Effect of Different Stimulation Methods on the Activation and Metabolic Performance of Microbial Community to Enhance Heavy Oil Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Experiment Setting and Method
2.3. Analysis of Biogas and VFAs
2.4. Analysis of Saturated Hydrocarbons and Heterocyclic Compounds
2.5. Microbial Community Analysis
2.6. Metabolomic Analysis
3. Results
3.1. Biogas and Oil Viscosity
3.2. Crude Oil Composition Analysis
3.2.1. GC–MS Analysis
3.2.2. FT-ICR MS Analysis of Heterocyclic Compounds
3.3. Microbial Community Analysis
3.4. Metabolomic Analysis
4. Discussion
4.1. Effect of Nutrient Addition Method on Reducing Viscosity and Degrading Heavy Oil
4.2. Effect of Nutrients Addition Methods on Bacterial Community and Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Gao, H.; Xue, Q. Potential applications of microbial enhanced oil recovery to heavy oil. Crit. Rev. Biotechnol. 2020, 40, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Li, H.; Yu, Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
- Maneeintr, K. Preliminary Study of In-situ Combustion in Heavy Oil Field in the North of Thailand. Procedia Earth Planet. Sci. 2013, 6, 326–334. [Google Scholar] [CrossRef]
- Silva, T.R.; Verde, L.C.L.; Santos Neto, E.V.; Oliveira, V.M. Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int. Biodeterior. Biodegrad. 2013, 81, 57–70. [Google Scholar] [CrossRef]
- Leon, V.; Kumar, M. Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 2005, 10, 471–481. [Google Scholar] [CrossRef]
- Xia, W.; Tong, L.; Jin, T.; Hu, C.; Zhang, L.; Shi, L.; Zhang, J.; Yu, W.; Wang, F.; Ma, T. N,S-Heterocycles biodegradation and biosurfactantproduction under CO2/N2 conditions by Pseudomonas and its application on heavy oil recovery. Chem. Eng. J. 2021, 413, 128771. [Google Scholar] [CrossRef]
- Patel, J.; Borgohain, S.; Kumar, M.; Rangarajan, V.; Somasundaran, P.; Sen, R. Recent developments in microbial enhanced oil recovery. Renew. Sustain. Energy Rev. 2015, 52, 1539–1558. [Google Scholar] [CrossRef]
- Berdugo-Clavijo, C.; Gieg, L.M. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front. Microbiol. 2014, 5, 197. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Z.Z.; He, Y.L.; Luo, Y.J.; Xia, W.J.; Sun, S.S.; Zhang, G.Q.; Zhang, Z.Y.; Gao, D.L. Biostimulation of biogas producing microcosm for enhancing oil recovery in low-permeability oil reservoir. RSC Adv. 2015, 5, 91869–91877. [Google Scholar] [CrossRef]
- Asadollahi, L.; Salehizadeh, H.; Yan, N. Investigation of Biosurfactant Activity and Asphaltene Biodegradation by Bacillus cereus. J. Polym. Environ. 2016, 24, 119–128. [Google Scholar] [CrossRef]
- Yusoff, D.F.; Raja Abd Rahman, R.N.Z.; Masomian, M.; Ali, M.S.M.; Leow, T.C. Newly Isolated Alkane Hydroxylase and Lipase Producing Geobacillus and Anoxybacillus Species Involved in Crude Oil Degradation. Catalysts 2020, 10, 851. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wang, F.; Wu, J.; Wang, Y. The Carrying Behavior of Water-Based Fracturing Fluid in Shale Reservoir Fractures and Molecular Dynamics of Sand-Carrying Mechanism. Processes 2024, 12, 2051. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wu, J.; Li, X.; Li, H.; Cheng, Y. Wellhead Stability During Development Process of Hydrate Reservoir in the Northern South China Sea: Evolution and Mechanism. Processes 2024, 13, 40. [Google Scholar] [CrossRef]
