Advances in Polyaniline-Based Composites for Room-Temperature Chemiresistor Gas Sensors
Abstract
:1. Introduction
2. Different Gas Sensor Technologies
2.1. Catalytic Gas Sensors
2.2. Thermal Conductivity Gas Sensors
2.3. Electrochemical Gas Sensors
2.4. Optical Gas Sensors
2.5. Non-Dispersive Infrared (NDIR) Sensor
2.6. Semiconductor Gas Sensor
2.7. Surface Acoustic Wave (SAW) Sensor
2.8. Thin-Film Bulk Acoustic Resonator (FBAR)
2.9. Photoionization Detectors (PIDs)
2.10. Gas Chromatography (GC)
2.11. Chemiresistor Gas Sensors
3. Polymer-Based Gas-Sensing Materials
3.1. Methods of Synthesizing Conducting Polymers
3.2. Preparation of Conducting Polymer Thin Films
3.3. Application of CPs in Gas Sensing
4. The Role of PANI in Gas Sensing: An Overview
4.1. PANI-Based Nanocomposite Sensors
4.2. Gas Sensing with PANI/Polymer Blend Nanomaterials
4.3. Gas Sensing with PANI/Carbon Nanomaterials
4.4. Gas Sensing with PANI/Metal Nanoparticles
4.5. Gas Sensing with PANI/Metal Oxide Nanomaterials
4.6. Gas Sensing with PANI/Metal Chalcogenide Nanomaterials
4.7. Gas Sensing with Ternary PANI Nanocomposites
5. Key Suggestions to Consider for Overcoming the Limitations of PANI-Based Chemiresistors
6. Future Guidelines for Designing High-Performing Chemiresistor Devices Based on PANI Composites and Their Relevance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 8 July 2024).
- David, E.; Niculescu, V.C. Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Administration (OSHA). Toxic and Hazardous Substances. 29 CFR 1910 Subpart Z. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910SubpartZ (accessed on 20 May 2024).
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Masemola, C.M.; Fadojutimi, P.; Maubane-Nkadimeng, M.; Tetana, Z.N.; Moloto, N.; Gqoba, S.; Linganiso, E.C. Ni3S2-HCSs Modified Polyaniline: Enhanced Ethanol Detection at Room Temperature. In Proceedings of the 2024 IEEE SENSORS, Kobe, Japan, 20–23 October 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Wen, J.; Wang, S.; Feng, J.; Ma, J.; Zhang, H.; Wu, P.; Li, G.; Wu, Z.; Meng, F.; Li, L.; et al. Recent progress in polyaniline-based chemiresistive flexible gas sensors: Design, nanostructures, and composite materials. J. Mater. Chem. A 2024, 12, 6190–6210. [Google Scholar] [CrossRef]
- Karami, H.; Thurn, B.; de Boer, N.K.; Ramos, J.; Covington, J.A.; Lozano, J.; Liu, T.; Zhang, W.; Su, S.; Ueland, M. Application of gas sensor technology to locate victims in mass disasters–a review. Nat. Hazards 2024, 1–30. [Google Scholar] [CrossRef]
- Kalinin, I.A.; Roslyakov, I.V.; Bograchev, D.; Kushnir, S.E.; Ivanov, I.I.; Dyakov, A.V.; Napolskii, K.S. High performance microheater-based catalytic hydrogen sensors fabricated on porous anodic alumina substrates. Sens. Actuators B Chem. 2024, 404, 135270. [Google Scholar] [CrossRef]
- Durani, F.; Mainuddin; Mittal, U.; Kumar, J.; Nimal, A.T. Use of surface acoustic wave (SAW) for thermal conductivity sensing of gases—A review. IETE Tech. Rev. 2021, 38, 611–621. [Google Scholar] [CrossRef]
- Gardner, E.L.; Gardner, J.W.; Udrea, F. Micromachined thermal gas sensors—A review. Sensors 2023, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.L.; De Luca, A.; Udrea, F. Differential Thermal Conductivity CO2 Sensor. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; pp. 791–794. [Google Scholar] [CrossRef]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern designs of electrochemical sensor platforms for environmental analyses: Principles, nanofabrication opportunities, and challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Imanpour, A.; Rezavand, M.; Arjmandi Tash, A.M.; Antonini, S.; Rezvani, S.J.; Abdi, Y. Electrochemoresistance Sensor: A Borophene-Based Sensor with Simultaneous Electrochemical and Chemoresistance Sensing Capability. ACS Mater. Lett. 2024, 6, 933–942. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Han, B.; Wang, M.; Wang, Q.; Zhang, Y.N. Fiber optic volatile organic compound gas sensors: A review. Coord. Chem. Rev. 2023, 493, 215297. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.N.; Liu, S.; Shi, B.; Wang, L.; Zhao, Y. Fiber optic room temperature ethanol sensor based on ZnSnO3/TiO2 with UV radiation sensitization. Sens. Actuators B Chem. 2024, 399, 134814. [Google Scholar] [CrossRef]
- Jha, R.K. Non-dispersive infrared gas sensing technology: A review. IEEE Sens. J. 2021, 22, 6–15. [Google Scholar] [CrossRef]
- Yu, K.; Yang, X.; Wang, Y.; Zhang, P.; Zhang, L.; Tan, Q. A temperature-compensated CO2 detection system based on non-dispersive infrared spectral technology. Rev. Sci. Instrum. 2024, 95, 085002. [Google Scholar] [CrossRef]
