Study on Acoustic–Vibration Characteristics and Noise Reduction Methods for Elbows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Way FSI Mathematical Model
2.2. Simulation Model and Meshing of Water Elbow
2.3. FSI Simulation Calculation of Water Elbow
2.4. Validation of the Elbow Simulation Model
3. Results and Discussion
3.1. Vibration Characteristics of Water Elbow
3.1.1. Effect of Fluid Parameters
3.1.2. Effect of Structural Parameters
3.1.3. Harmonic Response Analysis Results
3.2. Acoustic Characteristics and Noise Reduction in Water Elbow
3.2.1. Acoustic–Vibration Simulation Model of Elbow
3.2.2. Effect of Fluid Parameters on the Acoustic Field
3.2.3. Effect of Structural Parameters on the Acoustic Field
3.2.4. Noise Reduction Method for Elbows
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FSI | Fluid–structure interaction |
CFD | Computational Fluid Dynamics |
SPL | Sound Pressure Level |
MOC | Method of Characteristics |
FEM | Finite Element Method |
TMM | Transfer Matrix Method |
Nomenclatures | |
The overall damping matrix | |
The displacement of the fluid domain (m) | |
The displacement of the pipe structure (m) | |
The volume force (N) | |
The external excitation vector | |
The structural load matrix | |
The empirical constants | |
The empirical constants | |
The empirical constants | |
The generation term of turbulent kinetic energy k due to buoyancy (Pa/s) | |
The amount of turbulent kinetic energy k produced due to the velocity gradient (Pa/s) | |
The turbulent kinetic energy (m2/s2) | |
The overall stiffness matrix | |
The coupling matrix | |
The overall quality matrix of the pipe | |
The pulsation pressure (MPa) | |
The load pressure (MPa) | |
The sound pressure (Pa) | |
The fluid velocity (m/s) | |
The average flow velocity (m/s) | |
Xx | The acceleration in the x direction (mm/s2) |
Xy | The acceleration in the y direction (mm/s2) |
Xz | The acceleration in the z direction (mm/s2) |
The pulsation expansion amount in the fluid (Pa/s) | |
The fluid density (kg/m3) | |
The turbulent dissipation rate (m2/s2) | |
The dynamic viscosity of the fluid (Pa·s) | |
The turbulent dynamic viscosity (Pa·s) | |
The Prandtl numbers corresponding to turbulent kinetic energy | |
The pulsation rate (%) | |
The Prandtl numbers corresponding to turbulent dissipation rate | |
The pulsation amplitude | |
The displacement vector | |
The acceleration vector | |
The velocity vector | |
The angular frequency (Hz) | |
The shear stress of the fluid (Pa or N/m2) | |
The shear stress of the pipe structure (Pa or N/m2) |
References
- Xia, X.; Wu, D.; Yang, F.; Hu, M.; Ma, L.; Li, M.; Dong, X.; Zhong, Y.; Duan, Z. Utilizing wavelet transforms for analysis of transmission characteristics of water-hammer vibration waves in pipelines installed in soil, water, or air environments. J. Pipeline Syst. Eng. 2024, 15, 1. [Google Scholar] [CrossRef]
- Wei, A.B.; Yu, L.Y.; Qiu, L.M.; Zhang, X.B. Cavitation in cryogenic fluids: A critical research review. Phys. Fluids 2022, 34, 101303. [Google Scholar] [CrossRef]
- Tian, Y.H.; Zhang, Z.J.; Gao, Z.Z.; Cui, C.; Chen, L.B.; Wang, J.J. A numerical investigation of flow characteristics in a cryogenic perforated plate flowmeter for vertical pipe applications. Energies 2024, 17, 6147. [Google Scholar] [CrossRef]
- Tijsseling, A.S. An overview of fluid-structure interaction experiments in single-elbow systems. J. Zhejiang Univ. Sci. A 2019, 20, 233–242. [Google Scholar] [CrossRef]