- Bondarenko, A.; Islamov, S.; Ignatyev, K.; Mardashov, D. Laboratory studies of polymer compositions for well-kill under increased fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.-Y.; Lu, G.-M.; Li, Y.-B.; Sun, W.-J.; Zhang, Q.-Z.; Zhang, X.-L. A pilot study on large-scale microbial enhanced oil recovery (MEOR) in Baolige Oilfield. Int. Biodeterior. Biodegrad. 2018, 127, 247–253. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Z.-Z.; Wang, J.-X.; Zhang, G.-Q.; Luo, Y.-J.; Song, Z.-Z.; Zhang, J.-Y. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery. Bioresour. Technol. 2013, 147, 110–116. [Google Scholar] [CrossRef]
- Gao, P.; Li, G.; Le, J.; Liu, X.; Liu, F.; Ma, T. Succession of microbial communities and changes of incremental oil in a post-polymer flooded reservoir with nutrient stimulation. Appl. Microbiol. Biotechnol. 2018, 102, 2007–2017. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Hartmann–Sprenger Energy Separation Effect for the Quasi-Isothermal Pressure Reduction of Natural Gas: Feasibility Analysis and Numerical Simulation. Energies 2024, 17, 2010. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Xi, W. Microbial enhanced oil recovery of oil-water transitional zone in thin-shallow extra heavy oil reservoirs: A case study of Chunfeng Oilfield in western margin of Junggar Basin, NW China. Pet. Explor. Dev. 2016, 43, 689–694. [Google Scholar] [CrossRef]
- Suda, K.; Ikarashi, M.; Tamaki, H.; Tamazawa, S.; Sakata, S.; Haruo, M.; Kamagata, Y.; Kaneko, M.; Ujiie, T.; Shinotsuka, Y.; et al. Methanogenic crude oil degradation induced by an exogenous microbial community and nutrient injections. J. Pet. Sci. Eng. 2021, 201, 108458. [Google Scholar] [CrossRef]
- Chen, C.-M.; Wang, J.-L.; Kim, J.B.; Wang, Q.-H.; Wang, J.; Yoza, B.A.; Li, Q.X. Laboratory studies of rice bran as a carbon source to stimulate indigenous microorganisms in oil reservoirs. Pet. Sci. 2016, 13, 572–583. [Google Scholar] [CrossRef]
- Zhou, N.; Guo, H.; Liu, Q.; Zhang, Z.; Sun, J.; Wang, H. Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil with the nitrate-reducing bacterium PheN7 under anaerobic condition. J. Hazard. Mater. 2022, 439, 129643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, W.; Xue, Q. Biosurfactant production and oil degradation by Bacillus siamensis and its potential applications in enhanced heavy oil recovery. Int. Biodeterior. Biodegrad. 2022, 169, 105388. [Google Scholar] [CrossRef]
- Fan, K.; Feng, Q.; Li, K.; Lin, J.; Wang, W.; Cao, Y.; Gai, H.; Song, H.; Huang, T.; Zhu, Q.; et al. The metabolism of pyrene by a novel Altererythrobacter sp. with in-situ co-substrates: A mechanistic analysis based on pathway, genomics, and enzyme activity. Chemosphere 2022, 307, 135784. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Shi, S.-B.; Yang, L.; Zhang, Y.; Dolfing, J.; Sun, Y.-G.; Liu, L.-Y.; Li, Q.; Tu, B.; Dai, L.-R.; et al. Preferential degradation of long-chain alkyl substituted hydrocarbons in heavy oil under methanogenic conditions. Org. Geochem. 2019, 138, 103927. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Zeb, A.; Wang, Q.; Mo, F.; Shi, R.; Sun, Y.; Wang, F. Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes. J. Agric. Food Chem. 2024, 72, 16674–16686. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Jiang, P.; He, Y.; Mu, Y.; Lv, X.; Zhuang, L. Bacterial diversity and community structure in the rhizosphere of four Ferula species. Sci. Rep. 2018, 8, 5345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sheng, H.-F.; He, Y.; Wu, J.-Y.; Jiang, Y.-X.; Tam Nora, F.-Y.; Zhou, H.-W. Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinf. 2017, 18, 183. [Google Scholar] [CrossRef]
