A Model for Optimizing Location Selection for Biomass Energy Power Plants
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Research Development
- Step 1:
- All of the criteria and subcriteria affecting the site evaluation and selection processes are determined based on experts and literature reviews.
- Step 2:
- The FAHP model was utilized to identify the weight of all of the subcriteria in the second stage.
- Step 3:
- The TOPSIS model is used for ranking potential locations in the final stage.
3.2. Fuzzy Sets, AHP, and TOPSIS Model
3.2.1. Fuzzy Sets and Fuzzy Number
3.2.2. Analytic Hierarchy Process (AHP) Model
3.2.3. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
- Construct the normalized decision matrix
- Construct the weighted normalized decision matrix
- Determine the ideal and negative ideal solutions
- Calculate the separation measures for each alternative
- Calculate the relative closeness to the ideal solution ()
4. Case Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Điện sinh khối-nguồn năng lượng tái tạo hữu ích. Available online: http://chatdotxanh.com/chi-tiet-tin/dien-sinh-khoi-nguon-nang-luong-tai-tao-huu-ich.html (accessed on 12 February 2019).
- Trung, N.Q. Tổng quan về lưới điện trong hệ thống điện Quốc gia. Trung tâm điều độ hệ thống điện QG. Available online: https://www.nldc.evn.vn/newsg/1/86/Tong-quan-ve-luoi-dien-trong-he-thong-dien-Quoc-gia/default.aspx (accessed on 20 February 2019).
- NĂNG LƯỢNG SINH KHỐI Ở VIỆT NAM: VẪN CHỈ LÀ TIỀM NĂNG. Available online: https://www.pvpower.vn/nang-luong-sinh-khoi-o-viet-nam-van-chi-la-tiem-nang/ (accessed on 18 February 2019).
- Ward, A.; Le, H.; Tran, T.; Pham, N. Tạo sự hấp dẫn cho năng lượng sinh khối; Viện Tăng trưởng xanh toàn cầu: Seoul, Korea, 2018. [Google Scholar]
- Thanh, T. Nguồn năng lượng sinh khối ở Việt Nam khoảng 150 triệu tấn/năm. Available online: https://petrotimes.vn/nguon-nang-luong-sinh-khoi-o-viet-nam-khoang-150-trieu-tannam-516007.html (accessed on 12 February 2019).
- Phát triển năng lượng sinh khối của Việt Nam: Tiềm năng và thách thức. Available online: http://chatdotxanh.com/chi-tiet-tin/phat-trien-nang-luong-sinh-khoi-cua-viet-nam-tiem-nang-va-thach-thuc.html (accessed on 15 February 2019).
- Pamučar, D.; Gigović, L.; Bajić, Z.; Janošević, M. Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers. Sustainability 2017, 9, 1315. [Google Scholar] [CrossRef]
- Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D.J. Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renew. Energy 2017, 109, 275–286. [Google Scholar] [CrossRef]
- Ghasempour, R.; Nazari, M.A.; Ebrahimi, M.; Ahmadi, M.H.; Hadiyanto, H. Multi-Criteria Decision Making (MCDM) Approach for Selecting Solar Plants Site and Technology: A Review. Int. J. Renew. Energy Dev. 2019, 8, 15–25. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Li, Y.; Zhu, Y. Biomass power plant site selection modeling and decision optimization. Trans. Chin. Soc. Agric. Eng. 2011, 27, 255–260. [Google Scholar]
- Patomtummakan, J.; Nananukul, N. Biomass Power Plant Location and Distribution Planning System. GMSARN Int. J. 2018, 12, 11–18. [Google Scholar]
- Cattafi, M.; Gavanelli, M.; Cagnoli, P.; Massimiliano, C. Sustainable Biomass Power Plant Location in the Italian Emilia-Romagna Region. ACM Trans. Intell. Syst. Technol. 2011, 2, 23. [Google Scholar] [CrossRef]
- Woo, H.; Acuna, M.; Moroni, M.; Taskhiri, M.S.; Turner, P. Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests 2018, 9, 585. [Google Scholar] [CrossRef]
