Lead (Pb) Contamination in Soil and Plants at Military Shooting Ranges and Its Mitigation Strategies: A Comprehensive Review
Abstract
:1. Introduction
- To provide a comprehensive assessment of the potential risk of Pb on the vegetation growing in shooting ranges
- To examine the effect of Pb on the physiochemical properties of soil
2. Accumulation and Distribution of Pb in Shooting Range Soils
3. Factor Influencing Pb Dispersal
4. Effects of Soil Physicochemical Properties in Accumulation of Pb
4.1. Effect of Soil pH
4.2. Effect of Soil CEC
4.3. Effect of Soil Moisture
4.4. Effect of Soil Texture
5. Environmental Impacts of Pb
6. Mechanisms and Effects of Pb Toxicity in Plants
Plant Tolerance Against Pb Toxicity
7. Mitigation Strategies for Pb-Impacted Soil in Military Shooting Ranges
7.1. Stabilization
7.2. Phytoremediation
7.3. Microbial Bioremediation
7.4. Chemical-Assisted Soil Washing
8. Planned Future Use of Shooting Range Site
9. Conclusions and Future Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chrastný, V.; Komárek, M.; Hájek, T. Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ. Monit. Assess. 2010, 162, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Smith, C. Areas of Major Concentration in the Use and Traffic of Small Arms. In Small Arms Control; Routledge: London, UK, 2019; pp. 83–126. [Google Scholar]
- Vantelon, D.; Lanzirotti, A.; Scheinost, A.C.; Kretzschmar, R. Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environ. Sci. Technol. 2005, 39, 4808–4815. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.; Naidu, R.; Bolan, N.; Bowman, M. Critical review on chemical stabilization of metal contaminants in shooting range soils. J. Hazard. Toxic Radioact. Waste 2012, 16, 258–272. [Google Scholar] [CrossRef]
- Ma, L.Q.; Hardison, D.W.; Harris, W.G.; Cao, X.; Zhou, Q. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Pollut. 2007, 178, 297–307. [Google Scholar] [CrossRef]
- Schindler, M.; Weatherhead, K.; Mantha, H. The release of incidental nanoparticles during the weathering of gunshot residue in soils of a shooting range in Ontario, Canada. Can. Mineral. 2021, 59, 69–89. [Google Scholar] [CrossRef]
- Rapp, G.; Rapp, G. Metals and related minerals and ores. In Archaeomineralogy; Springer: Berlin/Heidelberg, Germany, 2009; pp. 143–182. [Google Scholar] [CrossRef]
- Lottermoser, B.; Lottermoser, B.G. Sulfidic mine wastes. In Mine Wastes: Characterization, Treatment and Environmental Impacts; Springer: Berlin/Heidelberg, Germany, 2010; pp. 43–117. [Google Scholar] [CrossRef]
- Elizondo-Álvarez, M.A.; Uribe-Salas, A.; Nava-Alonso, F. Flotation studies of galena (PbS), cerussite (PbCO3) and anglesite (PbSO4) with hydroxamic acids as collectors. Miner. Eng. 2020, 155, 106456. [Google Scholar] [CrossRef]
- Liu, Y.; Molinari, S.; Dalconi, M.C.; Valentini, L.; Ricci, G.; Carrer, C.; Ferrari, G.; Artioli, G. The leaching behaviors of lead, zinc, and sulfate in pyrite ash contaminated soil: Mineralogical assessments and environmental implications. J. Environ. Chem. Eng. 2023, 11, 109687. [Google Scholar] [CrossRef]
- Ajala, M.A.; Abdulkareem, A.S.; Kovo, A.S.; Tijani, J.O.; Ajala, E.O. Synthesis of Ag2O-TiO2-Kaolinite Clay Nanocomposite for Efficient Removal of Mn2+, Fe3+, Cu2+, and Pb2+ and Pathogens in Mining Wastewater. Water Air Soil Pollut. 2024, 235, 42. [Google Scholar] [CrossRef]
- Mana, S.C.A.; Fatt, N.T.; Ashraf, M.A. The fate and transport of arsenic species in the aquatic ecosystem: A case study on Bestari Jaya, Peninsular Malaysia. Environ. Sci. Pollut. Res. 2017, 24, 22799–22807. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kumar, S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresour. Technol. 2021, 339, 125589. [Google Scholar] [CrossRef]
- Redwan, M.; Rammlmair, D.; Berkh, K. Secondary minerals in a calcareous environment: An example from Um Gheig Pb/Zn mine site, Eastern Desert, Egypt. Environ. Earth Sci. 2021, 80, 274–302. [Google Scholar] [CrossRef]
