Simulation Study of the Effects of Foam Rheology on Hydraulic Fracture Proppant Placement
Abstract
:1. Introduction
2. Rheology and Proppant Suspension Experiments
2.1. Materials
2.2. Sample Preparation
2.3. Apparent Viscosity Measurement
2.4. Static Proppant Settling Measurement
2.5. Experimental Results and Discussions
2.5.1. Viscosity Measurement
2.5.2. Proppant Suspension
3. Hydraulic Fracturing Simulation
3.1. Simulation Inputs and Outputs
3.2. Rheological Characterization
3.3. Simulation Results and Discussions
3.3.1. Proppant Distribution and Fracture Dimension
3.3.2. Gas Production After Treatment
4. Conclusions
- 1.
- At both ambient and elevated temperatures, SNP has stronger synergy with cationic CTAB surfactant than anionic SDBS surfactant in enhancing liquid foams’ rheological and proppant suspension properties. Because of this, CTAB/SNP foam was observed to provide 4% larger propped area, 9% higher fracture conductivity, and lower leak-off rate than the SDBS/SNP foam.
- 2.
- SNP–surfactant-stabilized foams have significantly higher apparent viscosity and proppant-carrying capacity than the benchmark slickwater. Simulation results suggest the tremendous impact of foam-based fracturing fluids on delaying proppant settlement and generating uniform distributions of proppants in the fractures.
- 3.
- The productivity of the stimulated well is controlled by the combination of the fracture dimension and the fracture conductivity. High fracture conductivity itself does not necessarily guarantee high productivity.
- 4.
- In the particular tight gas reservoir model, the highest gas production is achieved by fracturing with CTAB/SNP foam, followed by SDBS/SNP foam, and then the benchmark slickwater. The simulation modeling suggests that CTAB/SNP foam results in higher cumulative gas production than SDBS/SNP foam by 13%.
- 5.
- While surfactant–SNP-stabilized foams provide increased stability, higher mobility control, and better fracturing performance, they still have some field limitations such as their operational challenges of maintaining effective dispersions, high operating costs, especially on large scales, and, finally, the environmental, health, and safety concerns due to their high risks and toxicity. Therefore, it is crucial to factor all these considerations into the application.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Pan, R.; Guo, B.; Shan, J. Thermal stability of brine foams for shale gas drilling. J. Nat. Gas Sci. Eng. 2014, 17, 131–135. [Google Scholar] [CrossRef]
- Sherif, T.; Ahmed, R.; Shah, S.; Amani, M. Rheological behavior of oil-based drilling foams. J. Nat. Gas Sci. Eng. 2015, 26, 873–882. [Google Scholar] [CrossRef]
- Farhadi, H.; Riahi, S.; Ayatollahi, S.; Ahmadi, H. Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control. Chem. Eng. Res. Des. 2016, 111, 449–460. [Google Scholar] [CrossRef]
- Verma, A.; Chauhan, G.; Ojha, K.; Padmanabhan, E. Characterization of Nano-Fe2O3-Stabilized Polymer-Free Foam Fracturing Fluids for Unconventional Gas Reservoirs. Energy Fuels 2019, 33, 10570–10582. [Google Scholar] [CrossRef]
- Wang, J.; Elsworth, D. Fracture penetration and proppant transport in gas- and foam-fracturing. J. Nat. Gas Sci. Eng. 2020, 77, 103269. [Google Scholar] [CrossRef]
- Føyen, T.; Brattekås, B.; Fernø, M.A.; Barrabino, A.; Holt, T. Increased CO2 storage capacity using CO2-foam. Int. J. Greenh. Gas Control 2020, 96, 103016. [Google Scholar] [CrossRef]
- Wilk-Zajdel, K.; Kasza, P.; Maslowski, M. Laboratory testing of fracture conductivity damage by foam-based fracturing fluids in low permeability tight gas formations. Energies 2021, 14, 1783. [Google Scholar] [CrossRef]
- Lyu, X.; Voskov, D.; Rossen, W. Numerical investigations of foam-assisted CO2 storage in saline aquifers. Int. J. Greenh. Gas Control 2021, 108, 103314. [Google Scholar] [CrossRef]
