 | 144,289.64 | –10.60 | 94,068.96 | –14.38 | –34.80 |
0.34 | 128,352.21 | –11.04 | 79,899.03 | –15.06 | –37.75 |
0.35 | 120,552.95 | –6.07 | 72,727.34 | –8.97 | –39.67 |
0.36 | 106,433.13 | –11.71 | 60,828.26 | –16.36 | –42.84 |
0.37 | 96,307.13 | –9.51 | 50,905.02 | –16.31 | –47.14 |
0.38 | 85,269.83 | –11.46 | 41,566.58 | –18.34 | –51.25 |
0.39 | 76,661.55 | –10.09 | 37,428.83 | –9.95 | –51.18 |
0.40 | 63,339.88 | –17.38 | 30,986.83 | –17.21 | –51.07 |
0.41 | 57,760.40 | –8.80 | 29,009.56 | –6.38 | –49.77 |
0.42 | 49,925.58 | –13.56 | 26,215.31 | –9.63 | –47.49 |
Geometry | Wave Approach | First-Degree Polynomial | |
---|---|---|---|
( | RI | 0.9979 | |
RR | 0.9952 | ||
RI | 0.9964 | ||
RR | 0.9992 | ||
RI | 0.9925 | ||
RR | 0.9956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, M.d.S.; Mocellin, A.P.G.; Oleinik, P.H.; dos Santos, E.D.; Rocha, L.A.O.; Isoldi, L.A.; Machado, B.N. Geometrical Evaluation of an Overtopping Wave Energy Converter Device Subject to Realistic Irregular Waves and Representative Regular Waves of the Sea State That Occurred in Rio Grande—RS. Processes 2025, 13, 335. https://doi.org/10.3390/pr13020335
Paiva MdS, Mocellin APG, Oleinik PH, dos Santos ED, Rocha LAO, Isoldi LA, Machado BN. Geometrical Evaluation of an Overtopping Wave Energy Converter Device Subject to Realistic Irregular Waves and Representative Regular Waves of the Sea State That Occurred in Rio Grande—RS. Processes. 2025; 13(2):335. https://doi.org/10.3390/pr13020335
Chicago/Turabian StylePaiva, Maycon da Silveira, Ana Paula Giussani Mocellin, Phelype Haron Oleinik, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Liércio André Isoldi, and Bianca Neves Machado. 2025. "Geometrical Evaluation of an Overtopping Wave Energy Converter Device Subject to Realistic Irregular Waves and Representative Regular Waves of the Sea State That Occurred in Rio Grande—RS" Processes 13, no. 2: 335. https://doi.org/10.3390/pr13020335
APA StylePaiva, M. d. S., Mocellin, A. P. G., Oleinik, P. H., dos Santos, E. D., Rocha, L. A. O., Isoldi, L. A., & Machado, B. N. (2025). Geometrical Evaluation of an Overtopping Wave Energy Converter Device Subject to Realistic Irregular Waves and Representative Regular Waves of the Sea State That Occurred in Rio Grande—RS. Processes, 13(2), 335. https://doi.org/10.3390/pr13020335