- Dinake, P.; Mokgosi, S.M.; Kelebemang, R.; Kereeditse, T.T.; Motswetla, O. Pollution risk from Pb towards vegetation growing in and around shooting ranges—A review. Environ. Pollut. Bioavailab. 2021, 33, 88–103. [Google Scholar] [CrossRef]
- Yin, D.; Wang, X.; Chen, C.; Peng, B.; Tan, C.; Li, H. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 2016, 152, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Lee, S.S.; Moon, D.H.; Yang, J.E.; Ok, Y.S. A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In Environmental Protection Strategies for Sustainable Development; Springer: Dordrecht, The Netherlands, 2012; pp. 437–451. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef]
- Naeem, N.; Khalid, N.; Sarfraz, W.; Ejaz, U.; Yousaf, A.; Rizvi, Z.F.; Ikram, S. Assessment of lead and cadmium pollution in soil and wild plants at different functional areas of Sialkot. Bull. Environ. Contam. Toxicol. 2021, 107, 336–342. [Google Scholar] [CrossRef]
- Bandara, T.; Vithanage, M. Phytoremediation of shooting range soils. In Phytoremediation: Management of Environmental Contaminants, Volume 3; Springer: Cham, Switzerland, 2016; pp. 469–488. [Google Scholar] [CrossRef]
- Khan, A.Z.; Khan, S.; Muhammad, S.; Baig, S.A.; Khan, A.; Nasir, M.J.; Azhar, M.; Naz, A. Lead contamination in shooting range soils and its phytoremediation in Pakistan: A greenhouse experiment. Arab. J. Geosci. 2021, 14, 1–7. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, X. Ecological and human health risks of heavy metals in shooting range soils: A meta assessment from China. Toxics 2020, 8, 32. [Google Scholar] [CrossRef]
- Česynaitė, J.; Praspaliauskas, M.; Pedišius, N.; Sujetovienė, G. Biological assessment of contaminated shooting range soil using earthworm biomarkers. Ecotoxicology 2021, 30, 2024–2035. [Google Scholar] [CrossRef]
- Barker, A.J.; Clausen, J.L.; Douglas, T.A.; Bednar, A.J.; Griggs, C.S.; Martin, W.A. Environmental impact of metals resulting from military training activities: A review. Chemosphere 2021, 265, 129–138. [Google Scholar] [CrossRef]
- Sehube, N.; Kelebemang, R.; Totolo, O.; Laetsang, M.; Kamwi, O.; Dinake, P. Lead pollution of shooting range soils. S. Afr. J. Chem. 2017, 70, 21–28. [Google Scholar] [CrossRef]
- Ni, S.; Rahman, S.; Kasai, S.; Yoshioka, S.; Wong, K.H.; Mashio, A.S.; Hasegawa, H. Remediation of lead-contaminated shooting range soil: Biodegradable chelator-assisted washing and subsequent post-treatment using FeCl3 and CaO. Environ. Technol. Innov. 2023, 31, 103–111. [Google Scholar] [CrossRef]
- Dien, N.T.; Hirai, Y.; Koshiba, J.; Sakai, S.-i. Factors affecting multiple persistent organic pollutant concentrations in the air above Japan: A panel data analysis. Chemosphere 2021, 277, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Conesa, H.M.; Wieser, M.; Gasser, M.; Hockmann, K.; Evangelou, M.W.H.; Studer, B.; Schulin, R. Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. J. Hazard. Mater. 2010, 181, 845–850. [Google Scholar] [CrossRef]
- Heier, L.S.; Meland, S.; Ljønes, M.; Salbu, B.; Strømseng, A.E. Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream. Sci. Total Environ. 2010, 408, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Fayiga, A.O.; Saha, U.; Ma, L.Q. Chemical and physical characterization of lead in three shooting range soils in Florida. Chem. Speciat. Bioavailab. 2011, 23, 163–169. [Google Scholar] [CrossRef]
- Laporte-Saumure, M.; Martel, R.; Mercier, G. Evaluation of physicochemical methods for treatment of Cu, Pb, Sb, and Zn in Canadian small arm firing ranges backstop soils. Water Air Soil Pollut. 2010, 213, 171–189. [Google Scholar] [CrossRef]
- Selonen, S.; Liiri, M.; Strömmer, R.; Setälä, H. The fate of lead at abandoned and active shooting ranges in a boreal pine forest. Environ. Toxicol. Chem. 2012, 31, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Amorim, A.; Black, D.; Borkhetaria, P.; Gambill, M.; Gray, M.; Jin, H.; Pergola, S.; Qiang, K.; Rosenberger, M.; Smires, A. Life Cycle Assessment of Firearms and Ammunition. 2019. Available online: https://digitalcollections.drew.edu/CLA/SpatialDataCenter/Spring2020/LCA_Firearms.pdf (accessed on 22 January 2025).