- Gao, L.; Tian, Y.; Hussain, A.; Guan, Y.; Xu, G. Recent developments and challenges in resistance-based hydrogen gas sensors based on metal oxide semiconductors. Anal. Bioanal. Chem. 2024, 416, 3697–3715. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, Y.; Yang, C.; Deng, H.; Hu, N. MoS2/MoO3 heterojunctions enabled by surface oxidization of MoS2 nanosheets for high-performance room-temperature NO2 gas sensing. J. Alloys Compd. 2024, 976, 173208. [Google Scholar] [CrossRef]
- Cui, B.; Ren, Z.; Wang, W.; Cheng, L.; Gao, X.; Huang, L.; Hu, A.; Hu, F.; Jin, J. Review of surface acoustic wave-based hydrogen sensor. Sens. Actuators Rep. 2024, 7, 100197. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, W.; Yang, P.; Luo, J.; Fu, C.; Han, J.C.; Zhou, Y.; Wang, L.; Wu, Y.; Huang, Y. A review of surface acoustic wave sensors: Mechanisms, stability and future prospects. Sens. Rev. 2024, 44, 249–266. [Google Scholar] [CrossRef]
- Buiculescu, V.; Dinu, L.A.; Veca, L.M.; Pârvulescu, C.; Mihai, M.; Brîncoveanu, O.; Comănescu, F.; Brașoveanu, C.; Stoian, M.; Baracu, A.M. The development of sensitive graphene-based surface acoustic wave sensors for NO2 detection at room temperature. Microchim. Acta 2024, 191, 323. [Google Scholar] [CrossRef]
- Ren, J.; Chu, H.; Bai, Y.; Wang, R.; Chen, P.; Chen, J. Research and design of high sensitivity fbar micro-mass sensors. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 042014. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, P.; Liu, J.; Fang, Z.; Du, L.; Zhao, Z. Polyimide-based high-performance film bulk acoustic resonator humidity sensor and its application in real-time human respiration monitoring. Micromachines 2022, 13, 758. [Google Scholar] [CrossRef]
- Gao, C.; Fu, M.; Fan, S.; Ma, Z.; Tang, Y.; Hou, D.; Cao, Y. High-performance virtual sensors array based on a single-chip FBAR for volatile organic compounds (VOCs) detection and classification. Sens. Actuators B Chem. 2025, 422, 136687. [Google Scholar] [CrossRef]
- Zimmer, C.M.; Kallis, K.T.; Giebel, F.J. Micro-structured electron accelerator for the mobile gas ionization sensor technology. J. Sens. Sens. Syst. 2015, 4, 151–157. [Google Scholar] [CrossRef]
- Oliva, G.; Fiorillo, A.S.; Jelić, T.A.; Valić, S.; Pullano, S.A. Thermal desorption from zeolite layer for VOC detection. Solid-State Electron. 2023, 210, 108809. [Google Scholar] [CrossRef]
- Prestage, J.; Day, C.; Husheer, S.L.; Winter, W.T.; Ho, W.O.; Saffell, J.R.; Hutter, T. Selective detection of volatile organics in a mixture using a photoionization detector and thermal desorption from a nanoporous preconcentrator. ACS Sens. 2021, 7, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Al-Bukhaiti, W.Q.; Noman, A.; Qasim, A.S.; Al-Farga, A. Gas chromatography: Principles, advantages and applications in food analysis. Int. J. Agric. Innov. Res. 2017, 6, 123–128. Available online: https://www.researchgate.net/profile/Ammar_Al-Farga/publication/342360886_Gas_Chromatography_Principles_Advantages_and_Applications_in_Food_Analysis/links/5f1a26c8299bf1720d5fc2e3/Gas-Chromatography-Principles-Advantages-and-Applications-in-Food-Analysis.pdf?origin=journalDetail&_tp=eyJwYWdlIjoiam91cm5hbERldGFpbCJ9 (accessed on 8 January 2025).
- Aghili, N.S.; Rasekh, M.; Karami, H.; Edriss, O.; Wilson, A.D.; Ramos, J. Aromatic fingerprints: VOC analysis with E-nose and GC-MS for rapid detection of adulteration in sesame oil. Sensors 2023, 23, 6294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, J.; Wang, Y.; Wang, T.; Wei, M.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. Polyoxometalates electron acceptor-intercalated In2O3@SnO2 nanofibers for chemiresistive ethanol gas sensors. Sens. Actuators B Chem. 2024, 410, 135728. [Google Scholar] [CrossRef]
- Najafi, P.; Ghaemi, A. Chemiresistor gas sensors: Design, Challenges, and Strategies: A comprehensive review. Chem. Eng. J. 2024, 498, 154999. [Google Scholar] [CrossRef]
- Kumar, A.; Mirzaei, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.U.; Kim, J.Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; Kim, H.W. Strategic review of gas sensing enhancement ways of 2D tungsten disulfide/selenide based chemiresistive sensors: Decoration and composite. J. Mater. Chem. A 2024, 12, 3771–3806. [Google Scholar] [CrossRef]
- Wang, P.; Tang, C.; Song, H.; Zhang, L.; Lu, Y.; Huang, F. 1D/2D Heterostructured WS2@ PANI Composite for Highly Sensitive, Flexible, and Room Temperature Ammonia Gas Sensor. ACS Appl. Mater. Interfaces 2024, 16, 14082–14092. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Eadi, S.B.; Noothalapati, H.; Otyepka, M.; Lee, H.D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530–2577. [Google Scholar] [CrossRef] [PubMed]
