Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data preparation
2.3. Classification of Urbanization
2.4. Detection of Land Use Changes
2.5. Assessment of Carbon Storage
3. Results
3.1. Urbanization in the Su-Xi-Chang Region
3.2. Land Use Changes
3.3. Carbon Storage Changes
3.3.1. Changes in the Amount of Carbon Storage from 1990–2018
3.3.2. Spatial Heterogeneity of Carbon Storage Changes
3.4. Influence of Land Use Change on Carbon Storage
4. Discussion
4.1. Spatiotemporal Changes in Carbon Storage Due to Urbanization
4.2. Comparison of Assessment Methods
4.3. Implications
4.4. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Pagiola, S. Payments for environmental services in Costa Rica. Ecol. Econ. 2008, 65, 712–724. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef]
- Kashiwagi, H. Atmospheric carbon dioxide and climate change since the Late Jurassic (150 Ma) derived from a global carbon cycle model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 454, 82–90. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef]
- Swetnam, R.D.; Fisher, B.; Mbilinyi, B.P.; Munishi, P.K.T.; Willcock, S.; Ricketts, T.; Mwakalila, S.; Balmford, A.; Burgess, N.D.; Marshall, A.R.; et al. Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. J. Environ. Manag. 2011, 92, 563–574. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecology: Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef] [PubMed]
- Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst. Environ. 2008, 127, 251–264. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuai, X.; Huang, X.; Lu, Q.; Zhang, M.; Zhao, R.; Lu, J. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.; Fath, B.D. Review of spatial analysis of urban carbon metabolism. Ecol. Model. 2018, 371, 18–24. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Chang. 2018, 53, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Shen, G.; Zhai, C. Changes in spatio-temporal patterns of urban forest and its above-ground carbon storage: Implication for urban CO2 emissions mitigation under China’s rapid urban expansion and greening. Environ. Int. 2019, 129, 438–450. [Google Scholar] [CrossRef]
- Liu, R.; Wang, M.; Chen, W. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc. Urban. Plan. 2018, 169, 241–249. [Google Scholar] [CrossRef]
- Raciti, S.M.; Hutyra, L.R.; Newell, J.D. Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods. Sci. Total Environ. 2014, 500, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Pan, S.; Liu, M.; Lockaby, G.; Schilling, E.B.; Stanturf, J. Effects of forest regrowth and urbanization on ecosystem carbon storage in a rural-urban gradient in the southeastern United States. Ecosystems 2008, 11, 1211–1222. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.-X.; Yang, R. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example. Sci. Total Environ. 2018, 635, 26–34. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, W.; Wu, X.; Jim, C.Y.; Wang, X.; Liu, Y. Dominant control of climate variations over land-use change on net primary productivity under different urbanization intensities in Beijing, China. Acta Ecol. Sin. 2019, 39, 416–424. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Ochoa, V.; Urbina-Cardona, N. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosyst. Serv. 2017, 26, 155–169. [Google Scholar] [CrossRef]
- Sharp, E.R.; Chaplin-kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Authors, C.; Nelson, E.; Ennaanay, D.; Wolny, S.; et al. VEST + VERSION + User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Gland, Switzerland, 2015. [Google Scholar]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Li, F.; Liu, X.; Zhao, D.; Sun, X.; Xu, L. Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecol. Model. 2015, 318, 210–216. [Google Scholar] [CrossRef]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Mller, F.; Li, B.; Kroll, F. Urban-rural gradients of ecosystem services and the linkages with socioeconomics. Landsc. Online 2015, 39, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural—Urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Radford, K.G.; James, P. Changes in the value of ecosystem services along a rural—Urban gradient: A case study of Greater Manchester, UK. Landsc. Urban Plan. 2013, 109, 117–127. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, Y.; Yang, G.; Ou, W.; Pueppke, S.; Sun, X.; Chen, G.; Tao, Q. Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections. Land Use Policy 2019, 85, 419–427. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Xie, W.; Huang, Q.; He, C.; Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A case study in Beijing, China. Ecol. Indic. 2018, 84, 183–193. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the effects of urban expansion on terrestrial carbon storage: A case study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Qu, L. Effect of land-centered urbanization on rural development: A regional analysis in China. Land Use Policy 2019, 87, 104072. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, Y.; Jiang, G. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- United Nations Paris Agreement on Climate Change; United Nations Framework Convention on Climate Change: Le Bourget, France, 2015.