- Okkenhaug, G.; Amstätter, K.; Lassen Bue, H.; Cornelissen, G.; Breedveld, G.D.; Henriksen, T.; Mulder, J. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environ. Sci. Technol. 2013, 47, 6431–6439. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, Z.; Xie, C.; Li, J. Analysis of existing speciation and evaluation of heavy metals pollution of soil in a shooting range. Nat. Environ. Pollut. Technol. 2014, 13, 449–558. [Google Scholar]
- Luo, W.; Verweij, R.A.; van Gestel, C.A.M. Contribution of soil properties of shooting fields to lead biovailability and toxicity to Enchytraeus crypticus. Soil Biol. Biochem. 2014, 76, 235–241. [Google Scholar] [CrossRef]
- Sanderson, P.; Naidu, R.; Bolan, N. Ecotoxicity of chemically stabilised metal (loid) s in shooting range soils. Ecotoxicol. Environ. Saf. 2014, 100, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Zhao, S.; Liu, X. The weathering and transformation process of lead in China’s shooting ranges. Environ. Sci. Process. Impacts 2015, 17, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Etim, E.U. Distribution of soil-bound lead arising from rainfall-runoff events at impact berm of a military shooting range. J. Environ. Prot. 2016, 7, 623–634. [Google Scholar] [CrossRef]
- Sanderson, P.; Naidu, R.; Bolan, N. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. J. Environ. Manag. 2016, 170, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seijo, A.; Lago-Vila, M.; Andrade, M.L.; Vega, F.A. Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environ. Sci. Pollut. Res. 2016, 23, 1312–1323. [Google Scholar] [CrossRef]
- Tariq, S.R.; Ashraf, A. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab. J. Chem. 2016, 9, 806–814. [Google Scholar] [CrossRef]
- Islam, M.N.; Park, J.-H. Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment. J. Environ. Manag. 2017, 191, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Etim, E.U. Lead removal from contaminated shooting range soil using acetic acid potassium chloride washing solutions and electrochemical reduction. J. Health Pollut. 2017, 7, 22–31. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Cachada, A.; Gavina, A.; Duarte, A.C.; Vega, F.A.; Andrade, M.L.; Pereira, R. Lead and PAHs contamination of an old shooting range: A case study with a holistic approach. Sci. Total Environ. 2017, 575, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Tandy, S.; Meier, N.; Schulin, R. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J. Hazard. Mater. 2017, 324, 617–625. [Google Scholar] [CrossRef]
- Sujetovienė, G.; Česynaitė, J. Assessment of toxicity to earthworm Eisenia fetida of lead contaminated shooting range soils with different properties. Bull. Environ. Contam. Toxicol. 2019, 103, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.J.; Mayhew, L.E.; Douglas, T.A.; Ilgen, A.G.; Trainor, T.P. Lead and antimony speciation associated with the weathering of bullets in a historic shooting range in Alaska. Chem. Geol. 2020, 553, 119–127. [Google Scholar] [CrossRef]
- Lago-Vila, M.; Rodríguez-Seijo, A.; Vega, F.A.; Arenas-Lago, D. Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils. Sci. Total Environ. 2019, 690, 1151–1161. [Google Scholar] [CrossRef]
- Kelebemang, R.; Dinake, P.; Sehube, N.; Daniel, B.; Totolo, O.; Laetsang, M. Speciation and mobility of lead in shooting range soils. Chem. Speciat. Bioavailab. 2017, 29, 143–152. [Google Scholar] [CrossRef]
- Mariussen, E.; Johnsen, I.V.; Strømseng, A.E. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environ. Sci. Pollut. Res. 2017, 24, 10182–10196. [Google Scholar] [CrossRef]
- Chen, M.; Daroub, S.H.; Ma, L.Q.; Harris, W.G.; Cao, X. Characterization of lead in soils of a rifle/pistol shooting range in central Florida, USA. Soil Sediment Contam. 2002, 11, 1–17. [Google Scholar] [CrossRef]
- Liu, R.; Gress, J.; Gao, J.; Ma, L.Q. Impacts of two best management practices on Pb weathering and leachability in shooting range soils. Environ. Monit. Assess. 2013, 185, 6477–6484. [Google Scholar] [CrossRef]