- Boublia, A.; Guezzout, Z.; Haddaoui, N.; Badawi, M.; Darwish, A.S.; Lemaoui, T.; Lebouachera, S.E.I.; Yadav, K.K.; Alreshidi, M.A.; Algethami, J.S.; et al. The curious case of polyaniline-graphene nanocomposites: A review on their application as exceptionally conductive and gas sensitive materials. Crit. Rev. Solid State Mater. Sci. 2023, 49, 973–997. [Google Scholar] [CrossRef]
- Ali, Z.S.; Shano, A.M. The influence of solvents on polyaniline nanofibers synthesized by a hydrothermal method and their application in gas sensors. J. Electron. Mater. 2020, 49, 5528–5533. [Google Scholar] [CrossRef]
- Samotaev, N.; Podlepetsky, B.; Mashinin, M.; Ivanov, I.; Obraztsov, I.; Oblov, K.; Dzhumaev, P. Thermal Conductivity Gas Sensors for High-Temperature Applications. Micromachines 2024, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yue, G.; Chen, W.; Xing, Z.; Wang, J.; Wong, W.R.; Cheng, Z.; Set, S.Y.; Senthil Murugan, G.; Wang, X.; et al. On-chip optical gas sensors based on group-IV materials. ACS Photonics 2020, 7, 2923–2940. [Google Scholar] [CrossRef]
- Liang, J.G.; Jiang, Y.; Wu, J.K.; Wang, C.; von Gratowski, S.; Gu, X.; Pan, L. Multiplex-gas detection based on non-dispersive infrared technique: A review. Sens. Actuators A Phys. 2023, 114318. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal oxide semiconductors for gas sensing. Eng. Rep. 2023, 5, e12604. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Zhang, H.; Sreejith, V.S.; Naghdi, M.; Ju, S. Advances in the surface acoustic wave sensors for industrial applications: Potentials, challenges, and future directions: A review. Measurement 2023, 222, 113657. [Google Scholar] [CrossRef]
- Patel, R.; Adhikari, M.S.; Tripathi, S.K.; Sahu, S. Design, optimization and performance assessment of single port film bulk acoustic resonator through finite element simulation. Sensors 2023, 23, 8920. [Google Scholar] [CrossRef]
- Galvani, M.; Freddi, S.; Sangaletti, L. Disclosing Fast Detection Opportunities with Nanostructured Chemiresistor Gas Sensors Based on Metal Oxides, Carbon, and Transition Metal Dichalcogenides. Sensors 2024, 24, 584. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Li, W.; Zhang, J.; Xie, X. Chemiresistive gas sensor based on electrospun hollow SnO2 nanotubes for detecting NO at the ppb level. Vacuum 2022, 199, 110961. [Google Scholar] [CrossRef]
- Chiang, C.K.; Fincher, C.R., Jr.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39, 1098. [Google Scholar] [CrossRef]
- Heeger, A.J.; MacDiarmid, A.G.; Shirakawa, H. The Nobel Prize in chemistry, 2000: Conductive polymers. R. Swed. Acad. Sci. 2000, 1–16. Available online: https://www.nobelprize.org/prizes/chemistry/2000/summary/ (accessed on 8 January 2025).
- Verma, A.; Gupta, R.; Verma, A.S.; Kumar, T. A review of composite conducting polymer-based sensors for detection of industrial waste gases. Sens. Actuators Rep. 2023, 5, 100143. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Ma, P. Synthesis of different inorganic acids doped polyaniline materials and behavior of enhancing NH3 gas sensing properties. Org. Electron. 2023, 114, 106749. [Google Scholar] [CrossRef]
- Dimple; Madan, R.; Kumar, V.; Mohan, D.; Garg, R. Acetone gas sensing behavior of polypyrrole/ZnO nanocomposites synthesized via chemical oxidation method. J. Mater. Sci. Mater. Electron. 2024, 35, 130. [Google Scholar] [CrossRef]
- Gopika, R.; Arun, K.; Ramesan, M.T. In-situ polymerization of polythiophene/silicon carbide nanocomposites for gas sensing and optoelectronic devices. J. Mater. Res. Technol. 2024, 30, 1288–1300. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, L.; Wang, Y.; Zhang, C.; Satoh, T. Chromaticity sensor for discriminatory identification of aliphatic and aromatic primary amines based on conformational changes of polyacetylene. Talanta 2024, 268, 125361. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 2020, 167, 037503. [Google Scholar] [CrossRef]
- Joke, O.F.; Rotimi, I.A.; Makhatha, M.E.; Olaoye, O.P.; Yetunde, S.A.; Joy, O.O.; Victoria, O.T.; Bayode, A.T.; Ayantunde, A.A. Investigation of the Gas Sensing Potential of Electrospun Expanded Polystyrene/Reduced Graphene Oxide Nanofiber Composites. In Chemical and Materials Sciences—Developments and Innovations; BP International: Hong Kong, China, 2024. [Google Scholar] [CrossRef]
- Rath, R.J.; Farajikhah, S.; Oveissi, F.; Shahrbabaki, Z.; Yun, J.; Naficy, S.; Dehghani, F. A Polymer-Based Chemiresistive Gas Sensor for Selective Detection of Ammonia Gas. Adv. Sens. Res. 2024, 3, 2300125. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Y.; Sun, X.; Li, J.; Wu, J.; Shi, Y.; Pan, L. Doping engineering of conductive polymers and their application in physical sensors for healthcare monitoring. Macromol. Rapid Commun. 2024, 45, 2300246. [Google Scholar] [CrossRef]