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Stuart Chapin, F. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liu, Y.; Wu, X.; Dong, G. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: Implications for building a new countryside in coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Yirsaw, E.; Wu, W.; Shi, X.; Temesgen, H.; Bekele, B. Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region. Sustainability 2017, 9, 1204. [Google Scholar] [CrossRef]
- Wei, Y.D. Beyond the Sunan model: Trajectory and underlying factors of development in Kunshan, China. Environ. Plan. A 2002, 34, 1725–1747. [Google Scholar]
- Xie, Y.; Batty, M.; Zhao, K. Simulating emergent urban form using agent-based modeling: Desakota in the Suzhou-Wuxian Region in China. Ann. Assoc. Am. Geogr. 2007, 97, 477–495. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Xiang, H.; Jia, M.; Wang, Z.; Li, L.; Mao, D.; Zhang, D.; Cui, G.; Zhu, W. Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia. Chin. Geogr. Sci. 2018, 28, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Chuai, X.; Zhang, M.; Liang, H.; Li, J.; Zuo, T. Spatio-temporal analysis of land-Use change and the impact on terrestrial ecosystems carbon storage in Yangtze river city group. Resour. Environ. Yangtze Basin 2019, 28, 261–280. [Google Scholar]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Bocco, G.; Mendoza, M.; Duhau, E.; Lo, E. Predicting land-cover and land-use change in the urban fringe A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar]
- Bai, X.; Chen, J.; Shi, P. Landscape urbanization and economic growth in China: Positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 2012, 46, 132–139. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landsc. Urban. Plan. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Fei, X. Small town, big issue. In Proceedings of the Seminar on Small Towns in Jiangsu Province, Nanjing, China, 21 September 1983. [Google Scholar]
- Pan, Y.; Luo, T.; Birdsey, R.; Hom, J.; Melillo, J. New estimates of carbon storage and sequestration in China’S forests: Effects of age-class and method on inventory-based carbon estimation. Clim. Chang. 2004, 67, 211–236. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Z.; Wu, H.; Kahmann, J.A.; Oldfield, F. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Glob. Biogeochem. Cycles 2009, 23, 1–11. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef] [PubMed]
Conditions | Urbanization Levels |
---|---|
and | Developed urban area |
and , | Developing urban area |
and , | Rural area |
Land Use Types | Sources | ||||
---|---|---|---|---|---|
Cultivated land | 13.1 | 2.5 | 35.0 | 0 | [57,58] |
Forest | 19.4 | 3.9 | 35.7 | 1.9 | [57,58] |
Grassland | 2.1 | 9 | 34.5 | 0.1 | [57,58] |
Water area | 0.6 | 0 | 38.5 | 0 | [57,58] |
Built-up area | 1.1 | 0 | 37.3 | 0 | [57,58] |
Unused land | 0.1 | 0 | 34.6 | 0 | [57,58] |
1990 | Proportion | 2000 | Proportion | 2010 | Proportion | 2015 | Proportion | |
---|---|---|---|---|---|---|---|---|
Developed urban area | 70.90 | 6% | 161.14 | 10% | 179.13 | 8% | 141.07 | 6% |
Developing urban area | 729.17 | 57% | 881.02 | 56% | 1354.49 | 63% | 1412.05 | 64% |
Rural area | 447.33 | 37% | 524.57 | 33% | 623.29 | 29% | 667.82 | 30% |
Total | 1274.40 | 1566.74 | 2156.91 | 2220.95 |
Land Use | 2000 | |||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Water Area | Built-Up Area | Unused Land | Transfer-Out Area | ||
1990 | Cultivated land | 1,038,847 | 5177 | 234 | 23,395 | 127,338 | 21 | 156,165 |
Forest | 4638 | 94,579 | 104 | 704 | 3117 | 124 | 8687 | |
