Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances
Abstract
:1. Introduction
2. Experimental
2.1. Geometrical Model
2.2. Apparatus and Procedure
3. Mathematical Model and Computational Method
3.1. Turbulence Simulation
3.2. Mesh Arrangement and Numerical Setup
4. Results and Discussion
4.1. Validation of the Simulation Methods
4.2. Experimental Flow Pattern of TLV Cavitation
4.3. Numerical Investigation of Tip Clearance Size on Tip Flow Field
4.4. Numerical Investigation of Tip Clearance Size on the Velocity Profile
4.5. Numerical Investigation of Tip Clearance Size on Pressure Distribution in Blade Passage
4.6. Numerical Investigation of Tip Clearance Size on Vortex Core Pressure and Cavitation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, S. China’s water resources and hydropower development policy. Int. J. Hydropower Dams 2000, 7, 58–62. [Google Scholar]
- Zhang, J.-J.; Mao, G.-H.; Cheng, W.-P.; Hu, Y.-J. Hydraulic shape optimization on lateral inlet/outlet of pump-storage plant. J. Zhejiang Univ. Eng. Sci. 2008, 42, 188–192. [Google Scholar]
- Lu, X.; Sun, W.; Li, J. Special problems of engineering geology and rock mechanics in the west route of south-to-north water transfer project. Chin. J. Rock Mech. Eng. 2003, 22, 829–833. [Google Scholar]
- Li, Z.; Fan, H.; Li, J. Seismic response analysis based on dynamic artificial boundaries for nuclear power engineering. Nucl. Power Eng. 2016, 37, 47–50. [Google Scholar]
- Cao, P.; Wang, Y.; Li, G.; Qian, K.X. Research on the performance of shaftless water-jet propulsion. In Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, Chicago, IL, USA, 3–7 August 2014; American Society of Mechanical Engineers (ASME): Chicago, IL, USA, 2014. [Google Scholar]
- Cui, N.-G.; Cao, C.-Q.; Wei, C.-Z. Simulation analysis of underwater motion process of submarine launched missile. J. Ballist. 2009, 21, 95–99. [Google Scholar]
- Zhang, D.; Shi, L.; Shi, W.; Zhao, R.; Wang, H.; van Esch, B.B. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump. Int. J. Multiph. Flow 2015, 77, 244–259. [Google Scholar] [CrossRef]
- Cristea, A.; Gonnella, G.; Lamura, A.; Sofonea, V. A Lattice Boltzmann Study of Phase Separation in Liquid-vapor Systems with Gravity. Commun. Comput. Phys. 2010, 7, 350–361. [Google Scholar] [CrossRef]
- Kähler, G.; Bonelli, F.; Gonnella, G.; Lamura, A. Cavitation inception of a van der Waals fluid at a sack-wall obstacle. Phys. Fluids 2015, 27, 123307. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, M.-G.; Ji, K.; Gao, B. Visualization research on cavitating flow in tip clearance of axial-flow pump. J. Eng. Thermophys. 2011, 32, 1315–1318. [Google Scholar]
- Liu, Y.; Tan, L.; Hao, Y.; Xu, Y. Energy performance and flow patterns of a mixed-flow pump with different tip clearance sizes. Energies 2017, 10, 191. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L. Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode. Renew. Energy 2018, 129, 606–615. [Google Scholar] [CrossRef]
- Kim, D.J.; Min, Y.U.; Kim, J.Y.; Chung, K.N. A study of tip clearance effect for a mixed-flow pump on performance. In Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013, Incline Village, NV, USA, 7–11 July 2013; American Society of Mechanical Engineers (ASME): Incline Village, NV, USA, 2013. [Google Scholar]
- Kim, M.-C.; Chun, H.-H. Experimental Investigation into the performance of the Axial-Flow-Type Waterjet according to the Variation of Impeller Tip Clearance. Ocean. Eng. 2007, 34, 275–283. [Google Scholar] [CrossRef]
- Wernet, M.P.; Van Zante, D.; Strazisar, T.J.; John, W.T.; Prahst, P.S. Characterization of the tip clearance flow in an axial compressor using 3-D digital PIV. Exp. Fluids 2005, 39, 743–753. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Liu, B. Characteristics of the Tip Leakage Vortex in a Low-Speed Axial Compressor with Different Rotor Tip Gaps. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012; Volume 8: Turbomachinery, Parts A, B, and C, pp. 311–322. [Google Scholar]
- Yu, X.J.; Liu, B.J. Stereoscopic PIV measurement of unsteady flows in an axial compressor stage. Exp. Therm. Fluid Sci. 2007, 31, 1049–1060. [Google Scholar] [CrossRef]
- Fu, Y.; Yuan, J.; Yuan, S.; Pace, G.; D’Agostino, L. Effect of Tip Clearance on the Internal Flow and Hydraulic Performance of a Three-Bladed Inducer. Int. J. Rotating Mach. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Weidong, S.; Hua, Z.; Bin, C.; Desheng, Z.; Lei, Z. Numerical simulation of internal flow field in axial-flow pump with different blade tip clearance sizes. J. Drain. Irrig. Mach. Eng. 2010, 28, 374–377, 406. [Google Scholar]
