An Efficient Solitary Senior Citizens Care Algorithm and Application: Considering Emotional Care for Big Data Collection
Abstract
:1. Introduction
2. Background of Research
3. Related Research
3.1. ADL (Activities of Daily Living)
3.2. Senior Citizens Care
- -
- The proposed IoT-integrated, power-consumption-monitoring model utilizes the PLC technology instead of existing wired/wireless communication technology to avoid additional installation costs involving manpower and equipment.
- -
- This system emphasizes ‘emotional care’ of solitary senior citizens rather than just monitoring their current situation.
- -
- Besides the cost-effectiveness and the efficiency of the system, its scalability and flexibility allow it to be used for the other applications.
- -
- For the above reasons, a successful commercialization can be expected.
4. Design of Target System for Single-Living Senior Citizens Care Installation Environment
5. The Framework of Solitary Senior Citizens Care: Considering Emotional Care
6. Java Android UML and Application
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanus, J.; Koziorek, J.; Hercik, R. Design of a Smart Building Control with view to the Senior Citizens’ needs. In Proceedings of the 12th IFAC Conference on Programmable Devices and Embedded Systems, the International Federation of Automatic Control, Velke Karlovice, Czech Republic, 25–27 September 2013; pp. 422–427. [Google Scholar]
- Huh, J.-H. A Framework and Test Bed for the Single-Living Senior Citizens Care: Access and Grave site Monitorings. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems (ICCAS 2016), Gyeongju, Korea, 16–19 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Demiris, G.; Rantz, M.; Aud, M.; Marek, K.; Tyrer, H.; Skubic, M.; Hussam, A. Older adults’ attitudes towards and perceptions of ‘Smart Home’ technologies: A pilot study. Med. Inform. Internet Med. 2004, 29, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pattenden, S. CENELEC: Smart House Code of Practice; CWA 50487. Ref. No. CLC/TR; Bruxelles, Belgium, 2005; pp. 50–87. Available online: https://dokumen.tips/documents/cenelec-smarthouse-code-of-practice.html (accessed on 7 November 2018).
- Zálešák, M. Řízení systémů tvorby prostředí—součást integrovaných řídicích systémů budov (I). Portál TZBinfo.: 2008. Available online: https://www.tzb-info.cz/4421-rizeni-systemu-tvorby-prostredi-soucast-integrovanych-ridicich-systemu-budov-i (accessed on 7 November 2018).
- Demiris, G. Privacy and Social Implications of Distinct Sensing Approaches to Implementing Smart Homes for Older Adults. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 4311–4314. [Google Scholar]
- Koch, S.; Hagglund, M. Health informatics and the delivery of care to older people. Maturitas 2009, 63, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Kim, N.; Seo, K. A Study of Power Line Communication-based Smart Outlet System Expandable at Home. J. Korea Multimed. Soc. 2016, 19, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.H.; Seo, K. Design and Implementation of the Basic Technology for Solitary Senior Citizen’s Lonely Death Monitoring System using PLC. J. Korea Multimed. Soc. 2015, 18, 742–752. [Google Scholar] [CrossRef]
- Huh, J.H.; Kim, N.; Seo, K. Design and Implementation of Mobile Medication-Hour Notification System with Push Service Function. Int. J. Appl. Eng. Res. 2016, 11, 1225–1231. [Google Scholar]
- Census Bureau. The Nation’s Older Population is Still Growing; Census Bureau Reports; Census Bureau: Suitland, MD, USA, 2017. Available online: https://www.census.gov/newsroom/press-releases/2017/cb17-100.html (accessed on 7 November 2018).
- Eurostat, Population Structure and Ageing. 2017. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing (accessed on 27 August 2018).
- Administration on Aging, a Profile of Older American. 2013. Available online: http://www.aoa.acl.gov/Aging_Statistics/Profile/2013/docs/2013_Profile.pdf (accessed on 27 August 2018).
