Evaluating Potentials of Activated Carbon, Inoculum Diversity, and Total Solids Content for Improved Digestate Quality in Anaerobic Food Waste Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.3. Analytical Methods
2.4. Statistical Analyses
3. Results and Discussion
3.1. Effects of Total Solids on Digestate Composition
3.2. Effects of Activated Carbon Supplementation on Digestate Composition
3.3. Effects of Inoculum Source on Digestate Composition
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
ANOVA | Analysis of variance |
ATP | Adenosine triphosphate |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
Ca | Calcium |
CF | Crude fiber |
CO2 | Carbon (iv) oxide |
CP | Crude protein |
Cu | Copper |
DFT | Density Functional Theory |
EE | Ether extract |
dF | Degrees of freedom |
F | F value from the F-test |
F-crit | F-critical value |
Fe | Iron |
HCl | Hydrochloric acid |
K | Potassium |
KOH | Potassium hydroxide |
Mg | Magnesium |
Mn | Manganese |
MS | Mean sum of squares |
Na | Sodium |
NaOH | Sodium hydroxide |
N | Nitrogen |
P | Phosphorus |
R1 | Experimental assay 1 |
R2 | Experimental assay 2 (replicate) |
R3 | Experimental assay 3 (replicate) |
SDGs | Sustainable Development Goals |
SEM-EDX | Scanning Electron Microscopy–Energy-Dispersive X-ray |
SS | Sum of squares |
Zn | Zinc |
References
- United Nations. The Sustainable Development Goals Report 2023: Special Edition. Department of Economic and Social Affairs Statistics Division: A High-Level Event Call to Action. Available online: https://unstats.un.org/sdgs/report/2023 (accessed on 30 December 2024).
- Wackernagel, M.; Hanscom, L.; Lin, D. Making the sustainable development goals consistent with sustainability. Front. Energy Res. 2017, 5, 18. [Google Scholar] [CrossRef]
- Kim, R.E. Augment the SDG indicator framework. Environ. Sci. 2023, 142, 62–67. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ivanyna, M.; Oman, W.; Stern, N. Climate action to unlock the inclusive growth story of the 21st century. IMF Work. Pap. 2021, 147, 1. [Google Scholar]
- Jote, C.A. The Impacts of Using Inorganic Chemical Fertilizers on the Environment and Human Health. Org. Med. Chem. 2023, 13, 555864. [Google Scholar]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfub, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current developments in production and utilization of biogas and biomethane in Germany. Chem. Ing. Tech. 2017, 90, 17–35. [Google Scholar] [CrossRef]
- Wainaina, S.; Lukitawesa-Awasthi, M.K.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef]
- Viancelli, A.; Schneider, T.M.; Demczuk, T.; Delmoral, A.P.G.; Petry, B.; Collato, M.M.; Michelon, W. Unlocking the value of biomass: Exploring microbial strategies for biogas and volatile fatty acids generation. Bioresour. Technol. Rep. 2023, 23, 101552. [Google Scholar] [CrossRef]
- Barlog, P.; Hlisnikovsky, L.; Kunzova, E. Effect of digestate on soil organic carbon and plant- available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef]
- Arachchige, U.; Ranaweera, S.; Ampemohotti, T.; Weliwaththage, S.R.G. Development of an organic fertilizer. J. Res. Technol. Eng. 2020, 1, 1–7. [Google Scholar]