- Wu, Y.-H.; Li, Q.-P.; Zhang, Z.-X.; Chu, W.-L.; Zhang, H.-G. Unsteady behavior of tip clearance flow in an axial flow compressor rotor at near stall condition. J. Propuls. Technol. 2010, 31, 562–566, 586. [Google Scholar]
- Zhou, B.; You, B.; Wu, K.-Q. Internal flow investigation and noise reduction of the cross-flow fan using the variable tip clearance tongue. J. Eng. Thermophys. 2008, 29, 2043–2045. [Google Scholar]
- Rains, D.A. Tip Clearance Flows in Axial Compressors and Pumps. In Division of Engineering and Applied Science; California Institute of Technology: Pasadena, CA, USA, 1954. [Google Scholar]
- Zierke, W.C.; Straka, W.A. Flow visualization and the three-dimensional flow in an axial-flow pump. J. Propuls. Power 1996, 12, 250–259. [Google Scholar] [CrossRef]
- Miorini, R.L.; Wu, H.; Katz, J. The Internal Structure of the Tip Leakage Vortex within the Rotor of an Axial Waterjet Pump. In Proceedings of the ASME Turbo. Expo. 2010: Power for Land, Sea, and Air, GT 2010, Glasgow, UK, 14–18 June 2010; American Society of Mechanical Engineers (ASME): Glasgow, UK, 2010. [Google Scholar]
- Tan, D.; Li, Y.; Wilkes, I.; Vagnoni, E.; Miorini, R.L.; Katz, J. Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump. J. Fluids Eng. 2015, 137, 111301. [Google Scholar] [CrossRef]
- You, D.; Mittal, R.; Wang, M.; Moin, P. Computational Methodology for Large-Eddy Simulation of Tip-Clearance Flows. AIAA J. 2004, 42, 271–279. [Google Scholar] [CrossRef]
- You, D.; Wang, M.; Moin, P.; Mittal, R. Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J. Fluid Mech. 2007, 586, 177–204. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, D.; Jin, Y.; Shi, W.; van Esch, B.P.M. A study on tip leakage vortex dynamics and cavitation in axial-flow pump. Fluid Dyn. Res. 2017, 49, 035504. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, D.; Zhao, R.; Shi, W.; Jin, Y. Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump. Sci. China Technol. Sci. 2017, 60, 1480–1493. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, P.; Shi, W.; Pan, D.; Wang, H. Numerical simulation of tip leakage vortex hydrodynamics characteristics in axial flow pump. Trans. Chin. Soc. Agric. Mach. 2014, 45, 72–76. [Google Scholar]
- Zhang, D.; Shi, W.; Wu, S.; Pan, D.; Shao, P.; Wang, H. Numerical and experimental investigation of tip leakage vortex trajectory in an axial flow pump. In Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, FEDSM 2013, Incline Village, NV, USA, 7–11 July 2013; American Society of Mechanical Engineers: Incline Village, NV, USA, 2013. [Google Scholar]
- Spalart, P.R.; Shur, M.L. On the sensitization of turbulence models to rotation and curvature. Aerosp. Sci. Technol. 1997, 1, 297–302. [Google Scholar] [CrossRef]
- Barnosa Pola, F.P.; Venturini Pola, I.R. Optimizing computational high-order schemes in finite volume simulations using unstructured mesh and topological data structures. Appl. Math. Comput. 2019, 342, 1–17. [Google Scholar] [CrossRef]
- Geyer, P.E.; Haynes, B.S.; Fletcher, D.F. Assessment of the SST and omega-based reynolds stress models for the prediction of flow and heat transfer in a square-section u-bend. Comput. Therm. Sci. 2009, 1, 385–403. [Google Scholar] [CrossRef]
- Li, X.; Chen, B.; Luo, X.; Zhu, Z. Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump. Renew. Energy 2019. [Google Scholar] [CrossRef]
Tip Clearence | Total Mesh Nodes | Impeller Mesh Nodes | Gap Mesh Nodes | Mean y+ of Blades | Mean y+ of Out Wall |
---|---|---|---|---|---|
τ = 0.5 mm | 10,081,811 | 5,534,874 | 30 | 3.07 | 25.63 |
τ = 1.5 mm | 10,498,773 | 5,951,796 | 40 | 2.10 | 26.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Shen, X.; Zhang, D.; Zhang, W. Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances. Processes 2019, 7, 935. https://doi.org/10.3390/pr7120935
Xu B, Shen X, Zhang D, Zhang W. Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances. Processes. 2019; 7(12):935. https://doi.org/10.3390/pr7120935
Chicago/Turabian StyleXu, Bin, Xi Shen, Desheng Zhang, and Weibin Zhang. 2019. "Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances" Processes 7, no. 12: 935. https://doi.org/10.3390/pr7120935
APA StyleXu, B., Shen, X., Zhang, D., & Zhang, W. (2019). Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances. Processes, 7(12), 935. https://doi.org/10.3390/pr7120935