- Zhao, J.; Torabi, F.; Yang, J. The synergistic role of silica nanoparticle and anionic surfactant on the static and dynamic CO2 foam stability for enhanced heavy oil recovery: An experimental study. Fuel 2021, 287, 119443. [Google Scholar] [CrossRef]
- Du, L.; Lu, T.; Li, B. CO2 capture and sequestration in porous media with SiO2 aerogel nanoparticle-stabilized foams. Fuel 2022, 324, 124661. [Google Scholar] [CrossRef]
- Fei, Y.; Pokalai, K.; Johnson, R.; Gonzalez, R.; Haghighi, M. Experimental and simulation study of foam stability and the effects on hydraulic fracture proppant placement. J. Nat. Gas Sci. Eng. 2017, 46, 544–554. [Google Scholar] [CrossRef]
- Yekeen, N.; Padmanabhan, E.; Idris, A.K. A review of recent advances in foam-based fracturing fluid application in unconventional reservoirs. J. Ind. Eng. Chem. 2018, 66, 45–71. [Google Scholar] [CrossRef]
- Wanniarachchi, W.A.M.; Ranjith, P.G.; Perera, M.S.A.; Lashin, A.; Al Arifi, N.; Li, J.C. Current opinions on foam-based hydro-fracturing in deep geological reservoirs. Geomech. Geophys. Geo-Energy Geo-Resour. 2015, 1, 121–134. [Google Scholar] [CrossRef]
- Wang, L.; Yao, B.; Cha, M.; Alqahtani, N.B.; Patterson, T.W.; Kneafsey, T.J.; Miskimins, J.L.; Yin, X.; Wu, Y.-S. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. J. Nat. Gas Sci. Eng. 2016, 35, 160–174. [Google Scholar] [CrossRef]
- Verma, A.; Chauhan, G.; Ojha, K. Synergistic effects of polymer and bentonite clay on rheology and thermal stability of foam fluid developed for hydraulic fracturing. Asia-Pac. J. Chem. Eng. 2017, 12, 872–883. [Google Scholar] [CrossRef]
- Tran, T.; Gonzalez Perdomo, M.E.; Wilk, K.; Kasza, P.; Amrouch, K. Performance evaluation of synthetic and natural polymers in nitrogen foam-based fracturing fluids in the Cooper Basin, South Australia. APPEA J. 2020, 60, 227–241. [Google Scholar] [CrossRef]
- Abdelaal, A.; Aljawad, M.S.; Alyousef, Z.; Almajid, M.M. A review of foam-based fracturing fluids applications: From lab studies to field implementations. J. Nat. Gas Sci. Eng. 2021, 95, 104236. [Google Scholar] [CrossRef]
- Fu, C.; Liu, N. Rheology and stability of nanoparticle-stabilized CO2 foam under reservoir conditions. J. Pet. Sci. Eng. 2021, 196, 107671. [Google Scholar] [CrossRef]
- Singh, R.; Mohanty, K.K. Synergy between Nanoparticles and Surfactants in Stabilizing Foams for Oil Recovery. Energy Fuels 2015, 29, 467–479. [Google Scholar] [CrossRef]
- Bayat, A.E.; Rajaei, K.; Junin, R. Assessing the effects of nanoparticle type and concentration on the stability of CO2 foams and the performance in enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2016, 511, 222–231. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, Y.; Yan, C.; Peng, Y.; Ma, L.; Wang, Q. Influence of nanoparticles on the foam thermal stability of mixtures of short-chain fluorocarbon and hydrocarbon surfactants. Powder Technol. 2022, 403, 117420. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, S.; Zhang, K.; Zhao, M.; Jiao, B.; Dai, C. Stability Mechanism of Nitrogen Foam in Porous Media with Silica Nanoparticles Modified by Cationic Surfactants. Langmuir 2018, 34, 8015–8023. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, K.; Li, Z.; Zhang, K.; Jia, N. Properties of CO2 Foam Stabilized by Hydrophilic Nanoparticles and Nonionic Surfactants. Energy Fuels 2019, 33, 5043–5054. [Google Scholar] [CrossRef]
- Yekeen, N.; Padmanabhan, E.; Idris, A.K. Synergistic effects of nanoparticles and surfactants on n-decane-water interfacial tension and bulk foam stability at high temperature. J. Pet. Sci. Eng. 2019, 179, 814–830. [Google Scholar] [CrossRef]
- Harati, S.; Esfandyari Bayat, A.; Sarvestani, M.T. Assessing the effects of different gas types on stability of SiO2 nanoparticle foam for enhanced oil recovery purpose. J. Mol. Liq. 2020, 313, 113521. [Google Scholar] [CrossRef]
- Yekeen, N.; Manan, M.A.; Idris, A.K.; Samin, A.M. Influence of surfactant and electrolyte concentrations on surfactant adsorption and foaming characteristics. J. Pet. Sci. Eng. 2017, 149, 612–622. [Google Scholar] [CrossRef]
