Assessment of the Toxicity of Natural Oils from Mentha piperita, Pinus roxburghii, and Rosa spp. Against Three Stored Product Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Preparation of the Essential Oils
2.2. GC-MS Analysis of the Oils
2.3. Insect Culture
2.4. Contact Toxicity Bioassay
2.5. Fumigation Toxicity Bioassay
3. Results
3.1. Chemical Composition of the Oils
3.2. Contact and Fumigant Toxicity Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Phillips, T.W.; Throne, J.E. Biorational approaches to managing stored product insects. Annu. Rev. Ent. 2010, 55, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.K.; Subramanyam, B. Botanicals. In Alternatives to Pesticides in Stored Product IPM, Kluwer Academic Publishers; Subramanyam, B., Hagstrum, D.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 303–320. [Google Scholar]
- Madrid, F.J.; White, N.D.G.; Loschiavo, S.R. Insects in stored cereals, and their association with farming practices in southern Manitoba. Canad. Entomol. 1990, 122, 515–523. [Google Scholar] [CrossRef]
- Robinson, W. Coleoptera. Handbook of Urban Insects and Arachnids; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Via, S. Cannibalism facilitates the use of a novel environment in the flour beetle. Tribolium Castaneum Hered. 1999, 82, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Lee, S.G.; Choi, D.H.; Park, J.D.; Ahn, Y.J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtuse against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J. Stor. Prod. Res. 2003, 39, 375–384. [Google Scholar] [CrossRef]
- Kljajic, P.; Peric, I. Susceptibility to contact insecticides of granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) originating from different locations in the former Yugoslavia. J. Stor. Prod. Res. 2006, 42, 149–161. [Google Scholar] [CrossRef]
- Subramanyam, B.; Hagstrum, D.W. Resistance measurement and management. In Integrated Managements of Insects in Stored Products; Subramanyam, B., Hagstrum, D.W., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 331–339. [Google Scholar]
- Okonkwo, E.U.; Okoye, W.J. The efficacy of four seed powders and the essential oils as protectants of cowpea and maize grain against infestation by Callosobruchus maculates (Fabricius) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in Nigeria. Inter. J. Pest Managem. 1996, 42, 143–146. [Google Scholar]
- Lee, S.E.; Kim, J.E.; Lee, H.S. Insecticide resistance in increasing interest. Agric. Chem. Biotechnol. 2001, 44, 105–112. [Google Scholar]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Ayvaz, A.; Karaborklu, S.; Sagdic, O. Fumigant toxicity of five essential oils against the eggs of Ephestia kuehniella Zeller. and Plodia interpunctella (Hübner.) (Lepidoptera: Pyralidae). Asian J. Chem. 2009, 21, 596–604. [Google Scholar]
- Hamad, Y.K.; Abobakr, Y.; Salem, M.Z.M.; Ali, H.M.; Al-Sarar, A.S.; Al-Zabib, A.A. Activity of plant extracts/essential oils against some plant pathogenic fungi and mosquitoes: GC/MS analysis of bioactive compounds. BioResources 2019, 14, 4489–4511. [Google Scholar]