- Hashemi Karouei, S.F.; Milani Moghaddam, H.; Saadat Niavol, S. Characterization and gas sensing sproperties of graphene/polyaniline nanocomposite with long-term stability under high humidity. J. Mater. Sci. 2021, 56, 4239–4253. [Google Scholar] [CrossRef]
- Le, C.V.; Yoon, H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int. J. Mol. Sci. 2024, 25, 1564. [Google Scholar] [CrossRef]
- Rodrigues, J.; Jain, S.; Shimpi, N.G. Conducting polymer-based gas sensors. In Carbon-Based Nanomaterials and Nanocomposites for Gas Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 181–232. [Google Scholar] [CrossRef]
- Lawaniya, S.D.; Kumar, S.; Yu, Y.; Awasthi, K. Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature. Sens. Actuators B Chem. 2023, 382, 133566. [Google Scholar] [CrossRef]
- Ding, H.; Hussein, A.M.; Ahmad, I.; Latef, R.; Abbas, J.K.; Abd Ali, A.T.; Saeed, S.M.; Abdulwahid, A.S.; Ramadan, M.F.; Rasool, H.A.; et al. Conducting polymers in industry: A comprehensive review on the characterization, synthesis and application. Alex. Eng. J. 2024, 88, 253–267. [Google Scholar] [CrossRef]
- Jang, H.J.; Shin, B.J.; Jung, E.Y.; Bae, G.T.; Kim, J.Y.; Tae, H.S. Polypyrrole film synthesis via solution plasma polymerization of liquid pyrrole. Appl. Surf. Sci. 2023, 608, 155129. [Google Scholar] [CrossRef]
- Nadekar, B.; Gund, G.S.; Khollam, Y.B.; Shaikh, S.F.; Wavhal, D.S.; Dubal, D.P.; More, P. Plasma-polymerized and iodine-doped polyvinyl acetate for volatile organic compound gas sensing applications. ACS Appl. Polym. Mater. 2023, 5, 1882–1890. [Google Scholar] [CrossRef]
- Pavel, I.A.; Lasserre, A.; Simon, L.; Rossignol, J.; Lakard, S.; Stuerga, D.; Lakard, B. Microwave Gas Sensors Based on Electrodeposited Polypyrrole–Nickel Phthalocyanine Hybrid Films. Sensors 2023, 23, 5550. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rawal, I.; Rajpal, A.; Khokhar, A.; Kumar, V.; Goyal, P.K. Highly sensitive and selective room temperature ammonia sensor based on polyaniline thin film: In situ dip-coating polymerization. J. Mater. Sci. Mater. Electron. 2022, 33, 14071–14085. [Google Scholar] [CrossRef]
- Bibi, A.; Rubio, Y.R.M.; Santiago, K.S.; Jia, H.W.; Ahmed, M.M.; Lin, Y.F.; Yeh, J.M. H2S-sensing studies using interdigitated electrode with spin-coated carbon aerogel-polyaniline composites. Polymers 2021, 13, 1457. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Li, Q.; Wang, R.; Zhang, L.; Liu, Z.; Jiao, T. Recent Progress in the Applications of Langmuir–Blodgett Film Technology. Nanomaterials 2024, 14, 1039. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, S.; Pullithadathil, B. Unidirectional Langmuir–Blodgett-mediated alignment of polyaniline-functionalized multiwalled carbon nanotubes for NH3 gas sensor applications. Langmuir 2020, 36, 11618–11628. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Chu, Y.; Wu, X.; Liu, W.J.; Zhang, D.W.; Ding, S.J. High-performance flexible gas sensors based on layer-by-layer assembled polythiophene thin films. Chem. Mater. 2021, 33, 7785–7794. [Google Scholar] [CrossRef]
- Majumdar, S.; Sarmah, K.; Mahanta, D. A simple route to prepare polypyrrole-coated filter papers via vapor phase polymerization and their gas sensing application. ACS Appl. Polym. Mater. 2020, 2, 1933–1942. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Nakamae, T.; Fujisada, R.; Shiba, S. A highly sensitive ammonia gas sensor using Micrometer-Sized Core–Shell-Type spherical polyaniline particles. Sensors 2021, 21, 7522. [Google Scholar] [CrossRef]
- Han, K.H.; Kang, H.; Lee, G.Y.; Lee, H.J.; Jin, H.M.; Cha, S.K.; Yun, T.; Kim, J.H.; Yang, G.G.; Choi, H.J.; et al. Highly aligned carbon nanowire array by e-field directed assembly of PAN-containing block copolymers. ACS Appl. Mater. Interfaces 2020, 12, 58113–58121. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Huang, H.; Cao, X.; Chen, X.; Cao, D. Porous organic polymers as a platform for sensing applications. Chem. Soc. Rev. 2022, 51, 2031–2080. [Google Scholar] [CrossRef]