- Majeed, T.; Sølling, T.I.; Kamal, M.S. Foamstability: The interplay between salt-, surfactant- and critical micelle concentration. J. Pet. Sci. Eng. 2020, 187, 106871. [Google Scholar] [CrossRef]
- Langevin, D. Influence of interfacial rheology on foam and emulsion properties. Adv. Colloid Interface Sci. 2000, 88, 209–222. [Google Scholar] [CrossRef]
- Karakashev, S.I.; Manev, E.D. Correlation in the properties of aqueous single films and foam containing a nonionic surfactant and organic/inorganic electrolytes. J. Colloid Interface Sci. 2003, 259, 171–179. [Google Scholar] [CrossRef]
- Bournival, G.; Du, Z.; Ata, S.; Jameson, G.J. Foaming and gas dispersion properties of non-ionic surfactants in the presence of an inorganic electrolyte. Chem. Eng. Sci. 2014, 116, 536–546. [Google Scholar] [CrossRef]
- Tran, T.; Gonzalez Perdomo, M.E.; Haghighi, M.; Amrouch, K. Study of the synergistic effects between different surfactant types and silica nanoparticles on the stability of liquid foams at elevated temperature. Fuel 2022, 315, 122818. [Google Scholar] [CrossRef]
- Cui, Z.G.; Cui, Y.Z.; Cui, C.F.; Chen, Z.; Binks, B.P. Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant. Langmuir 2010, 26, 12567–12574. [Google Scholar] [CrossRef] [PubMed]
- Maestro, A.; Guzmán, E.; Santini, E.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.G. Wettability of silicananoparticle–surfactant nanocomposite interfacial layers. Soft Matter 2012, 8, 837–843. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Li, S.; Jiang, L.; Wang, J.; Wang, P. Utilization of Surfactant-Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. Energy Fuels 2014, 28, 2384–2394. [Google Scholar] [CrossRef]
- Lv, Q.; Li, Z.; Li, B.; Li, S.; Sun, Q. Study of Nanoparticle–Surfactant-Stabilized Foam as a Fracturing Fluid. Ind. Eng. Chem. Res. 2015, 54, 9468–9477. [Google Scholar] [CrossRef]
- Li, S.; Qiao, C.; Li, Z.; Wanambwa, S. Properties of Carbon Dioxide Foam Stabilized by Hydrophilic Nanoparticles and Hexadecyltrimethylammonium Bromide. Energy Fuels 2017, 31, 1478–1488. [Google Scholar] [CrossRef]
- Xiao, C.; Balasubramanian, S.N.; Clapp, L.W. Rheology of Viscous CO2 Foams Stabilized by Nanoparticles under High Pressure. Ind. Eng. Chem. Res. 2017, 56, 8340–8348. [Google Scholar] [CrossRef]
- Vatanparast, H.; Samiee, A.; Bahramian, A.; Javadi, A. Surface behavior of hydrophilic silica nanoparticle-SDS surfactant solutions: I. Effect of nanoparticle concentration on foamability and foam stability. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 430–441. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Appl. Surf. Sci. 2017, 420, 9–20. [Google Scholar] [CrossRef]
- Verma, A.; Chauhan, G.; Baruah, P.P.; Ojha, K. Morphology, Rheology, and Kinetics of Nanosilica Stabilized Gelled Foam Fluid for Hydraulic Fracturing Application. Ind. Eng. Chem. Res. 2018, 57, 13449–13462. [Google Scholar] [CrossRef]
- Veyskarami, M.; Ghazanfari, M.H. Synergistic effect of like and opposite charged nanoparticle and surfactant on foam stability and mobility in the absence and presence of hydrocarbon: A comparative study. J. Pet. Sci. Eng. 2018, 166, 433–444. [Google Scholar] [CrossRef]
- Fu, C.; Liu, N. Study of the Synergistic Effect of the Nanoparticle-Surfactant-Polymer System on CO2 Foam Apparent Viscosity and Stability at High Pressure and Temperature. Energy Fuels 2020, 34, 13707–13716. [Google Scholar] [CrossRef]
- Mader, D. Hydraulic Proppant Fracturing and Gravel Packing, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Fink, J.K. Hydraulic Fracturing Chemicals and Fluids Technology; Gulf Professional Publishing: Houston, TX, USA, 2013. [Google Scholar]
- Fei, Y.; Johnson, R.L.; Gonzalez, M.; Haghighi, M.; Pokalai, K. Experimental and numerical investigation into nano-stabilized foams in low permeability reservoir hydraulic fracturing applications. Fuel 2018, 213, 133–143. [Google Scholar] [CrossRef]
