An Integrated Mathematical Model of Microbial Fuel Cell Processes: Bioelectrochemical and Microbiologic Aspects †
Abstract
:1. Introduction
2. MFC Integrated Model
2.1. Model Assumptions
2.2. Model Modification
- -a combined equation (from Equations (4)–(10)) describing Sa.
- -an equation in Sf, including the influent term for all COD components (Sa, Si, Sf, Xi, Xs):
- -an equation representing the lysis component for all microorganisms in the Xs and Xi mass balances, with addition of the washout coefficient for heterotrophs:
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Capodaglio, A.; Callegari, A.; Lopez, M. European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support. Sustainability 2016, 8, 298. [Google Scholar] [CrossRef]
- Raboni, M.; Viotti, P.; Capodaglio, A.G. A comprehensive analysis of the current and future role of biofuels for transport in the European Union (EU). Ambient. e Agu—Interdiscip. J. Appl. Sci. J. Appl. Sci. 2015, 10, 9–21. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Dondi, D. Microwave-Induced Pyrolysis for Production of Sustainable Biodiesel from Waste Sludges. Waste Biomass Valor. 2016, 7, 703–709. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Ranieri, E.; Torretta, V. Process enhancement for maximization of methane production in codigestion biogas plants. Manag. Environ. Qual. Int. J. 2016, 27, 289–298. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Feedstock and process influence on biodiesel produced from waste sewage sludge. J. Environ. Manag. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Molognoni, D.; Dallago, E.; Liberale, A.; Cella, R.; Longoni, P.; Pantaleoni, L. Microbial Fuel Cells for direct electrical energy recovery from urban wastewaters. Sci. World J. 2013, 2013, 634738. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Verstraete, W. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Rabaey, K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Shizas, I.; Bagley, D.M. Experimental Determination of Energy Content of Unknown Organics in Municipal Wastewater Streams. J. Energy Eng. 2004, 130, 45–53. [Google Scholar] [CrossRef]
- Puig, S.; Serra, M.; Coma, M.; Balaguer, M.D.; Colprim, J. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci. Technol. 2011, 64, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Puig, S.; Serra, M.; Coma, M.; Cabré, M.; Dolors Balaguer, M.; Colprim, J. Microbial fuel cell application in landfill leachate treatment. J. Hazard. Mater. 2011, 185, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues. Int. J. Hydrogen Energy 2017. [Google Scholar] [CrossRef]
- Cecconet, D.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: A review and future perspectives. J. Environ. Chem. Eng. 2017, 5, 3590–3603. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Hlavínek, P.; Raboni, M. Advances in wastewater nitrogen removal by biological processes: State of the art review. Ambient. e Agua—An Interdiscip. J. Appl. Sci. 2016, 11, 250. [Google Scholar] [CrossRef]
- Molognoni, D.; Devecseri, M.; Cecconet, D.; Capodaglio, A.G. Cathodic groundwater denitrification with a bioelectrochemical system. J. Water Process Eng. 2017, 19, 67–73. [Google Scholar] [CrossRef]
- Cecconet, D.; Devecseri, M.; Callegari, A.; Capodaglio, A.G. Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems. Sci. Total Environ. 2018, 613–614, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Pous, N.; Puig, S.; Dolors Balaguer, M.; Colprim, J. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem. Eng. J. 2015, 263, 151–159. [Google Scholar] [CrossRef]
- Kaur, A.; Boghani, H.C.; Michie, I.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Inhibition of methane production in microbial fuel cells: Operating strategies which select electrogens over methanogens. Bioresour. Technol. 2014, 173, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Molognoni, D.; Puig, S.; Balaguer, M.D.; Colprim, J. Role of Operating Conditions on Energetic Pathways in a Microbial Fuel Cell. Energy Procedia 2015, 74, 728–735. [Google Scholar] [CrossRef]
- Molognoni, D.; Puig, S.; Balaguer, M.D.; Capodaglio, A.G.; Callegari, A.; Colprim, J. Multiparametric control for enhanced biofilm selection in microbial fuel cells. J. Chem. Technol. Biotechnol. 2015, 91, 1720–1727. [Google Scholar] [CrossRef]
- Garg, A.; Vijayaraghavan, V.; Mahapatra, S.S.; Tai, K.; Wong, C.H. Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst. Appl. 2014, 41, 1389–1399. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Evaluation of modelling techniques for wastewater treatment plant automation. Water Sci. Technol. 1994, 30, 149–156. [Google Scholar]
- Raduly, B.; Gernaey, K.V.; Mikkelsen, P.S.; Capodaglio, A.G.; Henze, M. Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study. Environ. Model. Softw. 2007, 22, 1208–1216. [Google Scholar] [CrossRef]
- Zhang, X.; Halme, A. Modelling of a microbial fuel cell process. Biotechnol. Lett. 1995, 17, 809–814. [Google Scholar] [CrossRef]