- Lv, F.; Wang, N.; He, S.; Gao, M. Numerical simulation of structure-borne noise in a T-shaped tee considering fluid-structure interaction. Phys. Fluids 2023, 35, 015127. [Google Scholar] [CrossRef]
- Lumentut, M.F.; Friswell, M.I. Powering smart pipes with fluid flow: Effect of velocity profiles. Comput. Struct. 2022, 258, 106680. [Google Scholar] [CrossRef]
- Yu, W.; Li, B.; Fang, H.Y.; Du, X.M.; Zhai, K.J.; Wang, N.N.; Di, D.Y.; Du, M.R. Mechanical characteristics of concrete pipes under the coupled effects of the pressure, seepage, and flow fields. Strucs 2024, 61, 106053. [Google Scholar] [CrossRef]
- Hambric, S.A.; Boger, D.A.; Fahnline, J.B.; Campbell, R.L. Structure- and fluid-borne acoustic power sources induced by turbulent flow in 90° piping elbows. J. Fluids Struct. 2010, 26, 121–147. [Google Scholar] [CrossRef]
- Wang, S.; Ren, C.; Gui, N.; Sun, Y.; Tu, J.; Yang, X.; Jiang, S. Experimental and numerical study on the circumferential pressure distribution on the wall of a 90° elbow pipe with circular section. Ann. Nucl. Energy 2017, 109, 419–430. [Google Scholar] [CrossRef]
- Qing, M.; Jinghui, Z.; Yushan, L.; Haijun, W.; Quan, D. Experimental studies of orifice-induced wall pressure fluctuations and pipe vibration. Int. J. Press. Vessel. Pip. 2006, 83, 505–511. [Google Scholar] [CrossRef]
- Paidoussis, M.P.; Li, G.X. Pipes conveying fluid: A model dynamical problem. J. Fluids Struct. 1993, 7, 137–204. [Google Scholar] [CrossRef]
- Gorman, D.G.; Reese, J.M.; Zhang, Y.L. Vibration of a flexible pipe conveying viscous pulsating fluid flow. J. Sound Vib. 2000, 230, 379–392. [Google Scholar] [CrossRef]
- Lee, S.I.; Chung, J. New non-linear modelling for vibration analysis of a straight pipe conveying fluid. J. Sound Vib. 2003, 254, 313–325. [Google Scholar] [CrossRef]
- Kochupillai, J.; Ganesan, N.; Padmanabhan, C. A new finite element formulation based on the velocity of flow for water hammer problems. Int. J. Press. Vessel. Pip. 2005, 82, 1–14. [Google Scholar] [CrossRef]
- Zanganeh, R.; Ahmadi, A.; Keramat, A. Fluid-structure interaction with viscoelastic supports during water hammer in a pipeline. J. Fluids Struct. 2015, 54, 215–234. [Google Scholar] [CrossRef]
- Xu, Y.; Johnston, D.N.; Jiao, Z.; Plummer, A.R. Frequency modelling and solution of fluid-structure interaction in complex pipelines. J. Sound Vib. 2014, 333, 2800–2822. [Google Scholar] [CrossRef]
- Zong, C.; Li, Q.; Zheng, F.; Chen, D.; Li, X.; Song, X. Fluid-structure coupling analysis of a pressure vessel-pipe-safety valve system with experimental and numerical methods. Int. J. Press. Vessel. Pip. 2022, 199, 104707. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.; Yu, Y.; Zeng, X.; Zhou, J.; Xie, B.; Shi, M.; Huang, S. Axial and transverse coupled vibration characteristics of deep-water riser with internal flow. Procedia Eng. 2015, 126, 260–264. [Google Scholar] [CrossRef]
- Tian, J.; Yuan, C.; Yang, L.; Wu, C.; Liu, G.; Yang, Z. The vibration characteristics analysis of pipeline under the action of gas pressure pulsation coupling. J. Fail. Anal. Prev. 2016, 16, 499–505. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y. Vibration analysis of liquid-filled pipelines with elastic constraints. J. Sound Vib. 2011, 330, 3166–3181. [Google Scholar] [CrossRef]
