Numerical Investigation of Influence of Reservoir Heterogeneity on Electricity Generation Performance of Enhanced Geothermal System
Abstract
:1. Introduction
1.1. Background
1.2. Research Objectives
2. Electricity Generation Method and Well Design
2.1. Heat Production Method
2.2. Electricity Generation Method
3. Numerical Method
3.1. Mathematical Model
3.2. The MINC Method
3.3. Domain, Grid and Parameters
3.4. Boundary and Initial Conditions
4. Influence of Reservoir Heterogeneity on the Electricity Generation Performance
4.1. The Determination of Water Production Rate
4.2. Influence of Reservoir Heterogeneity on the Electric Power
4.3. Influence of Reservoir Heterogeneity on the Reservoir Impedance
4.4. Influence of Reservoir Heterogeneity on the Pump Power
4.5. Influence of Reservoir Heterogeneity on the Energy Efficiency
4.6. Influence of Reservoir Heterogeneity on the Pressure Field
4.7. Influence of Reservoir Heterogeneity on the Temperature Field
4.8. Influence of Reservoir Heterogeneity on the Water Density Field
5. Sensitivity Analysis
5.1. Sensitivity to Fracture Spacing
5.2. Sensitivity to Well Spacing
5.3. Sensitivity to Injection Temperature
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
D | fracture spacing, m |
g | gravity, 9.80 m/s2 |
h | well depth, m |
h1 | depth of injection well, m |
h2 | depth of production well, m |
hinj | injection specific enthalpy, kJ/kg |
production specific enthalpy, kJ/kg | |
IR | reservoir impedance, MPa/(kg/s) |
k | reservoir permeability, m2 |
kf | fracture permeability, m2 |
km | matrix permeability, m2 |
kx | intrinsic permeability along x, m2 |
ky | intrinsic permeability along y, m2 |
kz | intrinsic permeability along z, m2 |
P | pressure, MPa |
Pmax | critical pressure, MPa |
injection pressure, MPa | |
production pressure, MPa | |
P0 | bottomhole production pressure, MPa |
q | water production rate, kg/s |
Q | total water production rate, kg/s |
T | temperature, °C |
T0 | mean heat rejection temperature, 282.15 K |
production temperature, °C | |
Tinj | injection temperature, °C |
electric power of pump, MW | |
WS | well spacing, m |
We | electric power, MW |
x, y, z | cartesian coordinates, m |
reservoir porosity | |
η | energy efficiency |
pump efficiency, 80% | |
ρ | water density, kg/m3 |
References
- Tester, J.W.; Livesay, B.; Anderson, B.J.; Moore, M.C.; Bathchelor, A.S.; Nichols, K.; Blackwell, D.D.; Petry, S.; Dipoppo, R.; Toksoz, M.N.; et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. An assessment by an MIT-Led Interdisciplinary Panel; MIT: Cambridge, MA, USA, 2006. [Google Scholar]
- Zhao, Y.S.; Wan, Z.J.; Kang, J.R. Introduction to HDR Geothermal Development; Science Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Wang, J.; Hu, S.; Pang, Z.; He, L.; Zhao, P.; Zhu, C.; Rao, S.; Tang, X.; Kong, Y.; Luo, L.; et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Sci. Technol. Rev. 2012, 30, 25–31. (In Chinese) [Google Scholar]
- Zeng, Y.C.; Tang, L.S.; Wu, N.Y.; Cao, Y.F. Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field. Energy 2017, 127, 218–235. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z.; Wu, N. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 2013, 56, 92–107. [Google Scholar] [CrossRef]
- Pruess, K. Modelling of geothermal reservoirs: Fundamental processes, computer simulation, and field applications. In Proceedings of the 10th New Zealand Geothermal Workshop, Auckland, New Zealand, 2–4 November 1988. [Google Scholar]
- Willis-richards, J.; Wallroth, T. Approaches to the modeling of HDR reservoirs: A review. Geothermics 1995, 24, 307–332. [Google Scholar]
- Hayashi, K.; Willis-Richards, J.; Hopkirk, R.J.; Niibori, Y. Numerical models of HDR geothermal reservoirs—A review of current thinking and progress. Geothermics 1999, 28, 507–518. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Butler, S.J.; Swenson, D.; Hardeman, B. Review of the state-of-the-art of numerical simulation of enhanced geothermal system. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000. [Google Scholar]