- Williams, C.M. Healthy aging and assessing older adults. In Current Diagnosis & Treatment in Family Medicine, 3rd ed.; South-Paul, J.E., Matheny, S.C., Lewis, E.L., Eds.; The McGraw-Hill Companies: New York, NY, USA, 2011. [Google Scholar]
- Hardy, S.E. Consideration of function & functional decline. In Current Geriatric Diagnosis and Treatment, 2nd ed.; Williams, B.A., Chang, A., Ahalt, C., Chen, H., Conant, R., Landefeld, C.S., Ritchie, C., Yukawa, M., Eds.; McGraw-Hill: New York, NY, USA, 2014; pp. 3–4. [Google Scholar]
- Katz, S. Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 1983, 31, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Roley, S.S.; DeLany, J.V.; Barrows, C.J.; Brownrigg, S.; Honaker, D.; Sava, D.I.; Talley, V.; Voelkerding, K.; Amini, D.A.; Smith, E.; et al. Occupational therapy practice framework: Domain & process. Am. J. Occup. Ther. 2008, 62, 625–683. [Google Scholar] [PubMed]
- Foti, D.I.; Koketsu, J.S. Activities of daily living. In Pedretti’s Occupational Therapy: Practical Skills for Physical Dysfunction; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013; pp. 157–232. [Google Scholar]
- De Werd, M.M.; Boelen, D.; Rikkert, M.G.; Kessels, R.P. Development and evaluation of a clinical manual on errorless learning in people with dementia. Brain Impair. 2015, 16, 52–63. [Google Scholar] [CrossRef]
- Votruba, K.L.; Persad, C.; Giordani, B. Patient mood and instrumental activities of daily living in Alzheimer disease. J. Geriatr. Psychiatry Neurol. 2015, 28, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Giebel, C.M.; Sutcliffe, C.; Challis, D. Activities of daily living and quality of life across different stages of dementia: A UK study. Aging Ment. Health 2015, 19, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Federal Interagency Forum on Aging-Related Statistics. Older Americans 2016: Key Indicators of Well-Being; Federal Interagency Forum on Aging Related Statistics: Washington, DC, USA, 2016.
- Jekel, K.; Damian, M.; Wattmo, C.; Hausner, L.; Bullock, R.; Connelly, P.J.; Dubois, B.; Eriksdotter, M.; Ewers, M.; Graessel, E.; et al. Mild cognitive impairment and deficits in instrumental activities of daily living: A systematic review. Alzheimers. Res. Ther. 2015, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, T.G.; Gleason, L.J.; Wong, B.; Habtemariam, D.; Jones, R.N.; Schmitt, E.M.; de Rooij, S.E.; Saczynski, J.S.; Gross, A.L.; Bean, J.F.; et al. Inouye, Cognitive and physical demands of activities of daily living in older adults: Validation of expert panel ratings. PM&R 2015, 7, 727–735. [Google Scholar]
- Singh, I.; Varanasi, A.; Williamson, K. Assessment and management of dementia in the general hospital setting. Rev. Clin. Gerontol. 2014, 24, 205–218. [Google Scholar] [CrossRef]
- Chung, J.; Ozkaynak, M.; Demiris, G. Examining daily activity routines of older adults using workflow. J. Biomed. Inform. 2017, 71, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Cook, D.; Riva, G. Ambient intelligence for health environments. J. Biomed. Inform. 2016, 64, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.M.; Rodrigues, J.J.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K. Mobile-health: A review of current state in 2015. J. Biomed. Inform. 2015, 56, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.; et al. Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the 2010 Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010; pp. 233–240. [Google Scholar]
- Emi, I.A.; Stankovic, J.A. SARRIMA: Smart ADL recognizer and resident identifier in multi-resident accommodations. In Proceedings of the Conference on Wireless Health—WH’15, Bethesda, MD, USA, 14–16 October 2015; ACM Press: New York, NY, USA, 2015; pp. 1–8. [Google Scholar]
- Krishnan, N.C.; Cook, D.J. Activity recognition on streaming sensor data. Pervasive Mob. Comput. 2014, 10, 138–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safi, K.; Mohammed, S.; Attal, F.; Khalil, M.; Amirat, Y. Recognition of different daily living activities using Hidden Markov Model regression. In Proceedings of the 2016 3rd Middle East Conference on Biomedical Engineering (MECBME), Beirut, Lebanon, 6–7 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 16–19. [Google Scholar]
- Gong, J.; Rose, K.M.; Emi, I.A.; Specht, J.P.; Hoque, E.; Fan, D.; Dandu, S.R.; Dickerson, R.F.; Perkhounkova, Y.; Lach, J.; et al. Home wireless sensing system for monitoring nighttime agitation and incontinence in patients with Alzheimer’s disease. In Proceedings of the Conference on Wireless Health—WH’15, Bethesda, MD, USA, 14–16 October 2015; ACM Press: New York, NY, USA, 2015; pp. 1–8. [Google Scholar]
- Flores-Vazquez, C.; Aranda, J. Human activity recognition from object interaction in domestic scenarios. In Proceedings of the 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 12–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar] [Green Version]
- Debes, C.; Merentitis, A.; Sukhanov, S.; Niessen, M.; Frangiadakis, N. A Bauer, Monitoring activities of daily living in smart homes: Understanding human behavior. IEEE Signal Process. Mag. 2016, 33, 81–94. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, H.; Brown, R. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care. J. Biomed. Inform. 2018, 84, 148–158. [Google Scholar] [CrossRef] [PubMed]
- KERI. Available online: http://www.keri.re.kr/ (accessed on 27 August 2018).