- Erraji, H.; Afilat, M.E.; Asehraou, A.; Azim, K. Biogas and digestate production from food wastes: A case study of dome digester in Morrocco. Biomass Convers. Biorefinery 2021, 13, 10771–10780. [Google Scholar] [CrossRef]
- Pelayo-Lind, O.; Hultberg, M.; Bergstrand, K.J.; Larsson-Jönsson, H.; Caspersen, S.; Asp, H. Biogas digestate in vegetable hydroponic production: pH dynamics and pH management by controlled nitrification. Waste Biomass Valori. 2021, 12, 123–133. [Google Scholar] [CrossRef]
- Weimers, K.; Bergstrand, K.J.; Hultberg, M.; Asp, H. Liquid anaerobic digestate as sole nutrient source in soilless horticulture—Or spiked with mineral nutrients for improved plant growth. Front. Plant Sci. 2022, 13, 443. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.D.; Lim, D.Y.; Kim, S.J.; Baek, U.I.; Chung, E.G.; Kim, K.; Lee, J.K. Struvite precipitation for sustainable recovery of nitrogen and phosphorus from anaerobic digestion effluents of swine manure. Sustainability 2020, 12, 8574. [Google Scholar] [CrossRef]
- Song, S.; Lim, J.W.; Lee, J.T.; Cheong, J.C.; Hoy, S.H.; Hu, Q.; Tan, J.K.; Chiam, Z.; Arora, S.; Lum, T.Q. Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue. Waste Manag. 2021, 136, 143–152. [Google Scholar] [CrossRef]
- Cheong, J.C.; Lee, J.T.; Lim, J.W.; Song, S.; Tan, J.K.; Chiam, Z.Y.; Yap, K.Y.; Lim, E.Y.; Zhang, J.; Tan, H.T. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Sci. Total Environ. 2020, 715, 136789. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Ko, J.H.; Wang, N.; Yuan, T.; Lu, F.; He, P.; Xu, Q. Effect of nickel containing activated carbon on food waste anaerobic digestion. Bioresour. Technol. 2018, 266, 516–523. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Loh, K.-C.; Dai, Y.; Tong, Y.-W. Enhanced anaerobic digestion of food waste by adding activated carbon: Fate of bacterial pathogens and antibiotic resistance genes. Biochem. Eng. J. 2017, 128, 19–25. [Google Scholar] [CrossRef]
- Teklit, G.A.; Rene, E.R.; Nizami, A.-S.; Dupont, C.; Vaccari, M.; van-Hullebusch, E.D. Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms. J. Environ. Manag. 2021, 290, 112537. [Google Scholar]
- Kaarela, O.E.; Harkki, H.A.; Palmtoth, M.R.T.; Tuhkanen, T.A. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures. Environ. Technol. 2015, 36, 681–692. [Google Scholar] [CrossRef]
- Akinbomi, J.G.; Patinvoh, R.J.; Taherzadeh, M.J. Current challenges of high solid anaerobic digestion and possible measures for its effective applications: A review. Biotechnol. Biofuels Bioprod. 2022, 15, 52. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, V.; Fernandez, M.; Santalla, E. The effect of different inoculums on anaerobic digestion of swine wastewater. J. Environ. Chem. Eng. 2016, 4, 115–122. [Google Scholar] [CrossRef]
- Demichelis, F.; Tommasi, T.; Deorsola, F.A.; Marchisio, D.; Fino, D. Effect of inoculum origin and substrate-inoculum ratio to enhance the anaerobic digestion of organic fraction municipal solid waste (OFMSW). J. Clean. Prod. 2022, 351, 131539. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Loh, K.-C. Activated carbon enhanced anaerobic digestion of food waste–Laboratory-scale and Pilot-scale operation. Waste Manag. 2018, 5, 270–279. [Google Scholar] [CrossRef]