- Li, H.; Lai, R.; Jin, Y.; Fang, X.; Cui, K.; Sun, S.; Gong, Y.; Li, H.; Zhang, Z.; Zhang, G.; et al. Directional culture of petroleum hydrocarbon degrading bacteria for enhancing crude oil recovery. J. Hazard. Mater. 2020, 390, 122160. [Google Scholar] [CrossRef]
- Shi, Q.; Zhao, S.; Xu, Z.; Chung, K.H.; Zhang, Y.; Xu, C. Distribution of Acids and Neutral Nitrogen Compounds in a Chinese Crude Oil and Its Fractions: Characterized by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2010, 24, 4005–4011. [Google Scholar] [CrossRef]
- Oldenburg, T.B.P.; Jones, M.; Huang, H.; Bennett, B.; Shafiee, N.S.; Head, I.; Larter, S.R. The controls on the composition of biodegraded oils in the deep subsurface—Part 4. Destruction and production of high molecular weight non-hydrocarbon species and destruction of aromatic hydrocarbons during progressive in-reservoir biodegradation. Org. Geochem. 2017, 114, 57–80. [Google Scholar] [CrossRef]
- Liang, K.; Liu, M.; Liang, Q.; Yang, H.; Li, J.; Yao, Z.; Li, S.; Yan, W. Shifts in Bacterial and Archaeal Community Composition in Low-Permeability Oil Reservoirs by a Nutrient Stimulation for Enhancing Oil Recovery. Appl. Sci. 2022, 12, 8075. [Google Scholar] [CrossRef]
- Tian, H.; Gao, P.; Chen, Z.; Li, Y.; Li, Y.; Wang, Y.; Zhou, J.; Li, G.; Ma, T. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Front. Microbiol. 2017, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Shahi, A.; Aydin, S.; Ince, B.; Ince, O. Reconstruction of bacterial community structure and variation for enhanced petroleum hydrocarbons degradation through biostimulation of oil contaminated soil. Chem. Eng. J. 2016, 306, 60–66. [Google Scholar] [CrossRef]
- Xia, W.; Shen, W.; Yu, L.; Zheng, C.; Yu, W.; Tang, Y. Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir. Appl. Energy 2016, 171, 646–655. [Google Scholar] [CrossRef]
- Menes, R.J.; Mux, L.A. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 2002, 52, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Mavromatis, K.; Stackebrandt, E.; Held, B.; Lapidus, A.; Nolan, M.; Lucas, S.; Hammon, N.; Deshpande, S.; Cheng, J.F.; Tapia, R.; et al. Complete genome sequence of the moderate thermophile Anaerobaculum mobile type strain (NGA(T)). Stand. Genomic Sci. 2013, 8, 47–57. [Google Scholar] [CrossRef]
- Roumagnac, M.; Pradel, N.; Bartoli, M.; Garel, M.; Jones, A.A.; Armougom, F.; Fenouil, R.; Tamburini, C.; Ollivier, B.; Summers, Z.M.; et al. Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well. Front. Microbiol. 2020, 11, 588771. [Google Scholar] [CrossRef]
- Veshareh, M.J.; Poulsen, M.; Nick, H.M.; Feilberg, K.L.; Eftekhari, A.A.; Dopffel, N. The light in the dark: In-situ biorefinement of crude oil to hydrogen using typical oil reservoir Thermotoga strains. Int. J. Hydrogen Energy 2022, 47, 5101–5110. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Vanhatalo, A.; Toivonen, V.; Heikkila, T.; Lee, M.R.F.; Shingfield, K.J. Effect of replacing grass silage with red clover silage on. nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. J. Dairy Sci. 2014, 97, 3761–3776. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Chen, J.; An, R.; Li, K.; Chen, M. A state-of-the-art review of nanoparticle applications with a focus on heavy oil viscosity reduction. J. Mol. Liq. 2021, 344, 117845. [Google Scholar] [CrossRef]
- Zueva, O.S.; Zvereva, E.R.; Makarova, A.O.; Galimzyanova, A.R.; Ageeva, M.V.; Onishchenko, Y.V.; Salnikov, V.V.; Turanov, A.N.; Vakhin, A.V. Influence of High-Molecular n-Alkane Associates on Rheological Behavior of the Crude Oil Residue. Energy Fuels 2022, 36, 6755–6770. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, D.J. Characterization of Severely Biodegraded Crude Oils Using Negative-Ion ESI Orbitrap MS, GC-NCD and GC-SCD: Insights into Heteroatomic Compounds Biodegradation. Energies 2021, 14, 300. [Google Scholar] [CrossRef]