- Goel, N.; Shad, S.; Grady, B. Correlating viscoelastic measurements of fracturing fluid to particles suspension and solids transport. J. Pet. Sci. Eng. 2002, 35, 59–81. [Google Scholar] [CrossRef]
- Barree, R.D. Development of a Numerical Simulator for Three-Dimensional Hydraulic Fracture Propagation in Heterogeneous Media; Colorado School of Mines: Golden, CO, USA, 1984. [Google Scholar]
- Stokes, G.G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Philos. Soc. 1851, 9, 8–106. [Google Scholar]
- Barree, R.D. A Practical Numerical Simulator for Three-Dimensional Fracture Propagation in Heterogeneous Media. In Proceedings of the SPE Reservoir Simulation Symposium, San Francisco, CA, USA, 15–18 November 1983. [Google Scholar]
- Halliburton. GOHFER 3D User Manual; Halliburton: Houston, TX, USA, 2019. [Google Scholar]
- Zhu, J.; Yang, Z.; Li, X.; Song, Z.; Liu, Z.; Xie, S. Settling behavior of the proppants in viscoelastic foams on the bubble scale. J. Pet. Sci. Eng. 2019, 181, 106216. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, S.; Wang, Z. Detailed Structural and Mechanical Response of Wet Foam to the Settling Particle. Langmuir 2016, 32, 2419–2427. [Google Scholar] [CrossRef]
Parameter | Unit | SDBS/SNP Foam (90 °C) | CTAB/SNP Foam (90 °C) |
---|---|---|---|
Flow Behavior Index () | Dimensionless | 0.6305 | 0.5565 |
Fluid Consistency Index () | 0.0098 | 0.0216 |
Parameters | Value |
---|---|
Reservoir Properties | |
Reservoir depth | 9410 ft |
Reservoir pressure | 4339 psi |
Reservoir temperature | 200 °F (93 °C) |
Average reservoir porosity | 11% |
Gas saturation | 65% |
Water saturation (%) | 35% |
Perforation Design | |
Perforation interval | 9400–9420 ft |
Number of shots | 30 |
Perforation phasing | 60° |
Perforation diameter | 0.4 inch |
DFIT Analysis | |
Breakdown pressure | 10,942 psi |
Instantaneous shut-in pressure | 8726 psi |
Fracture closure pressure | 6818 psi |
Average reservoir permeability | 0.06 mD |
Stage | Fluid Type | Clean Stage Volume (gal) | Proppant Amount (lb) | Proppant Type | Injection Rate (bbl/m) |
---|---|---|---|---|---|
1 | Pad fluid | 15,000 | 0 | None | 30 |
2 | SDBS/SNP foam, CTAB/SNP foam, Slickwater | 10,000 | 10,000 | Ceramic Sand 20/40 | 30 |
3 | 8000 | 24,000 | Ceramic Sand 20/40 | 30 | |
4 | 6000 | 30,000 | Ceramic Sand 20/40 | 30 | |
5 | 4000 | 28,000 | Ceramic Sand 20/40 | 30 | |
6 | Flush fluid | 3000 | 0 | None | 30 |
Total | 46,000 | 92,000 |
Parameter | Unit | Slickwater | SDBS/SNP Foam | CTAB/SNP Foam |
---|---|---|---|---|
Fracture height | ft | 70 | 105 | 120 |
Fracture length | ft | 670 | 800 | 730 |
Average fracture width | inch | 0.310 | 0.319 | 0.324 |
Propped area | ft2 | 187,600 | 336,000 | 350,400 |
Cumulative fluid loss | gal | 1198 | 997 | 961 |
Fracture conductivity | mD.ft | 109.3 | 57.5 | 62.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.; Nguyen, G.H.; Gonzalez Perdomo, M.E.; Haghighi, M.; Amrouch, K. Simulation Study of the Effects of Foam Rheology on Hydraulic Fracture Proppant Placement. Processes 2025, 13, 378. https://doi.org/10.3390/pr13020378
Tran T, Nguyen GH, Gonzalez Perdomo ME, Haghighi M, Amrouch K. Simulation Study of the Effects of Foam Rheology on Hydraulic Fracture Proppant Placement. Processes. 2025; 13(2):378. https://doi.org/10.3390/pr13020378
Chicago/Turabian StyleTran, Tuan, Giang Hoang Nguyen, Maria Elena Gonzalez Perdomo, Manouchehr Haghighi, and Khalid Amrouch. 2025. "Simulation Study of the Effects of Foam Rheology on Hydraulic Fracture Proppant Placement" Processes 13, no. 2: 378. https://doi.org/10.3390/pr13020378
APA StyleTran, T., Nguyen, G. H., Gonzalez Perdomo, M. E., Haghighi, M., & Amrouch, K. (2025). Simulation Study of the Effects of Foam Rheology on Hydraulic Fracture Proppant Placement. Processes, 13(2), 378. https://doi.org/10.3390/pr13020378