- Shakeel, A.; Rizwan, K.; Farooq, U.; Iqbal, S.; Altaf, A.A. Advanced polymeric/inorganic nanohybrids: An integrated platform for gas sensing applications. Chemosphere 2022, 294, 133772. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, M.; Suma, M.S.; Jisha, P.; Vinjamuri, S.; Vijayalakshmi, K. Analysis of Structural, Morphological and Optical Characteristics of Protonic Acids Doped Polyaniline For VOC Sensing Application. In Proceedings of the 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES), Tumakuru, India, 3–4 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Duan, X.; Duan, Z.; Zhang, Y.; Liu, B.; Li, X.; Zhao, Q.; Yuan, Z.; Jiang, Y.; Tai, H. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sens. Actuators B Chem. 2022, 369, 132302. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, S.K. Advances in polyaniline-based nanocomposites. J. Mater. Sci. 2020, 55, 1331–1365. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Ma, P. The effect of different protonic acid doping on the sensitivity of polyaniline to ammonia gas. J. Mater. Sci. Mater. Electron. 2024, 35, 401. [Google Scholar] [CrossRef]
- Lv, D.; Shen, W.; Chen, W.; Tan, R.; Xu, L.; Song, W. PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature. Sens. Actuators B Chem. 2021, 328, 129085. [Google Scholar] [CrossRef]
- Devi, L.S.; Daniel, T.T.; Paily, R.; Dasmahapatra, A.K. Polyaniline/Poly (vinyl alcohol) Conductive Hydrogel for a Chemiresistive Ultrasensitive Ammonia Gas Sensor. ACS Appl. Polym. Materials. 2024, 6, 10603–10614. [Google Scholar] [CrossRef]
- Kayishaer, A.; Duc, C.; Magnenet, C.; Lakard, B.; Halima, H.B.; Redon, N.; Lakard, S. Fluorinated polyaniline-based sensors with enhanced NH3 sensitivity. Synth. Met. 2024, 307, 117695. [Google Scholar] [CrossRef]
- Chaudhary, V. Charge carrier dynamics of electrochemically synthesized poly (aniline co-pyrrole) nanospheres based sulfur dioxide chemiresistor. Polym.-Plast. Technol. Mater. 2022, 61, 107–115. [Google Scholar] [CrossRef]
- Li, P.; Xu, H.; Liu, F.; Shi, J.; Gao, X.; Li, J. Room-temperature NH3 sensors based on polyaniline-assembled graphitic carbon nitride nanosheets. ACS Appl. Nano Mater. 2023, 6, 5145–5154. [Google Scholar] [CrossRef]
- Masemola, C.M.; Moloto, N.; Tetana, Z.N.; Gqoba, S.S.; Mubiayi, P.K.; Linganiso, E.C. N-doped graphene quantum dot-modified polyaniline for room-temperature sensing of alcohol vapors. Mater. Chem. Phys. 2022, 287, 126229. [Google Scholar] [CrossRef]
- Chen, X.; Xing, X.; Li, Z.; Zhao, X.; Tian, Y.; Lang, X.; Yang, D. Three-dimensional porous carbon framework coated with polyaniline for highly stable and selective ammonia sensing. Sens. Actuators B Chem. 2023, 395, 134539. [Google Scholar] [CrossRef]
- Singh, R.; Agrohiya, S.; Rawal, I.; Ohlan, A.; Dahiya, S.; Punia, R.; Maan, A.S. Multifunctional porous polyaniline/phosphorus-nitrogen co-doped graphene nanocomposite for efficient room temperature ammonia sensing and high-performance supercapacitor applications. Appl. Surf. Sci. 2024, 665, 160368. [Google Scholar] [CrossRef]
- Xiao, G.; Weng, H.; Ge, L.; Huang, Q. Application status of carbon nanotubes in fire detection sensors. Front. Mater. 2020, 7, 588521. [Google Scholar] [CrossRef]
- Amarnath, M.; Gurunathan, K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
- Adhav, P.; Pawar, D.; Diwate, B.; Bora, M.; Jagtap, S.; Chourasia, A.; Dallavalle, S.; Chabukswar, V. Room temperature operable ultra-sensitive ammonia sensor based on polyaniline-silver (PANI-Ag) nanocomposites synthesized by ultra-sonication. Synth. Met. 2023, 293, 117237. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, T. Ag/Cu doped polyaniline hybrid nanocomposite-based novel gas sensor for enhanced ammonia gas sensing performance at room temperature. RSC Adv. 2024, 14, 25093–25107. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Kumar, T. Gas sensing properties of a Cu-doped PANI nanocomposite towards ammonia. Mater. Adv. 2024, 5, 7387–7400. [Google Scholar] [CrossRef]
- Kulkarni, S.B.; Navale, Y.H.; Navale, S.T.; Stadler, F.J.; Patil, V.B. Room temperature ammonia gas sensing properties of polyaniline nanofibers. J. Mater. Sci. Mater. Electron. 2019, 30, 8371–8380. [Google Scholar] [CrossRef]
- Qu, Y.; Zheng, H.; Lei, Y.; Ding, Z.; Li, S.; Liu, S.; Ji, W. Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@ polyaniline Composites. Sensors 2024, 24, 1824. [Google Scholar] [CrossRef]
- Dhanawade, R.N.; Pawar, N.S.; Chougule, M.A.; Hingangavkar, G.M.; Jadhav, Y.M.; Nimbalkar, T.M.; Navale, Y.H.; Chavan, G.T.; Jeon, C.W.; Patil, V.B. Highly sensitive and selective PAni-CeO2 nanohybrid for detection of NH3 biomarker at room temperature. J. Mater. Sci. Mater. Electron. 2023, 34, 781. [Google Scholar] [CrossRef]
- Zhang, B.; Shang, F.; Shi, X.; Yao, R.; Wei, F.; Hou, X.; Li, W.; Zhang, J. Polyaniline/CuO nanoparticle composites for use in selective H2S sensors. ACS Appl. Nano Mater. 2023, 6, 18413–18425. [Google Scholar] [CrossRef]
- Saravanan, K.K.; Siva Karthik, P.; Mirtha, P.R.; Balaji, J.; Rajeshkanna, B. A one-pothydrothermal-induced PANI/SnO2 and PANI/SnO2/rGO ternary composites for high-performance chemiresistive-based H2S and NH3 gas sensors. J. Mater. Sci. Mater. Electron. 2020, 31, 8825–8836. [Google Scholar] [CrossRef]
