The Effect of Yellowing on the Corrosion Resistance of Chromium-Free Fingerprint-Resistant Hot-Dip Al-Zn-Coated Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Investigation of the Yellowing Mechanism
3.2. The Effect of Yellowing on the Surface Morphology
3.3. The Effect of Yellowing on the Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marek, A.; Steinerová, V.; Pokorný, P.; Kania, H.; Berger, F. High-temperature Zn-5Al hot dip galvanizing of reinforcement steel. Coatings 2024, 14, 959. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Tang, X.; Wang, Y.; Cao, Y.; Li, Y.; Yuan, X.; Zhang, D. The effect of Cr-free fingerprint-resistant passivation film on the performance of hot dip 55 wt% Al-Zn coated steel. Mater. Technol. 2024, 58, 511–520. [Google Scholar]
- Xu, Z.; Chen, L.; Han, J.; Zhu, C. Research on corrosion inhibitors for coatings on hot-dip aluminized-galvanized steel in marine environment. Russ. J. Phys. Chem. A 2023, 97, 2044–2051. [Google Scholar] [CrossRef]
- Yu, S.-P.; Tai, H.-J. Sol–gel enhanced polyurethane coating for corrosion protection of 55% Al-Zn alloy-coated steel. J. Polym. R. 2021, 28, 15. [Google Scholar] [CrossRef]
- Pan, J.; Cheng, Y.; Ding, Y.; Zhao, R.; Jiang, T.; Feng, Z.; Li, Y. Effect of square wave potential polarity and amplitude on property of trivalent chromium conversion coating applied on Zn−Al hot-dip coating. Trans. Nonferrous Met. Soc. 2023, 10, 3067–3082. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, X.; Wang, S.; Zhong, H.; Yang, J.; Cao, Z. In-situ constructing and EDTA-enhancing of meta-aluminate passivation films on electroplated zinc surfaces. Colloid Surf. A 2023, 657, 130573. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Zhou, W.; Ma, R.; Du, A.; Fan, Y.; Zhao, X.; Cao, X. Improved anti-corrosion behaviour of an inorganic passive film on hot-dip galvanised steel by modified graphene oxide incorporation. Corros. Sci. 2020, 174, 108846. [Google Scholar] [CrossRef]
- Fernández-Solis, C.; Keil, P.; Erbe, A. Molybdate and phosphate cross-linked chitosan films for corrosion protection of hot-dip galvanized steel. ACS Omega 2023, 8, 19613–19624. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.; Wang, G.; Ning, Y.; Guan, L.; Zhang, Y.; Liao, J.; Wang, Y. Preparation and corrosion resistance of chromium-free Zn-Al coatings with two different silane coupling agents. Surf. Coat. Technol. 2019, 366, 1–6. [Google Scholar] [CrossRef]
- GB/T 1740-2007; Determination of Resistance to Heat and Humidity of Paint Films. Standards Press of China: Beijing, China, 2007.
- GB/T 10125-2012; Artificial Atmosphere Corrosion Test—Salt Spray Test. Standards Press of China: Beijing, China, 2012.
- Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of N-Vinylcaprolactam and Characterization of Poly(N-Vinylcaprolactam). J. Macromol. Sci. Part A 2011, 48, 467–477. [Google Scholar] [CrossRef]
- Yin, F.; Nguyen, H.H.; Coutelier, O.; Destarac, M.; Viguerie, N.L.-D.; Marty, J.-D. Effect of copolymer composition of controlled (N-vinylcaprolactam/N-vinylpyrrolidone) statistical copolymers on formation, stabilization, thermoresponsiveness and catalytic properties of gold nanoparticles. Colloid. Surf. A 2021, 630, 127611. [Google Scholar] [CrossRef]
- Marimuthu, E.; Murugesan, V. Polymerization of N-vinyl caprolactam by ultrasound aided dual-sited phase transfer catalytic conditions. Adv. Compos. Hybrid Mater. 2019, 2, 670–680. [Google Scholar] [CrossRef]