- Abdelgaleil, S.A.; Mohamed, M.I.; Shawir, M.S.; Abou-Taleb, H.K. Chemical composition, insecticidal and biochemical effects of essential oils of different plant species from Northern Egypt on the rice weevil, Sitophilus oryzae L. J. Pest Sci. 2016, 89, 219–229. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Salem, M.Z.M.; Ali, H.M.; Mackled, M.I.; EL-Hefny, M.; Elshikh, M.S.; Hatamleh, A.A. Morphological, biochemical, molecular, and oil toxicity properties of Taxodium trees from different locations. Ind. Crops Prod. 2019, 139, 111515. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Álvarez-García, S.; González-López, Ó.; Da Silva, F.; Casquero, P.A. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris L.). Insects 2019, 10, 151. [Google Scholar] [CrossRef]
- Mohamadi, M.; Shamspur, T.; Mostafai, A. Comparison of microwave-assistant distillation and conventional hydrodistillation in the essential oil extraction of flowers Rosa damascena Mill. J. Essent. Oil Res. 2013, 25, 55–61. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Deans, S.G.; Eaglesham, E. Relationship between bioactivity and chemical composition of commercial essential oils. Flavour Frag. J. 1998, 13, 98–104. [Google Scholar] [CrossRef]
- Rojas-Grau, M.A.; Avena-Bustillos, R.J.; Olsen, C.; Friedman, M.; Henika, P.R.; Martın-Belloso, O.; Pan, Z.; McHugh, T.H. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. J. Food Eng. 2007, 81, 634–641. [Google Scholar] [CrossRef]
- Başer, K.H.C. Turkish rose oil. Perfum. Flavor. 1992, 17, 45–52. [Google Scholar]
- Almasirad, A.; Amanzadeh, Y.; Taheri, A. Composition of a historical rose oil sample (Rosa damascena Mill., Rosaceae). J. Essent. Oil Res. 2007, 19, 110–112. [Google Scholar] [CrossRef]
- Baldermann, S.; Yang, Z.; Sakai, M.; Fleischmann, P.; Watanabe, N. Volatile constituents in the scent of roses. Floricult. Ornament. Biotechnol. 2009, 3, 89–97. [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Singh, A.; Yadav, A.K. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills. Nat. Prod. Res. 2011, 25, 1577–1584. [Google Scholar] [CrossRef]
- Oka, N.; Ohishi, H.; Hatano, T.; Hornberger, M.; Sakata, K.; Watanabe, N. Aroma evolution during flower opening in Rosa damascena Mill. Z. Nat. C 1999, 54, 889–895. [Google Scholar] [CrossRef]
- Watanabe, S.; Hashimoto, I.; Hayashi, K.; Yagi, K.; Asai, T.; Knapp, H.; Straubinger, M.; Winterhalter, P.; Watanabe, N. Isolation and Identification of 2-Phenylethyl Disaccharide Glycosides and Mono Glycosides from Rose Flowers, and Their Potential Role in Scent Formation. Biosci. Biotechnol. Biochem. 2001, 65, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Areias, F.M.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Seabra, R.M. Phenolic fingerprint of peppermint leaves. Food Chem. 2001, 73, 307–311. [Google Scholar] [CrossRef]
- Lv, J.; Huang, H.; Yu, L.; Whent, M.; Niu, Y.; Shi, H.; Wang, T.T.Y.; Luthria, D.; Charles, D.; Yu, L.L. Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem. 2012, 132, 1442–1450. [Google Scholar] [CrossRef]
- Ciobanu, A.; Mallard, I.; Landy, D.; Brabie, G.; Nistor, D.; Fourmentin, S. Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chem. 2013, 138, 291–297. [Google Scholar] [CrossRef]
- Maffei, M.; Camusso, W.; Sacco, S. Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry 2001, 58, 703–707. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1255. [Google Scholar] [CrossRef]
- Başer, K.H.C.; Kürkçüoglu, M.; Tarimcilar, G.; Kaynak, G. Essential Oils of Mentha Species from Northern Turkey. J. Ess. Oil Res. 1999, 11, 579–588. [Google Scholar] [CrossRef]