- Honey HomMed. Available online: http://www.hommed.com/ (accessed on 27 August 2018).
- Virone, G. Assessing everyday life behavioral rhythms for the older generation. Pervasive Mob. Comput. 2008, 5, 606–622. [Google Scholar] [CrossRef]
- Virone, G.; Noury, N.; Demongeot, J. A system for automatic measurement of circadian activity deviations in telemedicine. IEEE Trans. Biomed. Eng. 2002, 49, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Virone, G.; Alwan, M.; Dalal, S.; Kell, S.W.; Turner, B.; Stankovic, J.A.; Felder, R. Behavioral patterns of older-adults in assisted living. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W. A Circadian Life Pattern Modeling and Anomaly Detection Method for Elders Living Alone. J. KIISE Comput. Pract. Lett. 2011, 17, 399–406. [Google Scholar]
- Jang, I.H.; Sim, K.B. Ring-type Heart Rate Sensor and Monitoring system for Sensor Network Application. J. Korean Inst. Intell. Syst. 2007, 17, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.G.; Cheon, D.J.; Yoon, G.W. Telemonitoring System of Fall Detection for the Elderly. J. Sens. Sci. Technol. 2011, 20, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Kim, N. Development of an Emergency Monitoring Device in a Wrist Watch. J. Korean Inst. Inf. Technol. 2010, 8, 9–17. [Google Scholar]
- So, I.M.; Jung, S.T. A Study on the Recognition System of Faint Situation based on Bimodal Information. J. Korea Multimed. Soc. 2010, 13, 225–236. [Google Scholar]
- Song, D.H.; Chang, D.J.; Kang, S.H. Development of Lavatory Emergency Detection System using Sensors in Train. J. Korean Soc. Railw. 2011, 14, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.B.; Park, H.J.; Kim, E.H. A Study on the Protection System for Elderly People Living Alone using Sensor Network. Korea Inf. Process. Soc. 2008, 15, 561–564. [Google Scholar]
- Lee, H.J.; Kang, S.J.; Jang, H.G.; Jeong, C.W.; Joo, S.C. Implementation of u-Care System Based on Multi-Sensor in u-Home Environment. J. Korean Soc. Internet Inf. 2011, 12, 135–147. [Google Scholar]
- Park, S.H.; Seo, Y.K.; Heo, C.Y.; Jung, S.Y. The Implementation of Emergency Rescue Terminal for the Senior. J. Korea Multimed. Soc. 2012, 15, 195–197. [Google Scholar]
- Choi, J.-H. A Silver Life Care System using USN. J. Korean Inst. Inf. Technol. 2008, 6, 37–45. [Google Scholar]
- Ko, J.; Shim, J.; Kim, H. Recognition system for emergency situation using Elderly Life Pattern Monitering. J. Korea Contents Assoc. 2012, 15, 443–445. [Google Scholar]
- Ko, J.; Kim, H. A Study on the Monitoring System for Emergency Recognition of Elderly People Living Alone. J. KIIT 2014, 12, 61–68. [Google Scholar] [CrossRef]
- Huh, J.H.; Koh, T.; Seo, K. A Design of Foundation Technology for PLC-based Smart-grave (Tumulus) System. J. Korea Multimed. Soc. 2015, 18, 1319–1331. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huh, J.-H. An Efficient Solitary Senior Citizens Care Algorithm and Application: Considering Emotional Care for Big Data Collection. Processes 2018, 6, 244. https://doi.org/10.3390/pr6120244
Huh J-H. An Efficient Solitary Senior Citizens Care Algorithm and Application: Considering Emotional Care for Big Data Collection. Processes. 2018; 6(12):244. https://doi.org/10.3390/pr6120244
Chicago/Turabian StyleHuh, Jun-Ho. 2018. "An Efficient Solitary Senior Citizens Care Algorithm and Application: Considering Emotional Care for Big Data Collection" Processes 6, no. 12: 244. https://doi.org/10.3390/pr6120244
APA StyleHuh, J. -H. (2018). An Efficient Solitary Senior Citizens Care Algorithm and Application: Considering Emotional Care for Big Data Collection. Processes, 6(12), 244. https://doi.org/10.3390/pr6120244