- O’Sullivan, M.J.; Pruess, K.; Lippmann, M.J. State of the art of geothermal reservoir simulation. Geothermics 2001, 30, 395–429. [Google Scholar] [CrossRef]
- Birdsell, S.; Robinson, B. A three-dimensional model of fluid, heat, and tracer transport in the Fenton Hill hot dry rock reservoir. In Proceedings of the Thirteenth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 19–21 January 1988. [Google Scholar]
- Mcdermott, C.I.; Randriamanjatosoa, A.R.; Tenzer, H.; Kolditz, O. Simulation of heat extraction from crystalline rocks: The influence of coupled processes on differential reservoir cooling. Geothermics 2006, 35, 321–344. [Google Scholar] [CrossRef]
- Watanabe, N.; Wang, W.Q.; McDermott, C.I.; Taniguchi, T.; Kolditz, O. Uncertainly analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput. Mech. 2010, 45, 263–280. [Google Scholar]
- Yuchao, Z.; Nengyou, W.; Zheng, S. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy 2013, 63, 268–282. [Google Scholar]
- Yuchao, Z.; Nengyou, W.; Zheng, S. Numerical simulation of electricity generation potential from fractured granite reservoir through a single horizontal well at Yangbajing geothermal field. Energy 2014, 65, 472–487. [Google Scholar]
- Yuchao, Z.; Jiemin, Z.; Nengyou, W. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field. Energy 2016, 103, 290–304. [Google Scholar]
- Yuchao, Z.; Jiemin, Z.; Nengyou, W. Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field. Appl. Therm. Eng. 2016, 104, 1–15. [Google Scholar]
- Yuchao, Z.; Jiemin, Z.; Nengyou, W. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field. Energy 2016, 114, 24–39. [Google Scholar]
- Yuchao, Z.; Liansheng, T.; Nengyou, W.; Jing, S.; Yifei, C. Orthogonal test analysis on conditions affecting electricity generation performance of an enhanced geothermal system at Yangbajing geothermal field. Energies 2017, 10, 2015. [Google Scholar]
- Cheng, W.L.; Wang, C.L.; Nian, Y.L.; Han, B.B.; Liu, J. Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses. Energy 2016, 115, 274–288. [Google Scholar] [CrossRef]
- Hu, L.T.; Winterfeld, P.H.; Fakcharoenphol, P.; Wu, Y.S. A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs. J. Petrol. Sci. Eng. 2013, 107, 1–11. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Butler, S.J. An analysis of power generation prospects from enhanced geothermal systems. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005; pp. 1–6. [Google Scholar]
- Taron, J.; Elsworth, D.; Min, K.B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 2009, 46, 842–854. [Google Scholar] [CrossRef]
- Taron, J.; Elsworth, D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 2009, 46, 855–864. [Google Scholar] [CrossRef]
- Gelet, R.; Loret, B.; Khalili, N. A thermal-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity. J. Geophys. Res. 2012, 117, 1–23. [Google Scholar] [CrossRef]
- Gelet, R.; Loret, B.; Khalili, N. Thermal recovery from a fractured medium in local thermal non-equilibrium. Int. J. Numer. Anal. Method Geomech. 2013, 37, 2471–2501. [Google Scholar] [CrossRef]
- Benato, S.; Taron, J. Desert Peak EGS: Mechanisms influencing permeability evolution investigated using dual-porosity simulator TFReact. Geothermics 2016, 63, 157–181. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced geothermal system (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Pruess, K. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manag. 2008, 49, 1446–1454. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: Application to CO2-enhanced geothermal systems. Transp. Porous Media 2010, 82, 173–196. [Google Scholar] [CrossRef]
- Borgia, A.; Pruess, K.; Kneafsey, T.J.; Oldenburg, C.M.; Pan, L. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system. Geothermics 2012, 44, 13–22. [Google Scholar] [CrossRef]
- Xu, T.F.; Yuan, Y.L.; Jia, X.F.; Lei, Y.D.; Li, S.T.; Feng, B.; Hou, Z.Y.; Jiang, Z.J. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China. Energy 2018, 148, 196–207. [Google Scholar] [CrossRef]