- Kacan, E. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. J. Environ. Manag. 2016, 166, 116–123. [Google Scholar] [CrossRef]
- Li, G.; Lakunkov, A.; Boulanger, N.; Lazar, O.A.; Enachescu, M.; Grinm, A.; Talyzin, A.V. Activated carbons with extremely high surface area produced from cones, bark and wood using the same procedure. R. Soc. Chem. Adv. 2023, 21, 14543–14553. [Google Scholar] [CrossRef]
- Mopoung, S.; Moonsri, P.; Palas, W.; Khumpai, S. Characterization and properties of activated carbon prepared from Tamarind seedsby KOH Activation for Fe(III) adsorption from aqueous solution. Sci. World J. 2015, 2015, 415961. [Google Scholar] [CrossRef]
- Lawal, I.M.; Ndagi, A.; Mohammed, A.; Saleh, Y.Y.; Shuaibu, A.; Hassan IAbubakar, S.; Soja, U.B.; Jagaba, A.H. Proximate analysis of waste-to-energy potential of municipal solid waste for sustainable renewable energy generation. Ain. Shams. Eng. J. 2024, 15, 102357. [Google Scholar] [CrossRef]
- Ries, J.; Chen, Z.; Park, Y. Potential applications of food waste based anaerobic digestate for sustainable crop production practice. Sustainability 2023, 15, 8520. [Google Scholar] [CrossRef]
- Hafner, F.; Hartung, J.; Moller, K. Digestate composition affecting N fertilizer value and C mineralization. Waste Biomass Valor. 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- Horf, M.; Gibbers, R.; Vogel, S.; Ostermann, M.; Piepel, M.; Olfs, H. Determination of nutrients in liquid manures and biogas digestates by portable energy-dispersive x-ray fluorescence spectrometry. Sensors 2021, 21, 3892. [Google Scholar] [CrossRef] [PubMed]
- Wi, J.; Lee, S.; Ahn, H. Influence of dairy manure as inoculum source on anaerobic digestion of swine manure. Bioengineering 2023, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, Y.; Wang, Y.; Zhang, Y.; Hu, Y.; Hu, Z.; Wu, G.; Zhan, X. Impact of total solids content on anaerobic co-digestion of pig manure and food waste insight into shifting of the methanogenesis pathway. Waste Manag. 2020, 14, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Yuan, Y.-Q.; Chen, Q.-K.; Li, Q.; Huang, Y.; Li, L. Effect of total solids contents on the performance of anaerobic digester treating food waste and kinetics evaluation. E3S Web Conf. 2021, 272, 01226. [Google Scholar]
- Ahmadi-Pirtlou, M.; Gundoshmian, T.-M. The effect of substrate ratio and total solids in biogas production from anaerobic co-digestion of municipal solid waste and sewage sludge. J. Mater. Cycles Waste Manag. 2021, 23, 1938–1946. [Google Scholar] [CrossRef]
- Johnravendar, D.; Kaur, G.; Liang, J.; Lou, L.; Zhao, J.; Manu, M.K.; Kumar, R.; Varjani, S.; Wong, J.W.C. Impact of total solids content on biochar amended co-digestion of food waste and sldge microbial community dynamics, methane production and digestate quality assessment. Bioresour. Technol. 2022, 361, 127682. [Google Scholar]
- Cueloz, M.J.; Martinez, E.J.; Moreno, R.; Gonzalez, R.; Otero, M.; Gomez, X. Enhancing anaerobic digestion of poultry blood sing activated carbon. J. Adv. Res. 2017, 8, 297–307. [Google Scholar]