- Liao, Y.; Shi, Q.; Hsu, C.S.; Pan, Y.; Zhang, Y. Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS. Org. Geochem. 2012, 47, 51–65. [Google Scholar] [CrossRef]
- Liu, P.; Li, M.; Jiang, Q.; Cao, T.; Sun, Y. Effect of secondary oil migration distance on composition of acidic NSO compounds in crude oils determined by negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 2015, 78, 23–31. [Google Scholar] [CrossRef]
- Wang, X.; Cai, T.; Wen, W.; Zhang, Z. Effect of biosurfactant on biodegradation of heteroatom compounds in heavy oil. Fuel 2018, 230, 418–429. [Google Scholar] [CrossRef]
- Nzila, A. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ. Pollut. 2018, 239, 788–802. [Google Scholar] [CrossRef] [PubMed]
- Wentzel, A.; Ellingsen, T.E.; Kotlar, H.-K.; Zotchev, S.B.; Throne-Holst, M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 2007, 76, 1209–1221. [Google Scholar] [CrossRef]
- Kurade, M.B.; Saha, S.; Kim, J.R.; Roh, H.S.; Jeon, B.H. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease. Bioresour. Technol. 2020, 296, 122294. [Google Scholar] [CrossRef]
- Sousa, D.Z.; Smidt, H.; Alves, M.M.; Stams, A.J.M. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol. Ecol. 2009, 68, 257–272. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, K.; Li, B.-G.; Mbadinga, S.M.; Zhou, L.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z. Simulation of in situ oil reservoir conditions in a laboratory bioreactor testing for methanogenic conversion of crude oil and analysis of the microbial community. Int. Biodeterior. Biodegrad. 2019, 136, 24–33. [Google Scholar] [CrossRef]
Group | Sample Composition |
---|---|
N | Formation water |
L | Formation water + LON |
H | Formation water + HON |
L-H | Formation water + alternate addition of LON and HON |
Group | Chao | ACE | Shannon | Coverage |
---|---|---|---|---|
N | 135.98 | 151.49 | 3.01 | 0.999572 |
L | 99.84 | 99.68 | 1.35 | 0.999635 |
H | 30.50 | 33.78 | 1.14 | 0.999865 |
L-H | 46.83 | 48.54 | 0.35 | 0.999858 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wang, M.; Zhang, K.; Zhang, X.; Lu, Z.; Jiang, X.; Song, H.; Huang, T.; Zhu, Q.; Xiao, M. Effect of Different Stimulation Methods on the Activation and Metabolic Performance of Microbial Community to Enhance Heavy Oil Recovery. Processes 2025, 13, 338. https://doi.org/10.3390/pr13020338
Zhou J, Wang M, Zhang K, Zhang X, Lu Z, Jiang X, Song H, Huang T, Zhu Q, Xiao M. Effect of Different Stimulation Methods on the Activation and Metabolic Performance of Microbial Community to Enhance Heavy Oil Recovery. Processes. 2025; 13(2):338. https://doi.org/10.3390/pr13020338
Chicago/Turabian StyleZhou, Junfei, Mengxiao Wang, Kebing Zhang, Xiaochen Zhang, Zhongshan Lu, Xiaolong Jiang, Hongbing Song, Tingting Huang, Quanhong Zhu, and Meng Xiao. 2025. "Effect of Different Stimulation Methods on the Activation and Metabolic Performance of Microbial Community to Enhance Heavy Oil Recovery" Processes 13, no. 2: 338. https://doi.org/10.3390/pr13020338
APA StyleZhou, J., Wang, M., Zhang, K., Zhang, X., Lu, Z., Jiang, X., Song, H., Huang, T., Zhu, Q., & Xiao, M. (2025). Effect of Different Stimulation Methods on the Activation and Metabolic Performance of Microbial Community to Enhance Heavy Oil Recovery. Processes, 13(2), 338. https://doi.org/10.3390/pr13020338