- Kato Marcus, A.; Torres, C.I.; Rittmann, B.E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Picioreanu, C.; Head, I.M.; Katuri, K.P.; van Loosdrecht, M.C.M.; Scott, K. A computational model for biofilm-based microbial fuel cells. Water Res. 2007, 41, 2921–2940. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Choo, Y.F.; Kim, B.-H.; Wu, P. Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources 2010, 195, 79–89. [Google Scholar] [CrossRef]
- Pinto, R.P.; Srinivasan, B.; Manuel, M.F.; Tartakovsky, B. A two-population bio-electrochemical model of a microbial fuel cell. Bioresour. Technol. 2010, 101, 5256–5265. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.B.; Simões, M.; Melo, L.F.; Pinto, A.M.F.R. A 1D mathematical model for a microbial fuel cell. Energy 2013, 61, 463–471. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, C.M.; Marais, M.V.R. Activated sludge model no. 2d, ASM2d. Water Sci. Technol. 1999, 39, 165–182. [Google Scholar]
- Capodaglio, A.G.; Molognoni, D.; Callegari, A. Formulation And Preliminary Application Of An Integrated Model Of Microbial Fuel Cell Processes. In Proceedings of the 29th European Conference on Modelling and Simulation (ECMS 2015), Varna, Bulgaria, 26–29 May 2015. [Google Scholar]
- Potter, M.C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. B: Biol. Sci. 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Kim, B.H.; Park, D.H.; Shin, P.K.; Chang, I.S.; Kim, H.J. Mediator-Less Biofuel Cell. U.S. Patent 5,976,719, 2 November 1999. [Google Scholar]
- Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008, 26, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Regan, J.M. Microbial fuel cells—Challenges and applications. Environ. Sci. Technol. 2006, 40, 5172–5180. [Google Scholar] [CrossRef] [PubMed]
- Heijnen, J.J. Bioenergetics of Microbial Growth. In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation; Flickinger, M.C., Drew, S.D., Eds.; John Wiley & Sons: New York, NY, USA, 1999; pp. 267–291. [Google Scholar]
- Cecconet, D.; Molognoni, D.; Bolognesi, S.; Callegari, A.; Capodaglio, A.G. On the influence of reactor’s hydraulics on the performance of Microbial Fuel Cells. Bioresour. Technol. 2017. under review. [Google Scholar]
- Molognoni, D.; Puig, S.; Balaguer, M.D.; Liberale, A.; Capodaglio, G.; Callegari, A.; Colprim, J. Reducing start-up time and minimizing energy losses of Microbial Fuel Cells using Maximum Power Point Tracking strategy. J. Power Sources 2014, 269, 403–411. [Google Scholar] [CrossRef]
- Harremoës, P.; Capodaglio, A.G.; Hellström, B.G.; Henze, M.; Jensen, K.N.; Lynggaard-Jensen, A.; Otterpohl, R.; Søeberg, H. Wastewater Treatment Plants under Transient Loading—Performance, Modelling and Control. Water Sci. Technol. 1993, 27, 71–115. [Google Scholar]
- Picioreanu, C.; Katuri, K.P.; Head, I.M.; Van Loosdrecht, M.C.M.; Scott, K. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water. Sci. Technol. 2008, 57, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Vilà-Rovira, A.; Puig, S.; Balaguer, M.D.; Colprim, J. Anode hydrodynamics in Bioelectrochemical Systems. RSC Adv. 2015, 5, 78994–79000. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Yang, W.; Logan, B.E. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water Res. 2015, 80, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, J.; Battaglia, F.; He, Z. Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler-Volmer reactions. Chem. Eng. J. 2016, 296, 377–385. [Google Scholar] [CrossRef]
- Richardson, J.F.; Peacock, D.G. Flow Characteristics of Reactors. In Coulson & Richardson’s Chemical Engineering: Chemical & Biochemical Reactors & Process Control, 3rd ed.; Pergamon Press: London, UK, 1994; Volume 3. [Google Scholar]
Model | Compartment | Mediator | Species | Time Resolution | Space Resolution |
---|---|---|---|---|---|
Zhang e Halme,1995 [25] | Anodic | Yes | Single | Dynamic | 1D |
Kato Marcus et al., 2007 [26] | Anodic | No | Multiple | Dynamic | 1D |
Oliveira et al., 2013 [30] | Anodic/cathodic | No | Single | Steady st. | 1D |
Picioreanu et al., 2007 [27] | Anodic | Yes | Multiple | Dynamic | 3D |
Zheng et al., 2010 [28] | Anodic/cathodic | No | Single | Dynamic/Steady st. | 1D |
Pinto et al., 2010 [29] | Anodic | Yes | multiple | Dynamic | 1D |
Capodaglio et al., 2015 [32] | Anodic | Yes | Multiple | Dynamic | 1D |
Coefficient | Descriptive Equation |
---|---|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodaglio, A.G.; Cecconet, D.; Molognoni, D. An Integrated Mathematical Model of Microbial Fuel Cell Processes: Bioelectrochemical and Microbiologic Aspects. Processes 2017, 5, 73. https://doi.org/10.3390/pr5040073
Capodaglio AG, Cecconet D, Molognoni D. An Integrated Mathematical Model of Microbial Fuel Cell Processes: Bioelectrochemical and Microbiologic Aspects. Processes. 2017; 5(4):73. https://doi.org/10.3390/pr5040073
Chicago/Turabian StyleCapodaglio, Andrea G., Daniele Cecconet, and Daniele Molognoni. 2017. "An Integrated Mathematical Model of Microbial Fuel Cell Processes: Bioelectrochemical and Microbiologic Aspects" Processes 5, no. 4: 73. https://doi.org/10.3390/pr5040073
APA StyleCapodaglio, A. G., Cecconet, D., & Molognoni, D. (2017). An Integrated Mathematical Model of Microbial Fuel Cell Processes: Bioelectrochemical and Microbiologic Aspects. Processes, 5(4), 73. https://doi.org/10.3390/pr5040073