- Kaur, R.; Lawaniya, S.D.; Kumar, S.; Saini, N.; Awasthi, K. Nanoarchitectonics of polyaniline–zinc oxide (PANI–ZnO) nanocomposite for enhanced room temperature ammonia sensing. Appl. Phys. A 2023, 129, 765. [Google Scholar] [CrossRef]
- Pal, R.; Goyal, S.L.; Rawal, I. Selective methanol sensors based on polyaniline/V2O5 nanocomposites. Iran. Polym. J. 2022, 31, 519–532. [Google Scholar] [CrossRef]
- Fadojutimi, P.; Masemola, C.; Maubane-Nkadimeng, M.; Linganiso, E.; Tetana, Z.; Moma, J.; Moloto, N.; Gqoba, S. Room temperature sensing of primary alcohols via polyaniline/zirconium disulphide. Heliyon 2023, 9, e16216. [Google Scholar] [CrossRef]
- Feng, Z.; Wen, J.; Meng, F.; Tian, R.; Wang, S.; Wang, K.; Tian, Y. In Situ-Polymerized PANI/WS2 Nanocomposites for Highly Sensitive Flexible Ammonia Gas Sensors and Respiration Monitoring Devices. ACS Appl. Nano Mater. 2024, 7, 3385–3393. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Ding, X.; Yu, X. Gas Sensitive Characteristics of Polyaniline Decorated with Molybdenum Ditelluride Nanosheets. Chemosensors 2022, 10, 264. [Google Scholar] [CrossRef]
- Ghaleghafi, E.; Rahmani, M.B. Reversible room temperature ammonia sensor based on the synthesized MoS2/PANI nanocomposites. Phys. Scr. 2023, 98, 075801. [Google Scholar] [CrossRef]
- Upadhye, D.S.; Dive, A.S.; Birajadar, R.B.; Bagul, S.B.; Gattu, K.P.; Sharma, R. Low-concentration ammonia gas sensing using polyaniline nanofiber thin film grown by rapid polymerization technique. J. Mater. Sci. Mater. Electron. 2022, 33, 23016–23029. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, H.; Li, Q.; Guo, Y.; Song, Y.; An, F.; Zhu, L.; Xiao, A.; Lv, C.; Zhang, D. PANI/CoMoO4 Nanocomposite Heterostructures for Detection of NH3 at Room Temperature. ACS Appl. Nano Mater. 2023, 7, 857–865. [Google Scholar] [CrossRef]
- Masemola, C.M.; Shumbula, N.P.; Gqoba, S.S.; Tetana, Z.N.; Moloto, N.; Linganiso, E.C. Electrospun NGQDs/PANI/PAN composite fibers for room temperature alcohol sensing. In Proceedings of the 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 29–31 October 2021; pp. 146–150. [Google Scholar] [CrossRef]
- Rahim, M.; Ullah, R.; Ahmad, N.; Rahim, I.; Yaseen, S. Synthesis and characterization of highly sensitive ammonia sensor based on polyaniline/bismuth doped zinc oxide composites. Polym. Compos. 2024, 45, 10418–10429. [Google Scholar] [CrossRef]
- Mathe, B.N.; Masemola, C.M.; Moma, J.; Tetana, Z.N.; Linganiso, E.C. Room temperature ammonia gas sensing using polyaniline/indium oxide/onion-like carbon composite. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Hadano, F.S.; Gavim, A.E.X.; Stefanelo, J.C.; Gusso, S.L.; Macedo, A.G.; Rodrigues, P.C.; Mohd Yusoff, A.R.B.; Schneider, F.K.; Deus, J.F.D.; José da Silva, W. NH3 sensor based on rGO-PANI composite with improved sensitivity. Sensors 2021, 21, 4947. [Google Scholar] [CrossRef] [PubMed]
- Mekki, A.; Joshi, N.; Singh, A.; Salmi, Z.; Jha, P.; Decorse, P.; Lau-Truong, S.; Mahmoud, R.; Chehimi, M.M.; Aswal, D.K.; et al. H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Org. Electron. 2014, 15, 71–81. [Google Scholar] [CrossRef]
- Gautam, S.K.; Panda, S. Highly sensitive Cu-ethylenediamine/PANI composite sensor for NH3 detection at room temperature. Talanta 2023, 258, 124418. [Google Scholar] [CrossRef]
- Wang, P.; Tang, C.; Zhang, L.; Lu, Y.; Huang, F. Hierarchical 0D/1D/2D Au/PANI/WS2 ternary nanocomposite NH3 sensor with high performance and fast response/recovery for food spoilage detection. Chem. Eng. J. 2024, 496, 153998. [Google Scholar] [CrossRef]
- Pegu, B.; Konwar, M.; Sarma, D.; Konwer, S. Cu nanoparticle anchored highly conducting, reusable multifunctional rGO/PANI nanocomposite: A novel material for methanol sensor and a catalyst for click reaction. Synth. Met. 2024, 301, 117516. [Google Scholar] [CrossRef]
- Benhouhou, S.; Mekki, A.; Ayat, M.; Gabouze, N. Facile Preparation of PANI-Sr Composite Flexible Thin Film for Ammonia Sensing at Very Low Concentration. Macromol. Res. 2021, 29, 267–279. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, Y.; Zhang, H.; Lang, M.; Cheng, Y. Design of high-performance ternary ammonia gas sensors based on Au NPs hybrid PANI-TiO2 nanocomposites on flexible polyimide substrate. In Proceedings of the 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Intelligent Sensing Technologies and Applications, Chengdu, China, 14–17 June 2021; Volume 12075, pp. 90–103. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, W.; Lv, D.; Chen, W.; Song, W.; Tan, R. An enhanced flexible room temperature ammonia gas sensor based on GP-PANI/PVDF multi-hierarchical nanocomposite film. Sens. Actuators B Chem. 2021, 334, 129630. [Google Scholar] [CrossRef]