- Aslam, M.; Aslam, A.; Sheraz, M.; Ali, B.; Ulhassan, Z.; Najeeb, U.; Zhou, W.; Gill, R.A. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Front. Plant Sci. 2021, 11, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Wattoo, F.M.; Khan, F.; Hassan, Z.; Mahmood, I.; Anwar, A.; Karim, M.F.; Akram, M.T.; Manzoor, R.; Khan, K.S. Biochar and polyhalite fertilizers improve soil’s biochemical characteristics and sunflower (Helianthus annuus L.) yield. Agronomy 2023, 13, 483. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q.; Chen, M.; Hardison, D.W., Jr.; Harris, W.G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci. Total Environ. 2003, 307, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Che, R.; Tu, B.; Miao, J.; Lu, X.; Li, J.; Zhu, Y.; Wang, F. Contamination and remediation of contaminated firing ranges—An overview. Front. Environ. Sci. 2024, 12, 135–147. [Google Scholar] [CrossRef]
- Sanderson, P.; Naidu, R.; Bolan, N. Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. Environ. Sci. Pollut. Res. 2015, 22, 8942–8956. [Google Scholar] [CrossRef]
- Klik, B.; Gusiatin, Z.M.; Kulikowska, D. A holistic approach to remediation of soil contaminated with Cu, Pb and Zn with sewage sludge-derived washing agents and synthetic chelator. J. Clean. Prod. 2021, 311, 127–134. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 2022, 1, 8–17. [Google Scholar] [CrossRef]
- Aziz, M.A.; Khan, K.S.; Khalid, R.; Shabaan, M.; Alghamdi, A.G.; Alasmary, Z.; Majrashi, M.A. Integrated application of biochar and chemical fertilizers improves wheat (Triticum aestivum) productivity by enhancing soil microbial activities. Plant Soil 2024, 502, 433–448. [Google Scholar] [CrossRef]
- Yin, C.-Y.; Mahmud, H.B.; Shaaban, M.G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash. J. Hazard. Mater. 2006, 137, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.L.; Malone, P.G.; Weiss, C.A.; Martin, W.A.; Trest, C.; Fabian, G.; Warminsky, M.F.; Mackie, D.; Tasca, J.J.; Wildey, J. Amended ballistic sand studies to provide low maintenance lead containment at active small arms firing range systems. US Army Corps Eng. Eng. Res. Dev. Cent. 2007, 34, 58–67. [Google Scholar]
- Mariussen, E.; Johnsen, I.V.; Strømseng, A.E. Selective adsorption of lead, copper and antimony in runoff water from a small arms shooting range with a combination of charcoal and iron hydroxide. J. Environ. Manag. 2015, 150, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for heavy metal removal: A review. SN Appl. Sci. 2023, 5, 125–134. [Google Scholar] [CrossRef]
- Migliorini, M.; Pigino, G.; Bianchi, N.; Bernini, F.; Leonzio, C. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 2004, 129, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Hoaghia, M.-A.; Cadar, O.; Moisa, C.; Roman, C.; Kovacs, E. Heavy metals and health risk assessment in vegetables grown in the vicinity of a former non-metallic facility located in Romania. Environ. Sci. Pollut. Res. 2022, 29, 40079–40093. [Google Scholar] [CrossRef]
- Grammenou, A.; Petropoulos, S.A.; Thalassinos, G.; Rinklebe, J.; Shaheen, S.M.; Antoniadis, V. Biostimulants in the soil–plant interface: Agro-environmental implications—A review. Earth Syst. Environ. 2023, 7, 583–600. [Google Scholar] [CrossRef]
- Mishra, R.; Datta, S.P.; Annapurna, K.; Meena, M.C.; Dwivedi, B.S.; Golui, D.; Bandyopadhyay, K. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms. Environ. Sci. Pollut. Res. 2019, 26, 17224–17235. [Google Scholar] [CrossRef]
- Verma, S.; Dubey, R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Kastori, R.; Petrović, M.; Petrović, N. Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J. Plant Nutr. 1992, 15, 2427–2439. [Google Scholar] [CrossRef]
- Chandwani, S.; Kayasth, R.; Naik, H.; Amaresan, N. Current status and future prospect of managing lead (Pb) stress through microbes for sustainable agriculture. Environ. Monit. Assess. 2023, 195, 479–485. [Google Scholar] [CrossRef]