- Elansary, H.O.; Ashmawy, N.A. Essential oils of mint between benefits and hazards. J. Ess. Oil Bear. Plants 2013, 16, 429–438. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J. Ess. Oil Res. 2010, 22, 78–84. [Google Scholar] [CrossRef]
- Hassan, A.; Amjid, I. Gas chromatography-mass spectrometric studies of essential oil of P. roxburghaii stems and their antibacterial and antifungal activities. J. Med. Plants Res. 2009, 3, 670–673. [Google Scholar]
- Zafar, I.; Fatima, A.; Khan, S.J.; Rehman, Z.; Mehmud, S. GC-MS studies of needles essential oil of Pinus roxburghii and their antimicrobial activity from Pakistan. Electron. J. Env. Agric. Food Chem. 2010, 9, 468–473. [Google Scholar]
- Satyal, P.; Paudel, P.; Raut, J.; Deo, A.; Noura, S.; Setzer, N. Volatile constituents of Pinus roxburghii from Nepal. Pharmacogn. Res. 2013, 5, 43–48. [Google Scholar]
- Salem, M.Z.M.; Ali, H.M.; Basalah, M.O. Essential oils from wood, bark, and needles of Pinus roxburghii Sarg. from Alexandria, Egypt: Antibacterial and antioxidant activities. BioResources 2014, 9, 7454–7466. [Google Scholar] [CrossRef]
- Bissa, S.; Bohra, A.; Bohra, A. Antibacterial potential of three naked-seeded (Gymnosperm) plants. Nat. Prod. Rad. 2008, 7, 420–425. [Google Scholar]
- Parihar, P.; Parihar, L.; Bohr, A. Antibacterial activity of extracts of Pinus roxburghii SARG. Bangladesh J. Bot. 2006, 35, 85–86. [Google Scholar]
- Salem, M.Z.M.; Ali, H.M.; El-Shanhorey, N.A.; Abdel-Megeed, A. Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pac. J. Trop. Med. 2013, 6, 785–791. [Google Scholar] [CrossRef]
- Patrascu, M.; Marilena, M. Rose essential oil extraction from fresh petals using synergetic microwave & ultrasound energy: Chemical composition and antioxidant activity assessment. J. Chem. Chem. Eng. 2016, 10, 136–142. [Google Scholar]
- Salem, M.Z.M.; Mansour, M.M.A.; Elansary, H.O. Evaluation of the effect of inner and outer bark extracts of Sugar Maple (Acer saccharum var. saccharum) in combination with citric acid against the growth of three common molds. J. Wood Chem. Technol. 2019, 39, 136–147. [Google Scholar] [CrossRef]
- Mohamed, W.A.; Mansour, M.M.A.; Salem, M.Z.M. Lemna gibba and Eichhornia crassipes extracts: Clean alternatives for deacidification, antioxidation and fungicidal treatment of historical paper. J. Clean. Prod. 2019, 219, 846–855. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Behiry, S.I.; EL-Hefny, M. Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. J. Appl. Microbiol. 2019, 126, 1683–1699. [Google Scholar] [CrossRef] [PubMed]
- Okla, M.K.; Alamri, S.A.; Salem, M.Z.M.; Ali, H.M.; Behiry, S.I.; Nasser, R.A.; Alaraidh, I.A.; Al-Ghtani, S.M.; Soufan, W. Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of Sour Orange (Citrus aurantium L.). Processes 2019, 7, 363. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mondal, P. Age species and female fecundity life table of Callsobrauchus chinensis Linn. on green gram. Int. J. Pure Appl. Basic. 2015, 3, 284–291. [Google Scholar]
- Broussalis, A.M.; Ferraro, G.E.; Martino, V.S.; Pinzon, R.; Coussio, J.D.; Alvarez, J.C. Argentine plants as potential source of insecticidal compounds. J. Ethnopharmacol. 1999, 67, 219–223. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 1971; p. 318. [Google Scholar]