- Thangamani, G.J.; Deshmukh, K.; Nambiraj, N.A.; Pasha, S.K. Chemiresistive gas sensors based on vanadium pentoxide reinforced polyvinyl alcohol/polypyrrole blend nanocomposites for room temperature LPG sensing. Synth. Met. 2021, 273, 116687. [Google Scholar] [CrossRef]
- Mohammed, H.Y.; Birare, M.S.; Farea, M.A.; Murshed, M.N.; El Sayed, M.E.; Samir, A.; Dole, B.N.; Shirsat, M.D. Accelerated kinetics for room temperature carbon monoxide sensing enabled by silver chloride-modified protonated polyaniline/graphene oxide. Appl. Phys. A 2024, 130, 39. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Pal, R.; Vidhani, B. A novel gas sensor based on activated charcoal and polyaniline composites for selective sensing of methanol vapors. Sens. Actuators A Phys. 2023, 353, 114210. [Google Scholar] [CrossRef]
- Selvakumar, D.; Sonu, K.P.; Ramadoss, G.; Sivaramakrishnan, R.; Jayavel, R.; Eswaramoorthy, M.; Rao, K.V.; Pugazhendhi, A. Heterostructures of polyaniline and Ce–ZnO nanomaterial coated flexible PET thin films for LPG gas sensing at standard environment. Chemosphere 2023, 314, 137492. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Das, M.; Sarkar, D. Room temperature ammonia sensing by CdS nanoparticle decorated polyaniline (PANI) nanorods. Sens. Actuators A Phys. 2020, 310, 112071. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Xiao, Y.; Chen, T.; Xiao, X.; Wang, Y. Pt/MoS2/polyaniline nanocomposite as a highly effective room temperature flexible gas sensor for ammonia detection. ACS Appl. Mater. Interfaces 2023, 15, 9604–9617. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, N.; Jain, S.; Fernandes, R.; Shah, A.; Patil, U.; Shimpi, N.; Kothari, D. Enhanced sensing performance of an ammonia gas sensor based on Ag-decorated ZnO nanorods/polyaniline nanocomposite. ChemistrySelect 2023, 8, e202204284. [Google Scholar] [CrossRef]
- Rezaei, B.; Gholami, E.; Taromi, F.A.; Haghighi, A.H. In situ synthesis of long tubular water-dispersible polyaniline with core/shell gold and silver@ graphene oxide nanoparticles for gas sensor application. Heliyon 2024, 10, e26662. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.Y.; Mirzaei, A.; Nam, M.S.; Kim, H.W.; Kim, S.S. Room-temperature detection of acetone gas by PANI/NiO-loaded TiO2 nanoparticles under UV irradiation. Sens. Actuators B Chem. 2023, 374, 132850. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Liu, F.; Shi, J.; Gao, X.; Xu, H. Cu-Loaded Polyaniline-Coated MoO3 Nanowire Nanohybrids for High-Sensitivity NH3 Sensing at Room Temperature. ACS Appl. Nano Mater. 2023, 6, 17423–17432. [Google Scholar] [CrossRef]
- Yu, Y.H.; Lin, X.Y.; Teng, K.L.; Hu, C.C.; Wang, W.Y.; Hung, Y.H.; Tseng, H.Y.; Luo, K.H.; Yeh, J.M.; Lu, K.L.; et al. Semiconductive (Cu–S) n Metal–Organic Frameworks Hybrid Polyaniline Nanocomposites as Hydrogen Sulfide Gas Sensor. Surf. Interfaces 2024, 44, 103698. [Google Scholar] [CrossRef]
- Ali, Z.M.; Murshed, M.N.; El Sayed, M.E.; Samir, A.; Alsharabi, R.M.; Farea, M.O. A new fabrication strategy of Ag2O doped PANI as a highly stable and room temperature operable carbon monoxide gas sensor. Opt. Mater. 2023, 144, 114324. [Google Scholar] [CrossRef]
- Luo, M.; Xiong, D.; Huang, X.; Cai, S.; Li, S.; Jia, Z.; Gao, Z. V2CTx@PANI Nanocomposite as a Highly Effective Room Temperature Gas Sensor for Ammonia Detection. J. Alloys Compd. 2024, 176340. [Google Scholar] [CrossRef]
- Tang, B.; Shi, Y.; Liu, J.; Zheng, C.; Zhao, K.; Zhang, J.; Feng, Q. Low-Drift NO2 Sensor Based on Polyaniline/Black Phosphorus Composites at Room Temperature. Chemosensors 2024, 12, 181. [Google Scholar] [CrossRef]
Pollutants | Short-Term Exposure (STEL) | Long-Term Exposure (TWA) |
---|---|---|
Toluene | 300 ppm | 200 ppm |
Benzene | 5 ppm | 1 ppm |
Particulate Matter | - | 10 mg/m3 |
Ammonia | 35 ppm | 25 ppm |
Carbon Monoxide | 400 ppm | 50 ppm |
Hydrogen Sulfide | 15 ppm | 10 ppm |
Nitrogen Dioxide | 5 ppm | 5 ppm |
Sulfur Dioxide | 5 ppm | 2 ppm |
Carbon Dioxide | - | 5000 ppm |
Gas Sensor Type | Working Principle | Advantages | Disadvantages | Source |
---|---|---|---|---|
Catalytic Gas Sensor | Measures change in resistance due to catalytic reactions between gas molecules and a heated catalyst surface. |
|
| [7,8] |
Thermal Conductivity Gas Sensor | Measures changes in thermal conductivity between a reference gas and the target gas. |
|
| [38] |
Electrochemical Gas Sensor | Gas molecules cause electrochemical reactions at electrode surfaces, producing a current or voltage change. |
|
| [12] |