- Bergstrand, K.J. Organic fertilizers in greenhouse production systems: A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Mican, B.S.; Ren, A.T.; Buhlmann, C.H.; Cihadouani, A.; Solaiman, Z.M.; Jenkins, S.; Pang, J.; Ryan, M.H. Closing the circle for urban food waste anaerobic digestion. The use of digestate and biochar on plant growth in potting soil. J. Clean. Prod. 2022, 347, 131071. [Google Scholar] [CrossRef]
Low-Solid Anaerobic Digestion | High-Solid Anaerobic Digestion | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inoculum Diversity | Experimental Setups | Inoculum Mass (g) | Substrate (Food Waste) Mass (g) | Mass Concentration of Activated Carbon (g/dm3) | Total Solids in Reactor (%) | Inoculum Mass (g) | Substrate (Food Waste) Mass (g) | MassConcentration of Activated Carbon (g/dm3) | Total Solids in Reactor (%) | |||
Chicken Dung | Partially Digested Food Waste | Chicken Dung | Partially Digested Food Waste | |||||||||
(A) With chicken dung as inoculum | with activated carbon | 1034.19 | 0 | 256.86 | 15 | 15.01 | 1034.19 | 0 | 256.86 | 15 | 23.97 | |
without activated carbon | 1034.19 | 0 | 256.86 | 0 | 15.01 | 1034.19 | 0 | 256.86 | 0 | 23.97 | ||
blank (inoculum and water) | 1034.19 | 0 | 0 | 0 | 15.03 | 1034.19 | 0 | 0 | 0 | 23.75 | ||
(B) With chicken dung and partially digested food waste as inoculum | with activated carbon | 517.09 | 316.20 | 256.86 | 15 | 15.00 | 517.09 | 316.20 | 256.86 | 15 | 24.12 | |
without activated carbon | 517.09 | 316.20 | 256.86 | 0 | 15.00 | 517.09 | 316.20 | 256.86 | 0 | 24.12 | ||
blank (inoculum and water) | 517.09 | 316.20 | 0 | 0 | 15.03 | 517.09 | 316.20 | 0 | 0 | 24.12 | ||
(C) With partially digested food waste as inoculum | with activated carbon | 0 | 632.40 | 256.86 | 15 | 14.96 | 0 | 632.40 | 256.86 | 15 | 24.16 | |
without activated carbon | 0 | 632.40 | 256.86 | 0 | 14.96 | 0 | 632.40 | 256.86 | 0 | 24.16 | ||
blank (inoculum and water) | 0 | 632.40 | 0 | 0 | 15.07 | 0 | 632.40 | 0 | 0 | 24.08 |
S/N | Inoculum Type | Digestion Media | N (g/kg) | P (g/kg) | K (g/kg) | Ca (g/kg) | Mg (g/kg) | Na (g/kg) | Mn (g/kg) | Fe (g/kg) | Cu ((g/kg) | Zn (g/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(A) High-Solid Digestion | |||||||||||||
1 | With chicken dung and partially digested food waste as inoculum | Food wastes with activated carbon | R1 | 16.90 | 23.80 | 12.90 | 87.00 | 11.10 | 7.91 | 0.20 | 2.92 | 0.07 | 1.18 |
R2 | 17.20 | 24.10 | 13.10 | 89.20 | 9.80 | 8.32 | 0.41 | 2.62 | 0.13 | 1.20 | |||
R3 | 16.90 | 24.10 | 13.00 | 90.80 | 9.10 | 8.07 | 0.29 | 2.86 | 0.10 | 1.22 | |||
Food wastes without activated carbon (control) | R1 | 15.70 | 20.80 | 10.80 | 73.00 | 7.90 | 7.01 | 0.32 | 2.72 | 0.05 | 1.01 | ||
R2 | 16.10 | 21.30 | 11.20 | 75.20 | 11.20 | 7.25 | 0.27 | 2.66 | 0.04 | 0.99 | |||
R3 | 16.20 | 20.90 | 11.00 | 76.80 | 10.90 | 6.74 | 0.31 | 2.72 | 0.03 | 1.00 | |||
2 | With chicken dung as inoculum | Food wastes with activated carbon | R1 | 13.80 | 36.80 | 47.80 | 143.00 | 15.70 | 12.54 | 0.64 | 5.13 | 0.43 | 0.73 |
R2 | 14.30 | 37.20 | 48.20 | 145.20 | 16.10 | 12.13 | 0.60 | 5.31 | 0.05 | 0.66 | |||