- Qi, Y.; Burkholder, W. Protection of stored wheat from the granary weevil by vegetables oil. J. Econ. Entomol. 1981, 74, 502–505. [Google Scholar] [CrossRef]
- Rastegar, F.; Moharramipour, S.; Shojai, M.; Abbasipour, H. Chemical composition and insecticidal activity of essential oil of Zataria multiflora Boiss. (Lamiaceae) against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). IOBCWPRS Bull. 2011, 69, 281–288. [Google Scholar]
- Tandorost, R.; Karimpour, Y. Evaluation of fumigant toxicity of orange peel Citrus sinensis (L.) essential oil against three stored product insects in laboratory condition. Munis Entomol. Zool. 2012, 7, 352–358. [Google Scholar]
- Saglam, O.; Ozder, N. Fumigant toxicity of monoterpenoid compounds against the confused flour beetle, Tribolium confusum Jacquelin du Val. (Coleoptera: Tenebrionidae). Turk. Entomol. Derg. 2013, 37, 457–466. [Google Scholar]
- Jarrahi, A.; Moharramipour, S.; Imani, S. Chemical composition and fumigant toxicity of essential oil from Thymus daenensis against two stored product pests. J. Crop Protec. 2016, 5, 243–250. [Google Scholar] [CrossRef]
- Brari, J.; Thakur, D.R. Fumigant toxicity and cytotoxicity evaluation of monoterpenes against four stored products pests. Inter. J. Develop. Res. 2015, 5, 5661–5667. [Google Scholar]
- Deshpande, R.S.; Adhikary, P.R.; Tipnis, H.P. Stored grain pest control agents from Nigella sativa and Pogostemon heyneanus. Bull. Grain Technol. 1974, 12, 232–234. [Google Scholar]
- Deshpande, R.S.; Tipnis, H.P. Insecticidal activity of Ocimum basilicum Linn. Pesticides 1977, 11, 11–12. [Google Scholar]
- Kalemba, D.; Gora, J.; Kurowska, A.; Majda, T. Studies on essential oils with respect to their effects on insects. III. Essential oil of goldenrod (Solidago canadenis L.). Zesz. Nauk. Politech Lodzkiej Technol. I Chem. Spoz. 1990, 609, 91–97. [Google Scholar]
- Thakur, A.K.; Sankhyan, S.D. Studies on the persistent toxicity of some plant oils to storage pests of wheat. Indian Perfum. 1992, 36, 6–16. [Google Scholar]
- Kurowska, A.; Kalemba, D.; Gora, J.; Majda, T. Analysis of essential oils: Influence on insects. Part IV. Essential oil or garden thyme (Thymus vulgaris L.). Pestycydy 1991, 2, 25–29. [Google Scholar]
- Andoğan, B.C.; Baydar, H.; Kaya, S.; Demirci, M.; Özbasar, D.; Mumcu, E. Antimicrobial activity and chemical composition of some essential oils. Arch. Pharm. Res. 2002, 25, 860–864. [Google Scholar] [CrossRef]
- Özkan, G.; Sağdic, O.; Baydar, N.G.; Baydar, H. Antioxidant and antibacterial activities of Rosa damascena flower extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Loghmani-Khouzani, H.; Sabzi-Fini, O.; Safari, J. Essential oil composition of Rosa damascena Mill cultivated in central Iran. Sci. Iran. 2007, 14, 316–319. [Google Scholar]
- Ulusoy, S.; Boşgelmez-Tinaz, G.; Seçilmiş-Canbay, H. Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr. Microbiol. 2009, 59, 554–558. [Google Scholar] [CrossRef]
- Atanasova, T.; Kakalova, M.; Stefanof, L.; Petkova, M.; Stoyanova, A.; Damyanova, S.; Desyk, M. Chemical composition of essential oil from Rosa damascena Mill., growing in new region of Bulgaria. Ukrain. Food J. 2016, 5, 492–498. [Google Scholar] [CrossRef]