- Evangelou, M.W.H.; Hockmann, K.; Pokharel, R.; Jakob, A.; Schulin, R. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils. J. Environ. Manag. 2012, 108, 102–107. [Google Scholar] [CrossRef]
- Gjorgieva Ackova, D. Heavy metals and their general toxicity on plants. Plant Sci. Today 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Scoriza, R.N.; Correia, M.E.F. Establishment of leguminous trees in the soil of a shooting range. Floresta E Ambiente 2019, 26, 2017–2025. [Google Scholar] [CrossRef]
- Li, J.-s.; Wang, Q.; Chen, Z.; Xue, Q.; Chen, X.; Mu, Y.; Poon, C.S. Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash. Environ. Pollut. 2021, 284, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.-J.; Wei, M.-L.; Reddy, K.R.; Jin, F.; Wu, H.-L.; Liu, Z.-B. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization. J. Environ. Manag. 2014, 146, 179–188. [Google Scholar] [CrossRef]
- Rahman, S.; Jii, N.; Ni, S.; Harada, Y.; Mashio, A.S.; Begum, Z.A.; Rahman, I.M.M.; Hasegawa, H. Biodegradable chelator-assisted washing and stabilization of arsenic-contaminated excavated soils. Water Air Soil Pollut. 2022, 233, 213–221. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.-s.; Tang, P.; Fang, L.; Poon, C.S. Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. J. Clean. Prod. 2018, 181, 717–725. [Google Scholar] [CrossRef]
- Su, X.; Zhu, J.; Fu, Q.; Zuo, J.; Liu, Y.; Hu, H. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. J. Environ. Sci. 2015, 28, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Ji, H. Stabilization process and potential of agro-industrial waste on Pb-Contaminated soil around Pb–Zn mining. Environ. Pollut. 2020, 260, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2019; pp. 103–125. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939–946. [Google Scholar] [CrossRef]
- Nedjimi, B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Appl. Sci. 2021, 3, 286–294. [Google Scholar] [CrossRef]
- Sneddon, J.; Clemente, R.; Riby, P.; Lepp, N.W. Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environ. Pollut. 2009, 157, 2663–2669. [Google Scholar] [CrossRef]
- Teng, Z.; Shao, W.; Zhang, K.; Huo, Y.; Zhu, J.; Li, M. Pb biosorption by Leclercia adecarboxylata: Protective and immobilized mechanisms of extracellular polymeric substances. Chem. Eng. J. 2019, 375, 122–133. [Google Scholar] [CrossRef]
- Cui, W.; Li, X.; Duan, W.; Xie, M.; Dong, X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: A review. Environ. Geochem. Health 2023, 45, 4127–4163. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119–126. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges. Environ. Sci. Pollut. Res. 2020, 27, 27563–27581. [Google Scholar] [CrossRef]
- Koul, B.; Taak, P.; Koul, B.; Taak, P. Ex situ soil remediation strategies. In Biotechnological Strategies for Effective Remediation of Polluted Soils; Springer: Singapore, 2018; pp. 39–57. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Kammann, C.; Niggli, C.; Evangelou, M.W.H.; Mackie, K.A.; Abiven, S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D.; Fu, Q. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J. Microbiol. Biotechnol. 2012, 22, 244–247. [Google Scholar] [CrossRef]
- Kang, C.-H.; Kwon, Y.-J.; So, J.-S. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Kalita, D.; Joshi, S.R. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol. Rep. 2017, 16, 48–57. [Google Scholar] [CrossRef]
- Saleem, M.; Asghar, H.N.; Ahmad, W.; Akram, M.A.; Saleem, M.U.; Khan, M.Y.; Naveed, M.; Zahir, Z.A. Prospects of bacterial-assisted remediation of metal-contaminated soils. In Agro-Environmental Sustainability: Volume 2: Managing Environmental Pollution; Springer: Cham, Switzerland, 2017; pp. 41–58. [Google Scholar] [CrossRef]