R3 | 13.90 | 37.00 | 48.00 | 146.80 | 16.20 | 11.33 | 0.56 | 5.16 | 0.12 | 0.71 | |||
Food wastes without activated carbon (control) | R1 | 16.90 | 35.90 | 16.80 | 144.00 | 15.10 | 5.55 | 0.48 | 4.53 | 0.09 | 0.39 | ||
R2 | 17.30 | 36.30 | 17.30 | 146.10 | 16.20 | 5.67 | 0.48 | 4.61 | 0.12 | 0.41 | |||
R3 | 16.80 | 35.80 | 16.90 | 147.90 | 16.70 | 6.48 | 0.54 | 4.66 | 0.72 | 0.40 | |||
(B) Low-Solid Digestion | |||||||||||||
1 | With chicken dung and partially digested food waste as inoculum | Food wastes with activated carbon | R1 | 19.70 | 9.00 | 7.90 | 24.80 | 0.00 | 12.10 | 0.08 | 0.29 | 0.00 | 1.44 |
R2 | 20.40 | 10.20 | 8.20 | 25.20 | 2.00 | 11.97 | 0.13 | 0.31 | 0.00 | 0.87 | |||
R3 | 19.90 | 10.80 | 7.90 | 25.00 | 1.00 | 11.63 | 0.09 | 0.30 | 0.00 | 0.97 | |||
Food wastes without activated carbon (control) | R1 | 19.90 | 11.90 | 5.70 | 28.70 | 0.00 | 12.89 | 0.19 | 0.19 | 0.00 | 0.29 | ||
R2 | 20.20 | 12.30 | 6.20 | 29.10 | 3.00 | 13.10 | 0.01 | 0.22 | 0.00 | 0.29 | |||
R3 | 19.90 | 11.80 | 6.10 | 29.20 | 0.00 | 13.01 | 0.10 | 0.19 | 0.00 | 0.32 | |||
2 | With partially digested food waste as inoculum | Food wastes with activated carbon | R1 | 14.70 | 18.70 | 34.8 | 96.80 | 11.00 | 14.22 | 0.39 | 3.30 | 0.00 | 2.65 |
R2 | 15.30 | 19.40 | 35.3 | 97.20 | 13.20 | 14.44 | 0.39 | 3.34 | 0.00 | 2.74 | |||
R3 | 15.00 | 18.90 | 34.9 | 97.00 | 14.80 | 15.12 | 0.42 | 3.26 | 0.00 | 2.71 | |||
Food wastes without activated carbon (Control) | R1 | 17.90 | 26.70 | 21.8 | 99.80 | 11.00 | 13.77 | 0.38 | 3.15 | 0.11 | 0.38 | ||
R2 | 18.20 | 27.20 | 22.3 | 102.00 | 12.30 | 14.02 | 0.42 | 3.07 | 0.11 | 0.39 | |||
R3 | 17.90 | 27.10 | 21.9 | 98.20 | 12.70 | 13.61 | 0.40 | 3.08 | 0.08 | 0.43 |
1. NITROGEN (N) | 6. SODIUM (Na) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of variation | SS | df | MS | F | p-value | F-crit | Source of variation | SS | df | MS | F | p-value | F-crit |
Sample | 22.57344 | 3 | 7.524479 | 5.473592 | 0.008793 | 3.238872 | Sample | 45.42003 | 3 | 15.14001 | 4.902333 | 0.013276 | 3.238872 |
Columns | 2033.836 | 3 | 677.9453 | 493.1632 | 5.7 × 10−16 | 3.238872 | Columns | 739.5315 | 3 | 246.5105 | 79.82005 | 7.68 × 10−10 | 3.238872 |
Interaction | 28.38531 | 9 | 3.153924 | 2.294284 | 0.070624 | 2.537667 | Interaction | 68.11175 | 9 | 7.567973 | 2.450508 | 0.056521 | 2.537667 |
Within | 21.995 | 16 | 1.374688 | Within | 49.41325 | 16 | 3.088328 | ||||||
Total | 2106.79 | 31 | Total | 902.4765 | 31 | ||||||||
2. PHOSPHORUS (P) | 7. MANGANESE (Mn) | ||||||||||||
Sample | 690.645 | 3 | 230.215 | 46.00849 | 4.31 × 10−8 | 3.238872 | Sample | 1.520184 | 3 | 0.506728 | 3.953505 | 0.027592 | 3.238872 |
Columns | 3873.415 | 3 | 1291.138 | 258.0341 | 9.36 × 10−14 | 3.238872 | Columns | 15.67043 | 3 | 5.223478 | 40.7537 | 1.02 × 10−7 | 3.238872 |
Interaction | 638.555 | 9 | 70.95056 | 14.17948 | 4.81 × 10−6 | 2.537667 | Interaction | 2.911553 | 9 | 0.323506 | 2.524001 | 0.050966 | 2.537667 |
Within | 80.06 | 16 | 5.00375 | Within | 2.05075 | 16 | 0.128172 | ||||||
Total | 5282.675 | 31 | Total | 22.15292 | 31 | ||||||||
3. POTASSIUM (K) | 8. IRON (Fe) | ||||||||||||