- Maxit, L.; Karimi, M.; Guasch, O. Spatial coherence of pipe vibrations induced by an internal turbulent flow. J. Sound Vib. 2021, 493, 115841. [Google Scholar] [CrossRef]
- Liu, E.; Yan, S.; Wang, D.; Huang, L. Large eddy simulation and FW-H acoustic analogy of flow-induced noise in elbow. J. Comput. Theor. Nanosci. 2015, 12, 2866–2873. [Google Scholar] [CrossRef]
- Mori, M.; Masumoto, T.; Ishihara, K. Study on acoustic, vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section. Appl. Acoust. 2017, 120, 137–147. [Google Scholar] [CrossRef]
- Zhang, Y.O.; Zhang, T.; Ouyang, H.; Li, T.Y. Flow-induced noise analysis for 3D trash rack based on LES/Lighthill hybrid method. Appl. Acoust. 2014, 79, 141–152. [Google Scholar] [CrossRef]
- Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics, 6th ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Peksen, M. Multiphysics Coupling: Numerical Methods and Engineering Applications; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Kandil, M.; Kamel, A.; El-Sayed, M. Analytical and CFD analysis investigation of fluid-structure interaction during water hammer for straight pipe line. Int. J. Press. Vessel. Pip. 2021, 194, 104528. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, W.; Jiang, J.; Wang, X.; Li, S.; Luo, X. Experimental and numerical investigations of flow-induced vibration of tube arrays subjected to cross flow. Int. J. Press. Vessel. Pip. 2019, 176, 103956. [Google Scholar] [CrossRef]
- Fu, J.; Chen, W.; Tang, Y.; Yuan, W.; Li, G.; Li, Y. Modification of exhaust muffler of a diesel engine based on finite element method acoustic analysis. Adv. Mech. Eng. 2015, 7, 1–11. [Google Scholar] [CrossRef]
Parameter | Length L1 (mm) | Length L2 (mm) | Radius R (mm) | Angle θ (°) | Wall Thickness ∆d (mm) | Diameter d (mm) |
---|---|---|---|---|---|---|
Value | 300 | 600 | 150 | 90 | 4 | 40 |
Parameter | Density (kg/m3) | Elastic Modulus (Pa) | Poisson’s Ratio (Pa) | Dynamic Viscosity (μPa·s) |
---|---|---|---|---|
Elbow | 7850 | 2.1 × 1011 | 0.3 | - |
Water | 1000 | 2.34 × 109 | - | 890.08 |
Parameter | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Stress (MPa) | 3.56 | 3.98 | 3.93 | 3.82 | 4.22 | 3.94 | 3.56 | 4.03 | 3.80 |
Acceleration (mm/s2) | 17.80 | 16.96 | 15.92 | 20.29 | 18.58 | 18.55 | 19.62 | 18.80 | 18.00 |
Modal Order | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Without FSIs | 176.20 | 421.05 | 486.98 | 943.35 | 976.79 | 1359.90 |
Two-way FSIs | 155.28 | 370.85 | 430.07 | 610.48 | 840.57 | 871.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.-W.; Wang, F.; Li, C.; Zhu, S.-M.; Lan, H.-Q. Study on Acoustic–Vibration Characteristics and Noise Reduction Methods for Elbows. Processes 2025, 13, 389. https://doi.org/10.3390/pr13020389
Zhang S-W, Wang F, Li C, Zhu S-M, Lan H-Q. Study on Acoustic–Vibration Characteristics and Noise Reduction Methods for Elbows. Processes. 2025; 13(2):389. https://doi.org/10.3390/pr13020389
Chicago/Turabian StyleZhang, Shi-Wan, Fei Wang, Cong Li, Si-Min Zhu, and Hui-Qing Lan. 2025. "Study on Acoustic–Vibration Characteristics and Noise Reduction Methods for Elbows" Processes 13, no. 2: 389. https://doi.org/10.3390/pr13020389
APA StyleZhang, S.-W., Wang, F., Li, C., Zhu, S.-M., & Lan, H.-Q. (2025). Study on Acoustic–Vibration Characteristics and Noise Reduction Methods for Elbows. Processes, 13(2), 389. https://doi.org/10.3390/pr13020389