- Shanab, S.; Essa, A.; Shalaby, E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal. Behav. 2012, 7, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.E.; Hijri, M.; St-Arnaud, M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol. 2013, 30, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Bellion, M.; Courbot, M.; Jacob, C.; Blaudez, D.; Chalot, M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 2006, 254, 173–181. [Google Scholar] [CrossRef] [PubMed]
Location and Year of Study | Number of Studied Shooting Ranges | Concentration of Pb Found in Soil (mg/kg) | References |
---|---|---|---|
Switzerland (2010) | 2 | 621 ± 12.35 | [29] |
Norway (2010) | 1 | 22,000 ± 31.47 | [30] |
USA (2011) | 3 | 20,350 ± 21.62 | [31] |
Canada (2011) | 4 | 24,100 ± 78.54 | [32] |
South Korea (2012) | 1 | 4625 ± 19.03 | [33] |
Australia (2012) | 4 | 6403 ± 00 | [2] |
Finland (2012) | 2 | 30,300 ± 113.48 | [34] |
South Korea (2013) | 1 | 11,800 ± 52.11 | [3] |
Norway (2013) | 5 | 30,000 ± 163.90 | [35] |
China (2014) | 1 | 2563 ± 41.53 | [36] |
Netherland (2014) | 1 | 2158 ± 55.10 | [37] |
Australia (2015) | 3 | 30,600 ± 134.88 | [38] |
Finland (2015) | 2 | 23,000 ± 105.49 | [18] |
China (2015) | 3 | 6019 ± 45.18 | [39] |
Nigeria (2016) | 1 | 17,500 ± 59.74 | [40] |
Australia (2016) | 4 | 2145 ± 21.92 | [41] |
Spain (2016) | 1 | 724 ± 12.47 | [42] |
Pakistan | 1 | 1331 ± 19.04 | [43] |
South Korea (2017) | 1 | 3436 ± 49.13 | [44] |
Norway (2017) | 7 | 2700 ± 25.97 | [32] |
Nigeria (2017) | 1 | 26,933 ± 00 | [45] |
Spain (2017) | 1 | 710 ± 19.16 | [46] |
Switzerland (2017) | 2 | 620 ± 10.41 | [47] |
Botswana (2017) | 1 | 38,300 ± 158.51 | [26] |
Lithuania (2018) | 1 | 654 ± 45.12 | [48] |
Alaska (2019) | 1 | 2800 ± 27.49 | [49] |
Poland (2019) | 1 | 3800 ± 14.03 | [50] |
Mitigation Strategy | Descriptions | Advantage | Disadvantage | Reference |
---|---|---|---|---|
Chemical stabilization | This process involves the addition of stabilizing agents, such as phosphates, silicates, or carbonates, to the contaminated soil. These agents react with the Pb ions to form stable, insoluble compounds which are less mobile and less bioavailable. Generally, precipitation, adsorption, and complexation mechanisms are involved in this process. |
|
| [88] |
Phytoremediation | Phytoremediation involves the use of specific plants known as hyperaccumulators, which have the ability to absorb and accumulate heavy metals like Pb from the soil through their roots. The Pb is then translocated to the above-ground parts of the plant, where it can be harvested and removed. Overall, phytostabilization, phytoextraction, and rhizodegradation are the common mechanisms which are used in phytoremediation. |
|
| [89] |
Microbial bioremediation | Microorganisms, such as bacteria and fungi, are utilized to degrade, transform, or immobilize environmental pollutants, including heavy metals like Pb. Biosorption, bioaccumulation, bioprecipitation, and biovolatilization are the common mechanisms which are used in microbial bioremediation. |
|
| [90] |
Soil washing | It is an ex situ remediation technique used to remove contaminants, such as heavy metals, from soil. Overall, soil excavation, physical separation, chemical extraction, separation, and washwater treatment are the general steps which are followed in this practice. |
|
| [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmary, Z. Lead (Pb) Contamination in Soil and Plants at Military Shooting Ranges and Its Mitigation Strategies: A Comprehensive Review. Processes 2025, 13, 345. https://doi.org/10.3390/pr13020345
Alasmary Z. Lead (Pb) Contamination in Soil and Plants at Military Shooting Ranges and Its Mitigation Strategies: A Comprehensive Review. Processes. 2025; 13(2):345. https://doi.org/10.3390/pr13020345
Chicago/Turabian StyleAlasmary, Zafer. 2025. "Lead (Pb) Contamination in Soil and Plants at Military Shooting Ranges and Its Mitigation Strategies: A Comprehensive Review" Processes 13, no. 2: 345. https://doi.org/10.3390/pr13020345
APA StyleAlasmary, Z. (2025). Lead (Pb) Contamination in Soil and Plants at Military Shooting Ranges and Its Mitigation Strategies: A Comprehensive Review. Processes, 13(2), 345. https://doi.org/10.3390/pr13020345