Optical Gas Sensor | Measures changes in light absorption, emission, or scattering caused by gas molecules. |
|
| [39] |
Infrared Gas Sensor | Measures changes in the absorption of infrared radiation by gas molecules. |
|
| [40] |
Semiconductor Gas Sensor | Gas molecules adsorb onto a semiconductor surface, changing its electrical conductivity. |
|
| [41] |
Acoustic Wave Gas Sensor | Gas molecules induce mechanical waves in a piezoelectric material, leading to changes in wave properties. |
|
| [42] |
Thin-Film Bulk Acoustic Resonator | Operates by converting electrical energy into mechanical energy using a piezoelectric thin film. |
|
| [43] |
Photoionization Detector | Uses UV light to ionize gas molecules, generating an electrical current proportional to the VOC concentration. |
|
| [26,27] |
Gas Chromatograph | Separates and measures gas mixture components by injecting a sample into a chromatographic column, where components are separated based on their interactions with the column material. |
|
| [29,30] |
Chemiresistor | Gas molecules adsorb onto a chemically sensitive film, changing its resistance. |
|
| [44,45] |
Sensing Material | Gas Analyte | Response/Concentration | tresponse | trecovery | LOD $ | WT * | Remarks | Reference |
---|---|---|---|---|---|---|---|---|
Cu-en/PANI | NH3 | 3.8% (100 ppm) | 100 s | 50 s | 2 ppm | RT ^ | Improved selectivity | [110] |
Au/PANI/WS2 | NH3 | 286.1% (100 ppm) | 24 s | 26 s | 13.8 ppb | RT | Fast response/recovery times and large response | [111] |
Cu-rGO/PANI | Methanol | 64.22% (500 ppm) | 30 s | 45 s | - | RT | Increased conductivity and sensitivity | [112] |
PANI-Sr | NH3 | 498% (100 ppm) | 1 s (50 ppm) | 42 s (50 ppm) | 0.013 ppm | RT | Quick response/recovery times | [113] |
Au-PANI-TiO2 | NH3 | 123% (100 ppm) | 32 s | 111 s | - | - | Improved response | [114] |
GP-PANI@RT | NH3 | 60% (1 ppm) | 46 s | 198 | 100 ppb | RT | Enhanced sensor flexibility | [115] |
PVA/WPPy/V2O5 | LPG | 1.16% (600 ppm) | 10 s | 8 s | - | RT | Excellent selectivity, sensitivity, and stability | [116] |
AgCl@PA-PANI/GO | CO | 19.5% (130 ppm) | 50 s | 39 S | - | RT | Enhanced sensitivity and shortened response/recovery time. | [117] |
PANI/AC | Methanol | 43% (200 ppm) | 25 s | 305 s | <1 ppm | RT | Enhanced stability and selectivity | [118] |
Ce–ZnO/PANI | LPG | 80% (100 ppm) | 157 s | 154 s | <30 ppm | RT | Enhanced response to LGP | [119] |
PANI-CdS | NH3 | 250% (100 ppm) | 58 s | 104 s | 14 ppm | RT | Excellent selectivity | [120] |
Pt/MoS2/PANI | NH3 | 16.64% (50 ppm) | 15 s | 103 s | 250 ppb | RT | Improved flexible sensor stability | [121] |
Ag-ZnO/Pani | NH3 | 50% (50 ppm) | 23 s | 58 s | <5 ppm | RT | Improved selectivity, response/recovery times | [122] |
Au15Ag15@GO/PANI | NO2 | 50% (50 ppm) | 431 s | 296 s | 0.3 | RT | Quick response/recovery times | [123] |
PANI/NiO-loaded TiO2 | Acetone | 1030% (50 ppm) | 150 s | 290 s | 175.2 ppb | RT | Excellent long-term stability | [124] |
Cu-PANI-MoO3 | NH3 | 17.11% (100 ppm) | 41 s | 179 s | 20 ppb | RT | Outstanding response/recovery times, repeatability, and selectivity | [125] |
(Cu–S)n MOF/PANI | H2S | 21.68% (30 ppm) | 15 s | 1155 s | 0.5 ppm | RT | Enhanced conductivity and sensor performance | [126] |
PANI/Ag2O | CO | 97% (100 ppm) | 37 s | 41 s | 2 ppm | RT | Improved stability (60 days) | [127] |
V2CTx@PANI | NH3 | 155.78% (100 ppm) | 22 s (15 ppm) | 15 s (15 ppm) | 5 ppm | RT | Improved long-term stability and selectivity | [128] |
PANI)/black phosphorus (BP) | NO2 | 2204% (60 ppm) | 98 s | 406 s | 2 ppm | RT | Improved response and drift issues | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masemola, C.M.; Moloto, N.; Tetana, Z.; Linganiso, L.Z.; Motaung, T.E.; Linganiso-Dziike, E.C. Advances in Polyaniline-Based Composites for Room-Temperature Chemiresistor Gas Sensors. Processes 2025, 13, 401. https://doi.org/10.3390/pr13020401
Masemola CM, Moloto N, Tetana Z, Linganiso LZ, Motaung TE, Linganiso-Dziike EC. Advances in Polyaniline-Based Composites for Room-Temperature Chemiresistor Gas Sensors. Processes. 2025; 13(2):401. https://doi.org/10.3390/pr13020401
Chicago/Turabian StyleMasemola, Clinton M., Nosipho Moloto, Zikhona Tetana, Linda Z. Linganiso, Tshwafo E. Motaung, and Ella C. Linganiso-Dziike. 2025. "Advances in Polyaniline-Based Composites for Room-Temperature Chemiresistor Gas Sensors" Processes 13, no. 2: 401. https://doi.org/10.3390/pr13020401
APA StyleMasemola, C. M., Moloto, N., Tetana, Z., Linganiso, L. Z., Motaung, T. E., & Linganiso-Dziike, E. C. (2025). Advances in Polyaniline-Based Composites for Room-Temperature Chemiresistor Gas Sensors. Processes, 13(2), 401. https://doi.org/10.3390/pr13020401