Sample | 934.9034 | 3 | 311.6345 | 4.384066 | 0.019645 | 3.238872 | Sample | 26.9995 | 3 | 8.999833 | 56.61385 | 9.68 × 10−9 | 3.238872 |
Columns | 2827.808 | 3 | 942.6028 | 13.26051 | 0.000132 | 3.238872 | Columns | 27.24643 | 3 | 9.082142 | 57.13162 | 9.06 × 10−9 | 3.238872 |
Interaction | 921.0253 | 9 | 102.3361 | 1.439662 | 0.25138 | 2.537667 | Interaction | 22.32998 | 9 | 2.481108 | 15.60752 | 2.5 × 10−6 | 2.537667 |
Within | 1137.335 | 16 | 71.08344 | Within | 2.5435 | 16 | 0.158969 | ||||||
Total | 5821.072 | 31 | Total | 79.1194 | 31 | ||||||||
4. CALCIUM (Ca) | 9. COPPER (Cu) | ||||||||||||
Sample | 14,282.85 | 3 | 4760.95 | 331.0023 | 1.33 × 10−14 | 3.238872 | Sample | 1.266075 | 3 | 0.422025 | 3.251661 | 0.049453 | 3.238872 |
Columns | 60,075.27 | 3 | 20,025.09 | 1392.232 | 1.5 × 10−19 | 3.238872 | Columns | 20.05063 | 3 | 6.683542 | 51.49604 | 1.92 × 10−8 | 3.238872 |
Interaction | 14,104.51 | 9 | 1567.168 | 108.9564 | 1.22 × 10−12 | 2.537667 | Interaction | 2.8217 | 9 | 0.313522 | 2.415658 | 0.05938 | 2.537667 |
Within | 230.135 | 16 | 14.38344 | Within | 2.0766 | 16 | 0.129788 | ||||||
Total | 88,692.76 | 31 | Total | 26.213 | 31 | ||||||||
5. MAGNESIUM (Mg) | 10. ZINC (Zn) | ||||||||||||
Sample | 235.0525 | 3 | 78.35083 | 136.4106 | 1.32 × 10−11 | 3.238872 | Sample | 0.175263 | 3 | 0.058421 | 0.112718 | 0.951393 | 3.238872 |
Columns | 592.605 | 3 | 197.535 | 343.9129 | 9.81 × 10−15 | 3.238872 | Columns | 9.616413 | 3 | 3.205471 | 6.18466 | 0.005408 | 3.238872 |
Interaction | 223.3275 | 9 | 24.81417 | 43.20203 | 1.53 × 10−9 | 2.537667 | Interaction | 6.212713 | 9 | 0.690301 | 1.331873 | 0.295415 | 2.537667 |
Within | 9.19 | 16 | 0.574375 | Within | 8.2927 | 16 | 0.518294 | ||||||
Total | 1060.175 | 31 | Total | 24.29709 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinbomi, J.G.; Patinvoh, R.J.; Atunrase, O.S.; Onyenuwe, B.C.; Emereonye, C.N.; Ajeigbe, J.F.; Taherzadeh, M.J. Evaluating Potentials of Activated Carbon, Inoculum Diversity, and Total Solids Content for Improved Digestate Quality in Anaerobic Food Waste Treatment. Processes 2025, 13, 382. https://doi.org/10.3390/pr13020382
Akinbomi JG, Patinvoh RJ, Atunrase OS, Onyenuwe BC, Emereonye CN, Ajeigbe JF, Taherzadeh MJ. Evaluating Potentials of Activated Carbon, Inoculum Diversity, and Total Solids Content for Improved Digestate Quality in Anaerobic Food Waste Treatment. Processes. 2025; 13(2):382. https://doi.org/10.3390/pr13020382
Chicago/Turabian StyleAkinbomi, Julius G., Regina J. Patinvoh, Omotoyosi S. Atunrase, Benjamin C. Onyenuwe, Chibuike N. Emereonye, Joshua F. Ajeigbe, and Mohammad J. Taherzadeh. 2025. "Evaluating Potentials of Activated Carbon, Inoculum Diversity, and Total Solids Content for Improved Digestate Quality in Anaerobic Food Waste Treatment" Processes 13, no. 2: 382. https://doi.org/10.3390/pr13020382
APA StyleAkinbomi, J. G., Patinvoh, R. J., Atunrase, O. S., Onyenuwe, B. C., Emereonye, C. N., Ajeigbe, J. F., & Taherzadeh, M. J. (2025). Evaluating Potentials of Activated Carbon, Inoculum Diversity, and Total Solids Content for Improved Digestate Quality in Anaerobic Food Waste Treatment. Processes, 13(2), 382. https://doi.org/10.3390/pr13020382