- Prasad, K.; Mehta, G.; Meena, R.; Siddhanta, A.K. Hydrogel-forming agar-graft-PVP and κ-carrageenan-graft-PVP blends: Rapid synthesis and characterization. J. Appl. Polym. Sci. 2006, 102, 3654–3663. [Google Scholar] [CrossRef]
- Huang, J.; Yang, H.; Chen, M.; Ji, T.; Hou, Z.; Wu, M. An infrared spectroscopy study of PES PVP blend and PES-g-PVP copolymer. Polym. Test. 2017, 59, 212–219. [Google Scholar] [CrossRef]
- Xiao, M.; González, E.; Monterroza, A.M.; Frey, M. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer. Carbohyd. Polym. 2017, 174, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Armendarez, O.J.; Parizek, G.C.; Augustine, R.J.; Silver, E.J.; Kaz, T.A.; Campbell, K.A.; Diaz, I.P.; Mantripragada, S.; Geil, R.D.; Flagg, S.M.; et al. Preparation of poly(3-hexylthiophene) conjugated polymer brush films from amine-terminated surfaces. J. Polym. Sci. 2024, 62, 5384. [Google Scholar] [CrossRef]
- Pan, C.; Wen, Q.; Ma, L.; Qin, X.; Feng, S. Green-emitting silicon nanoparticles as a fluorescent probe for highly-sensitive crocin detection and pH sensing. New J. Chem. 2022, 46, 12729–12738. [Google Scholar] [CrossRef]
- Wan, J.; Liu, L.; Wu, Y.; Song, J.; Liu, J.; Song, R.; Low, J.; Chen, X.; Wang, J.; Fu, F.; et al. Exploring the polarization photocatalysis of ZnIn2S4 material toward hydrogen evolution by integrating cascade electric fields with hole transfer vehicle. Adv. Funct. Mater. 2022, 32, 2203252. [Google Scholar] [CrossRef]
- Shi, J.; Wu, M.; Ming, J. Long-term corrosion resistance of reinforcing steel in alkali-activated slag mortar after exposure to marine environments. Corros. Sci. 2021, 179, 109175. [Google Scholar] [CrossRef]
- GB/T 10125-2021; Artificial Atmosphere Corrosion Testing—Salt Spray Test. Standards Press of China: Beijing, China, 2021.
- GB/T 11186.2-1989; Methods for Measuring the Color of Coatings—Part 2: Color Measurement. Standards Press of China: Beijing, China, 1989.
Elements (mol %) | Fe | C | O | N | Si | P | S | Al | Zn | Na |
---|---|---|---|---|---|---|---|---|---|---|
Granocoat 621 | 0.75 | 46.90 | 16.87 | 29.40 | 0.66 | 0.22 | 0.46 | 0.29 | 4.36 | 0.09 |
Samples | 284.7 eV (C-C) | 285.1 eV (N-sp2 C) | 286.1 eV (N-sp3 C) | 286.65 eV (C=O) | 288.9 eV (O-C=O) |
---|---|---|---|---|---|
HG-Y0 | 32.71% | 21.26% | 10.96% | 25.38% | 9.69% |
HG-Y120 | 24.00% | 30.34% | 14.70% | 22.00% | 8.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, D.; Li, J.; Tang, X.; Shi, Y.; Wang, Y.; Cao, Y.; Zhang, Z.; Li, Y.; Yuan, X.; Zhang, D. The Effect of Yellowing on the Corrosion Resistance of Chromium-Free Fingerprint-Resistant Hot-Dip Al-Zn-Coated Steel. Processes 2025, 13, 351. https://doi.org/10.3390/pr13020351
Qiao D, Li J, Tang X, Shi Y, Wang Y, Cao Y, Zhang Z, Li Y, Yuan X, Zhang D. The Effect of Yellowing on the Corrosion Resistance of Chromium-Free Fingerprint-Resistant Hot-Dip Al-Zn-Coated Steel. Processes. 2025; 13(2):351. https://doi.org/10.3390/pr13020351
Chicago/Turabian StyleQiao, Degao, Jian Li, Xingchang Tang, Yongjing Shi, Yi Wang, Youzhi Cao, Zhengqian Zhang, Yang Li, Xiaofeng Yuan, and Deyi Zhang. 2025. "The Effect of Yellowing on the Corrosion Resistance of Chromium-Free Fingerprint-Resistant Hot-Dip Al-Zn-Coated Steel" Processes 13, no. 2: 351. https://doi.org/10.3390/pr13020351
APA StyleQiao, D., Li, J., Tang, X., Shi, Y., Wang, Y., Cao, Y., Zhang, Z., Li, Y., Yuan, X., & Zhang, D. (2025). The Effect of Yellowing on the Corrosion Resistance of Chromium-Free Fingerprint-Resistant Hot-Dip Al-Zn-Coated Steel. Processes, 13(2), 351. https://doi.org/10.3390/pr13020351