- Salman, S.Y.; Erbaş, S. Contact and repellency effects of Rosa damascena Mill. essential oil and its two major constituents against Tetranychus urticae Koch. (Acari: Tetranychidae). Türk. Entomol. Derg. 2014, 38, 365–376. [Google Scholar] [CrossRef]
- Djenane, D.; Aïder, M.; Yangüela, J.; Idir, L.; Gómez, D.; Roncalés, P. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature. Meat Sci. 2012, 92, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Ruiz del Castillo, M.L.; Blanch, G.P.; Herraiz, M. Natural variability of the enantiomeric composition of bioactive chiral terpenes in Mentha piperita. J. Chromatog. A 2004, 1054, 87–93. [Google Scholar] [CrossRef]
- Rohloff, J.; Dragland, S.; Mordal, R.; Iversen, T.H. Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha×piperita L.). J. Agric. Food Chem. 2005, 53, 4143–4148. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Vasudevan, P.; Tandon, M.; Razdan, R.K. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Biores. Technol. 2000, 71, 267–271. [Google Scholar] [CrossRef]
- Kumar, S.; Wahab, N.; Warikoo, R. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac. J. Trop. Biomed. 2011, 1, 85–88. [Google Scholar] [CrossRef] [Green Version]
Compound Name | RT * (min.) | Relative Peak Area (%) | Molecular Formula | Molecular Weight | Standard Index | Reverse Standard Index |
---|---|---|---|---|---|---|
Methyl eugenol | 13.77 | 52.17 | C11H14O2 | 178 | 692 | 766 |
3-O-Benzyl-d-glucose | 13.98 | 0.99 | C13H18O6 | 270 | 639 | 642 |
Phenylethyl alcohol | 14.24 | 29.92 | C8H10O | 122 | 795 | 833 |
Geraniol | 14.42 | 5.72 | C10H18O | 154 | 874 | 886 |
Neryl acetate | 18.81 | 0.88 | C12H20O2 | 196 | 739 | 837 |
Geranyl acetate | 18.96 | 2.58 | C12H20O2 | 196 | 764 | 855 |
Diphenyl ether | 22.03 | 7.75 | C12H10O | 170 | 903 | 917 |
Compound Name | RT* (min) | Relative Peak Area | Molecular Formula | Molecular Weight | Standard Index | Reverse Standard Index |
---|---|---|---|---|---|---|
α-Pinene | 5.31 | 2.25 | C10H16 | 136 | 923 | 927 |
β-Pinene | 6.78 | 4.37 | C10H16 | 136 | 909 | 914 |
D-Limonene | 8.12 | 2.81 | C10H16 | 136 | 905 | 924 |
1,8-Cineole | 8.94 | 15.48 | C10H18O | 154 | 897 | 933 |
Menthone | 14.14 | 20.18 | C10H18O | 154 | 862 | 876 |
Neoisomenthol | 14.46 | 0.69 | C10H20O | 156 | 838 | 862 |
Menthol | 15.05 | 32.66 | C10H20O | 156 | 881 | 887 |
Menthyl acetate | 16.75 | 13.13 | C12H22O2 | 198 | 888 | 910 |
Pulegone | 16.99 | 1.09 | C10H16O | 152 | 870 | 870 |
Piperitone | 17.45 | 0.52 | C10H16O | 152 | 797 | 855 |
Caryophyllene | 19.14 | 4.82 | C15H24 | 204 | 906 | 906 |
α-Caryophyllene | 20.02 | 0.61 | C15H24 | 204 | 861 | 866 |
Eugenol | 20.31 | 0.13 | C10H12O2 | 164 | 839 | 876 |
α-Muurolol | 20.65 | 0.14 | C15H26O | 222 | 859 | 900 |
α-Muurolene | 21.09 | 0.14 | C15H24 | 204 | 866 | 893 |
Compound Name | RT * (min) | Relative Peak Area (%) | Molecular Formula | Molecular Weight | Standard Index | Reverse Standard Index |
---|---|---|---|---|---|---|
α-Pinene | 5.79 | 2.12 | C10H16 | 136 | 946 | 947 |
β-Pinene | 6.98 | 1.64 | C10H16 | 136 | 935 | 942 |
Δ-3-Carene | 7.78 | 7.01 | C10H16 | 136 | 954 | 955 |
D-Limonene | 8.40 | 1.39 | C10H16 | 136 | 905 | 912 |
Terpinolene | 10.00 | 1.02 | C10H16 | 136 | 935 | 939 |
Fenchol | 11.13 | 1.28 | C10H18O | 154 | 940 | 944 |
cis-4-Thujanol | 12.21 | 0.41 | C10H18O | 154 | 789 | 815 |