Grassland | 204 | 68 | 3873 | 280 | 159 | 2 | 713 | |
Water area | 11,723 | 610 | 406 | 481,568 | 1973 | 28 | 14,740 | |
Built-up area | 18,688 | 471 | 20 | 854 | 125,072 | 4 | 20,037 | |
Unused land | 24 | 27 | 3 | 54 | 19 | 625 | 127 | |
Transfer-in area | 35,277 | 6353 | 767 | 25,287 | 132,606 | 179 | ― |
Land Use | 2010 | |||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Water Area | Built-up Area | Unused Land | Transfer-Out Area | ||
2000 | Cultivated land | 810,139 | 3125 | 25 | 40,403 | 219,412 | 1379 | 264,344 |
Forest | 550 | 96,208 | 0 | 432 | 2012 | 1900 | 4894 | |
Grassland | 85 | 10 | 3596 | 595 | 237 | 117 | 1044 | |
Water area | 3052 | 42 | 51 | 494,152 | 9914 | 1 | 13,060 | |
Built-up area | 5993 | 257 | 1 | 2595 | 248,444 | 410 | 9256 | |
Unused land | 0 | 42 | 0 | 29 | 94 | 643 | 165 | |
Transfer-in area | 9680 | 3476 | 77 | 44,054 | 231,669 | 3807 | ― |
Land Use | 2018 | |||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Water Area | Built-Up Area | Unused Land | Transfer-Out Area | ||
2010 | Cultivated land | 769,440 | 0 | 387 | 2680 | 47,263 | 49 | 50,379 |
Forest | 16 | 98,493 | 375 | 108 | 679 | 13 | 1191 | |
Grassland | 145 | 0 | 3233 | 47 | 248 | 0 | 440 | |
Water area | 11,495 | 0 | 6830 | 512,206 | 7646 | 29 | 26,000 | |
Built-up area | 3694 | 0 | 185 | 506 | 475,728 | 0 | 4385 | |
Unused land | 123 | 0 | 40 | 44 | 714 | 3529 | 921 | |
Transfer-in area | 15,473 | 0 | 7817 | 3385 | 56,550 | 91 | ― |
1990 | 2000 | 2010 | 2018 | 1990–2000 | 2000–2010 | 2010–2018 | |
---|---|---|---|---|---|---|---|
Whole study area | 91.97 | 90.46 | 87.32 | 86.92 | −1.51 | −3.14 | −0.40 |
Suzhou | 44.12 | 43.40 | 41.55 | 41.41 | −0.72 | −1.85 | −0.14 |
Wuxi | 24.33 | 23.90 | 23.20 | 23.10 | −0.43 | −0.70 | −0.10 |
Changzhou | 23.52 | 23.16 | 22.57 | 22.41 | −0.36 | −0.59 | −0.16 |
Land Use Type Conversion | Area (107 ha) | Changes in Carbon Storage (Gg C) |
---|---|---|
Cultivated land to built-up area | 109.49 | −1334.51 |
Cultivated land to water area | 11.45 | −131.57 |
Forest to built-up area | 2.44 | −54.90 |
Water area to built-up area | 0.60 | −0.42 |
Water area to cultivated land | 0.43 | 4.94 |
Land Use Type Conversion | Area (107 ha) | Changes in Carbon Storage (Gg C) |
---|---|---|
Cultivated land to built-up area | 219.41 | −2674.41 |
Cultivated land to water area | 40.40 | −464.19 |
Water area to built-up area | 9.91 | −6.94 |
Built-up area to cultivated land | 5.99 | 73.05 |
Cultivated land to forest | 3.13 | 32.16 |
Water area to cultivated land | 3.05 | 35.06 |
Land Use Type Conversion | Area (107 ha) | Changes in Carbon Storage (Gg C) |
---|---|---|
Cultivated land to built-up area | 47.26 | −576.08 |
Water area to cultivated land | 11.50 | 132.07 |
Water area to built-up area | 7.65 | −5.35 |
Water area to grassland | 6.83 | 45.28 |
Built-up area to cultivated land | 3.69 | 45.01 |
Cultivated land to water area | 2.68 | −30.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Xu, L.; Zheng, H.; Chen, J. Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes 2019, 7, 836. https://doi.org/10.3390/pr7110836
Fu Q, Xu L, Zheng H, Chen J. Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes. 2019; 7(11):836. https://doi.org/10.3390/pr7110836
Chicago/Turabian StyleFu, Qi, Liangliang Xu, Hongyu Zheng, and Jinhua Chen. 2019. "Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China" Processes 7, no. 11: 836. https://doi.org/10.3390/pr7110836
APA StyleFu, Q., Xu, L., Zheng, H., & Chen, J. (2019). Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes, 7(11), 836. https://doi.org/10.3390/pr7110836