- Zeng, Y.; Tang, L.; Wu, N.; Cao, Y. Numerical simulation of electricity generation potential from fractured granite reservoir using the MINC method at the Yangbajing geothermal field. Geothermics 2018, 75, 122–136. [Google Scholar] [CrossRef]
- Baujard, C.; Bruel, D. Numerical study of the impact of fluid density on the pressure distribution and stimulated volume in the Soultz HDR reservoir. Geothermics 2006, 35, 607–621. [Google Scholar] [CrossRef]
- Kolditz, O.; Clauser, C. Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes. Geothermics 1998, 27, 1–23. [Google Scholar] [CrossRef]
- Kolditz, O. Modelling flow and heat transfer in fractured rocks: Conceptual model of a 3-D deterministic fracture network. Geothermics 1995, 24, 451–470. [Google Scholar] [CrossRef]
- Jing, Z.; Willis-Richards, J.; Hashida K, W. A three-dimensional stochastic rock mechanics model of engineered geothermal systems in fractured crystalline rock. J. Geophys. Res. 2000, 105, 23663–23679. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Watanabe, K.; Willis-Richards, J.; Hashida, T. A 3-D water/rock chemical interaction model for prediction of HDR/HWR geothermal reservoir performance. Geothermics 2002, 31, 1–28. [Google Scholar] [CrossRef]
- Jing, Y.N.; Jing, Z.Z.; Willis-Richards, J.; Hashida, T. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir. J. Volcanol. Geotherm. Res. 2014, 269, 14–22. [Google Scholar] [CrossRef]
- Sun, Z.X.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.X.; Lv, S.H.; Sun, Z.L.; Huang, Y.; Cai, M.Y.; Huang, X.X. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy 2017, 120, 20–33. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, X.; Sun, Z.X.; Huang, Z.Q.; Liu, J.R.; Li, Y.; Xin, Y.; Yan, X.; Liu, W.Z. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Geothermics 2018, 74, 19–34. [Google Scholar] [CrossRef]
- Huang, W.; Cao, W.; Jiang, F. Heat extraction performance of EGS with heterogeneous reservoir: A numerical evaluation. Int. J. Heat Mass Transfer 2017, 108, 645–657. [Google Scholar] [CrossRef]
- Zarrouk, S.J.; Moon, H. Efficiency of geothermal power plants: A worldwide review. Geothermics 2014, 51, 142–153. [Google Scholar] [CrossRef]
- Pruess, K.; Oldenburg, C.; Moridis, G. TOUGH2 User’s Guide, Version 2.0; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999.
- Asai, P.; Panja, P.; Mclennan, J.; Moore, J. Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters. Renew. Energy 2018, 122, 184–195. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rock grain density | 2650 kg/m3 |
Rock specific heat | 1000 J/(kg·K) |
Rock heat conductivity | 2.50 W/(m·K) |
Fracture system volume fraction | 2% |
Fracture spacing | 50 m |
Porosity in fracture system | 0.5 |
Porosity in matrix Permeability in matrix Injection temperature Bottomhole production pressure Productivity index | 1.0 × 10−5 1.0 × 10−18 m2 60 °C (275.571 kJ/kg) 25.80 MPa 5.0 × 10−12 m3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Tang, L.; Wu, N.; Song, J.; Zhao, Z. Numerical Investigation of Influence of Reservoir Heterogeneity on Electricity Generation Performance of Enhanced Geothermal System. Processes 2019, 7, 202. https://doi.org/10.3390/pr7040202
Zeng Y, Tang L, Wu N, Song J, Zhao Z. Numerical Investigation of Influence of Reservoir Heterogeneity on Electricity Generation Performance of Enhanced Geothermal System. Processes. 2019; 7(4):202. https://doi.org/10.3390/pr7040202
Chicago/Turabian StyleZeng, Yuchao, Liansheng Tang, Nengyou Wu, Jing Song, and Zhanlun Zhao. 2019. "Numerical Investigation of Influence of Reservoir Heterogeneity on Electricity Generation Performance of Enhanced Geothermal System" Processes 7, no. 4: 202. https://doi.org/10.3390/pr7040202
APA StyleZeng, Y., Tang, L., Wu, N., Song, J., & Zhao, Z. (2019). Numerical Investigation of Influence of Reservoir Heterogeneity on Electricity Generation Performance of Enhanced Geothermal System. Processes, 7(4), 202. https://doi.org/10.3390/pr7040202