Borneol | 12.69 | 2.16 | C10H18O | 154 | 928 | 932 |
Terpinen-4-ol | 12.90 | 1.77 | C10H18O | 154 | 937 | 947 |
α-Terpineol | 13.36 | 6.75 | C10H18O | 154 | 937 | 943 |
2,6,10-Trimethyl tetradecane | 15.06 | 0.22 | C17H36 | 240 | 777 | 802 |
α-Fenchyl acetate | 15.69 | 0.73 | C12H20O2 | 196 | 902 | 937 |
Tridecane | 15.91 | 0.93 | C13H28 | 184 | 837 | 936 |
Butanoic acid,3-[(1-phenylethyl-2-propynyl)oxy] | 16.79 | 0.41 | C15H18O3 | 246 | 668 | 703 |
Terpinyl propionate | 16.98 | 0.55 | C13H22O2 | 210 | 769 | 790 |
Hexahydrofarnesol | 17.20 | 0.30 | C15H32O | 228 | 699 | 724 |
γ-Elemene | 17.37 | 3.88 | C15H24 | 204 | 846 | 865 |
2,6,10-Trimethyl tetradecane | 17.60 | 0.55 | C17H36 | 240 | 750 | 791 |
Geranyl isovalerate | 17.77 | 0.18 | C15H26O2 | 238 | 701 | 703 |
Cedrol | 17.86 | 1.21 | C15H26O | 222 | 703 | 768 |
Longicyclene | 18.05 | 1.80 | C15H24 | 204 | 902 | 905 |
Sativene | 18.50 | 0.91 | C15H24 | 204 | 882 | 905 |
Tetradecane | 18.56 | 2.75 | C14H30 | 198 | 902 | 951 |
β-Cedrene | 18.75 | 0.29 | C15H24 | 204 | 726 | 755 |
Longifolene | 19.03 | 19.52 | C15H24 | 204 | 967 | 967 |
Caryophyllene | 19.22 | 9.45 | C15H24 | 204 | 912 | 927 |
(Z,E)-2,9-Heptadecadiene-4,6-diyn-8-ol | 19.36 | 0.75 | C17H24O | 244 | 635 | 683 |
1,4-Dimethyl naphthalene | 19.52 | 1.31 | C12H12 | 156 | 855 | 944 |
1,7-dimethyl-Naphthalene | 19.65 | 1.84 | C12H12 | 156 | 855 | 947 |
2-Methyl-cis-7,8-epoxynonadecane | 19.88 | 0.32 | C20H40O | 296 | 626 | 631 |
2,6,10-trimethyl tetradecane | 20.01 | 1.83 | C17H36 | 240 | 710 | 753 |
α-Caryophyllene | 20.16 | 3.45 | C15H24 | 204 | 762 | 897 |
E-8-Methyl-9-tetradecen-1-ol acetate | 20.33 | 0.30 | C17H32O2 | 268 | 691 | 700 |
β-Cedrene | 20.48 | 0.76 | C15H24 | 204 | 674 | 695 |
Vitamin A aldehyde (Retinal) | 20.85 | 0.18 | C20H28O | 284 | 749 | 859 |
Pentadecane | 21.08 | 3.35 | C15H32 | 212 | 888 | 958 |
6-(3-Isopropenyl-1-cyclopropen-1-yl)-6-methyl-3-hepten-2-one | 21.27 | 0.35 | C14H20O | 204 | 710 | 719 |
3-(2-Methyl-1-propenyl)-1H-indene | 21.69 | 0.63 | C13H14 | 170 | 683 | 803 |
2,3,6-Trimethyl naphthalene | 22.14 | 1.09 | C13H14 | 170 | 786 | 829 |
cis-9,10-Epoxystearic acid | 22.45 | 0.32 | C18H34O3 | 298 | 667 | 667 |
3-(2-Methyl-propenyl)-1H-indene | 22.61 | 1.98 | C13H14 | 170 | 734 | 809 |
Caryophyllene oxide | 23.35 | 1.62 | C15H24O | 220 | 876 | 928 |
Hexadecane | 23.47 | 2.38 | C16H34 | 226 | 862 | 940 |
Longiborneol | 23.92 | 0.65 | C15H26O | 222 | 780 | 900 |
1,9-Dioxacyclohexadeca-4,13-diene-2-10-dione,7,8,15,16-tetramethyl- | 24.04 | 0.44 | C18H28O4 | 308 | 666 | 671 |
Docosane | 24.48 | 0.58 | C22H46 | 310 | 686 | 686 |
Z-5-Methyl-6-heneicosen-11-one | 24.91 | 0.38 | C22H42O | 322 | 677 | 686 |
2-Methylene-5α-cholestan-3β-ol | 25.11 | 0.24 | C28H48O | 400 | 682 | 731 |
Aromadendrene | 25.43 | 3.51 | C15H24 | 204 | 834 | 880 |
Heptadecane | 25.75 | 1.53 | C17H36 | 240 | 854 | 899 |
Octadecane | 27.93 | 0.53 | C18H38 | 254 | 796 | 813 |
8(14),15-Pimaradien-18-al | 34.07 | 0.17 | C20H30O | 286 | 761 | 834 |
γ-Sitosterol | 34.48 | 0.16 | C29H50O | 414 | 741 | 756 |
Insect Species | Time Exposure (h) | Lethal Concentration 50% (LC50) mg/cm2 | 95% Confidence Limits (mg/cm2) | Slope ± Stander Error | χ2 | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
M. piperita | ||||||
S. oryzae | 48 | 0.036 | 0.03 | 0.042 | 1.62 ± 0.24 | 1.48 |
72 | 0.022 | 0.019 | 0.026 | 1.98 ± 0.23 | 6.86 | |
T. castaneum | 48 | 0.083 | 0.069 | 0.102 | 1.58 ± 0.22 | 4.5 |
72 | 0.055 | 0.044 | 0.07 | 1.06 ± 0.16 | 1.37 | |
R. dominica | 48 | 0.088 | 0.08 | 0.099 | 2.93 ± 0.24 | 7 |
72 | 0.084 | 0.074 | 0.101 | 2.83 ± 0.36 | 1.04 | |
Rosa spp. | ||||||
S. oryzae | 48 | 0.52 | 0.381 | 0.995 | 1.62 ± 0.33 | 2.08 |
72 | 0.421 | 0.313 | 0.784 | 1.41 ± 0.31 | 0.4 | |
T. castaneum | 48 | >1.00 | - | - | - | - |
72 | 0.826 | 0.463 | 7.257 | 1.04 ± 0.32 | 1.28 | |
R. dominica | 48 | 0.949 | 0.514 | 4.487 | 0.97 ± 0.23 | 1.08 |
72 | 0.706 | 0.428 | 2.192 | 1.04 ± 0.22 | 4.13 | |
P. roxburghii | ||||||
S. oryzae | 48 | 0.076 | 0.061 | 0.095 | 1.22 ± 0.15 | 3.33 |
72 | 0.061 | 0.047 | 0.078 | 1.22 ± 0.20 | 3.42 | |
T. castaneum | 48 | 0.383 | 0.317 | 0.516 | 2.23 ± 0.34 | 3.39 |
72 | 0.318 | 0.254 | 0.461 | 1.59 ± 0.31 | 0.44 | |
R. dominica | 48 | 0.194 | 0.169 | 0.238 | 1.71 ± 0.17 | 2.64 |
72 | 0.156 | 0.128 | 0.196 | 1.50 ± 0.17 | 0.17 |
Tested Oils | Concentrations (mg/cm2) | Mortality % of S. oryzae | Mortality % of T. castaneum | Mortality % of R. dominica | |||
---|---|---|---|---|---|---|---|
Exposure Periods (h) | |||||||
48 | 72 | 48 | 72 | 48 | 72 | ||
M. piperita | Control | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 3.3 ± 1.6 | 0.0 ± 0.0 | 0.0 ± 0.0 e |
0.02 | 36.3 ± 3.16 | 40 ± 5.00 | 0.0 ± 0.00 | 30.0 ± 10.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
0.03 | 40.0 ± 10.00 | 55.0 ± 15.00 | 25.0 ± 7.63 | 40.0 ± 12.58 | 10.0 ± 5.77 | 10.0 ± 5.77 | |
0.04 | 55.0 ± 5.00 | 70.00 ± 15.27 | 25.0 ± 2.88 | 45.0 ± 11.54 | 20.0 ± 5.00 | 20.0 ± 7.63 | |
0.06 | 65.0 ± 7.36 | 80.0 ± 7.63 | 31.6 ± 9.27 | 50.0 ± 7.63 | 25.0 ± 7.63 | 30.0 ± 5.00 | |
0.1 | 76.6 ± 6.70 | 95.0 ± 5.00 | 63.0 ± 6.50 | 63.0 ± 12.74 | 50.0 ± 5.77 | 60.0 ± 15.74 | |
0.2 | 100 ± 0.00 | 100.0 ± 0.00 | 70.0 ± 5.00 | 70.0 ± 10.0 | 90.0 ± 5.77 | 100.0 ± 0.00 | |
0.4 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100.0 ± 0.00 | 100 ± 0.0 | 100.0 ± 0.00 | |
Rosa spp. | Control | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 d |
0.02 | 0.0 ± 0.0 | 0.0 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
0.03 | 0.0 ± 0.0 | 0.0 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
0.04 | 0.0 ± 0.0 | 0.0 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
0.06 | 0.0 ± 0.0 | 0.0 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 10.0 ± 2.88 | 10.0 ± 5.77 | |
0.1 | 10.0 ± 5.77 | 20.0 ± 12.58 | 5.00 ± 2.88 | 15.0 ± 7.63 | 20.0 ± 2.88 | 20.0 ± 2.88 | |
0.2 | 20.0 ± 5.77 | 30.0 ± 12.58 | 25.0 ± 7.63 | 30.0 ± 7.63 | 25.0 ± 8.66 | 35.0 ± 5.00 | |
0.4 | 40.0 ± 20.20 | 50.0 ± 11.54 | 30.0 ± 0.00 | 35 ± 12.58 | 35.00 ± 8.66 | 40.0 ± 5.00 | |
P. roxburghii | Control | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ±0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 d |
0.02 | 0.0 ± 0.0 | 0.0 ± 0.00 | 0.0 ±0.0 | 0.0 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.00 | |
0.03 | 25.0 ± 0.0 | 30.0 ± 7.63 | 0.0 ±0.0 | 0.0 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.00 | |
0.04 | 40.0 ± 12.5 | 45.0 ± 12.58 | 0.0 ±0.0 | 0.0 ± 0.00 | 13.33 ± 8.69 | 15 ± 5.00 | |
0.06 | 50.0 ± 5.77 | 62.0 ± 13.0 | 0.0 ±0.0 | 0.0 ± 0.00 | 20.0 ± 0.0 | 30.0 ± 0.00 | |
0.1 | 55.0 ± 7.63 | 65.0 ± 12.58 | 12.33 ± 4.91 | 20.0 ± 10.00 | 25.0 ± 10.4 | 30 ± 7.63 | |
0.2 | 55.0 ± 10.0 | 70.0 ± 12.58 | 20.0 ± 5.77 | 40.0 ± 2.88 | 51.6 ± 11.6 | 60.0 ± 17.32 | |
0.4 | 80.0 ± 15.27 | 80.0 ± 5.00 | 55 ± 5 | 55.0 ± 12.58 | 70.0 ± 16.07 | 70.0 ± 20.00 |
Essential Oils | Insect Species | LC50 µL/L | 95% Confidence Limits (mg/cm2) | Slope ± S.E | χ2 | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
M. piperita | S. oryzae | 3.79 | 2.39 | 5.5 | 0.95 ± 0.25 | 0.04 |
T. castaneum | 8.28 | 7.47 | 10.75 | 1.54 ± 0.14 | 6.08 | |
R. dominica | 13.72 | 11.81 | 16.07 | 1.97 ± 0.16 | 4.59 | |
P. roxburghii | S. oryzae | 21.31 | 16.97 | 28.37 | 1.31 ± 0.14 | 1.95 |
T. castaneum | 24.48 | 19.61 | 32.73 | 1.51 ± 0.30 | 21.37 | |
R. dominica | 34.63 | 28.21 | 44.04 | 1.43 ± 0.21 | 4.71 | |
Rosa spp. | S. oryzae | >100 | - | - | - | - |
T. castaneum | >100 | - | - | - | - | |
R. dominica | >100 | - | - | - | - |
Tested Oils | Concentrations µL/L | Mortality % of S. oryzae | Mortality % of T. castaneum | Mortality % of R. dominica |
---|---|---|---|---|
M. piperita | control | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 |
2 | 40.0 ± 13.22 | 20.0 ± 2.88 | 5.0 ± 5.00 | |
4 | 50.0 ± 8.66 | 26.6 ± 6.66 | 13.3 ± 6.00 | |
10 | 66.6 ± 14.52 | 50.0 ± 8.66 | 45.0 ± 7.63 | |
20 | 100 ± 0.00 | 65.0 ± 10.40 | 55.0 ± 16.07 | |
40 | 100 ± 0.00 | 90.0 ± 5.77 | 85.0 ± 8.66 | |
70 | 100 ± 0.00 | 100 ± 0.00 | 100.0 ± 0.00 | |
P. roxburghii | control | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 |
2 | 6.6 ± 1.60 | 0.0 ± 0.00 | 0.0 ± 0.00 | |
4 | 20.0 ± 7.63 | 0.0 ± 0.00 | 0.0 ± 0.00 | |
10 | 35.0 ± 13.22 | 30.0 ± 0.00 | 20.0 ± 11.54 | |
20 | 45.0 ± 8.66 | 40.0 ± 14.43 | 42.6 ± 4.33 | |
40 | 65.0 ± 10.00 | 65.0 ± 5.77 | 46.6 ± 12.01 | |
70 | 100 ± 0.00 | 100 ± 0.00 | 70.0 ± 18.92 | |
Rosa spp. | control | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 |
2 | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 | |
4 | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 | |
10 | 0.0 ± 0.00 | 3.3 ± 3.33 | 0.0 ± 0.00 | |
20 | 10.0 ± 2.88 | 8.5 ± 3.5 | 5.0 ± 5.00 | |
40 | 25.0 ± 2.88 | 11.6 ± 1.66 | 20.0 ± 2.88 | |
70 | 30.0 ± 5.77 | 16.6 ± 6.66 | 35.0 ± 17.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mackled, M.I.; EL-Hefny, M.; Bin-Jumah, M.; Wahba, T.F.; Allam, A.A. Assessment of the Toxicity of Natural Oils from Mentha piperita, Pinus roxburghii, and Rosa spp. Against Three Stored Product Insects. Processes 2019, 7, 861. https://doi.org/10.3390/pr7110861
Mackled MI, EL-Hefny M, Bin-Jumah M, Wahba TF, Allam AA. Assessment of the Toxicity of Natural Oils from Mentha piperita, Pinus roxburghii, and Rosa spp. Against Three Stored Product Insects. Processes. 2019; 7(11):861. https://doi.org/10.3390/pr7110861
Chicago/Turabian StyleMackled, Marwa I., Mervat EL-Hefny, May Bin-Jumah, Trandil F. Wahba, and Ahmed A. Allam. 2019. "Assessment of the Toxicity of Natural Oils from Mentha piperita, Pinus roxburghii, and Rosa spp. Against Three Stored Product Insects" Processes 7, no. 11: 861. https://doi.org/10.3390/pr7110861
APA StyleMackled, M. I., EL-Hefny, M., Bin-Jumah, M., Wahba, T. F., & Allam, A. A. (2019). Assessment of the Toxicity of Natural Oils from Mentha piperita, Pinus roxburghii, and Rosa spp. Against Three Stored Product Insects. Processes, 7(11), 861. https://doi.org/10.3390/pr7110861