- Lv, H.; Ding, H.; Zhou, D.; Zhou, P. A Site Selection Model for a Straw-Based Power Generation Plant with CO2 Emissions. Sustainability 2014, 6, 7466–7481. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Duong, D.H.; Thai, H.T.N. A Hybrid Fuzzy Analysis Network Process (FANP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Approaches for Solid Waste to Energy Plant Location Selection in Vietnam. Appl. Sci. 2018, 8, 1100. [Google Scholar] [CrossRef]
- Jeong, J.S.; Ramírez-Gómez, Á. A Multicriteria GIS-Based Assessment to Optimize Biomass Facility Sites with Parallel Environment—A Case Study in Spain. Energies 2017, 10, 2095. [Google Scholar] [CrossRef]
- Isalou, A.A.; Zamani, V.; Shahmoradil, B. Alizadeh Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP). Environ. Earth Sci. 2012, 68, 1745–1755. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Thai, H.T.N.; Duong, D.H. Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam. Energies 2018, 11, 1504. [Google Scholar] [CrossRef]
- Wang, C.-N.; Huang, Y.-F.; Chai, Y.-C.; Nguyen, V.T. A Multi-Criteria Decision Making (MCDM) for Renewable Energy Plants Location Selection in Vietnam under a Fuzzy Environment. Appl. Sci. 2018, 8, 2069. [Google Scholar] [CrossRef]
- Fetanat, A.; Khorasaninejad, E. A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean Coast. Manag. 2015, 109, 27–28. [Google Scholar] [CrossRef]
- Rezaei-Shouroki, M. The location optimization of wind turbine sites with using the MCDM approach: A case study. Energy Quipsys 2017, 5, 165–187. [Google Scholar]
- Heidarzade, F.; Varzandeh, M.H.M.; Rahbari, O.; Zavadskas, E.K.; Vafaeapour, M. Placement of Wind Farms Based on a Hybrid Multi Criteria. In Proceedings of the World Sustainability Forum, Oshawa, ON, Canada, 1–30 November 2014. [Google Scholar]
- Cobuloglu, H.I.; Büyüktahtakin, I.E. A Multi-Criteria Approach for Biomass Crop Selection under Fuzzy Environment. In Proceedings of the 2014 Industrial and Systems Engineering Research Conference, Montreal, QC, Canada, 31 May–3 June 2014. [Google Scholar]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Valasai, G.D.; Khan, M.W.A.; Ikram, M. An Integrated Delphi-AHP and Fuzzy TOPSIS Approach toward Ranking and Selection of Renewable Energy Resources in Pakistan. Processes 2019, 7, 118. [Google Scholar] [CrossRef]
- Nazari, M.A.; Aslani, A.; Ghasempour, R. Analysis of Solar Farm Site Selection Based on TOPSIS Approach. Int. J. Soc. Ecol. Sustain. Dev. 2018, 9, 14. [Google Scholar] [CrossRef]
- Nazari, M.A.; Aslani, A.; Ghasempour, R. Biomass Type Selection for Boilers Using TOPSIS Multi-Criteria Model. Int. J. Environ. Sci. Dev. 2014, 2, 5. [Google Scholar]
- Daneshvar Rouyendegh, B.; Yildizbasi, A.; Arikan, Ü.Z.B. Babak Daneshvar Rouyendegh. Using Intuitionistic Fuzzy TOPSIS in Site Selection of Wind Power Plants in Turkey. Adv. Fuzzy Syst. 2018, 2018. [Google Scholar] [CrossRef]
- Choudhary, D.; Shankar, R. An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy 2012, 42, 510–521. [Google Scholar] [CrossRef]
- Nhung, H. ĐBSCL có tiềm năng năng lượng sinh khối lớn nhất nước. Tuổi Trẻ. Available online: https://tuoitre.vn/dbscl-co-tiem-nang-nang-luong-sinh-khoi-lon-nhat-nuoc-1076932.htm (accessed on 27 May 2019).
- Nguồn năng lượng nào cho Đồng bằng sông Cửu Long? Kinh Tế Sài Gòn. Available online: https://www.thesaigontimes.vn/121298/Nguon-nang-luong-nao-cho-Dong-bang-song-Cuu-Long (accessed on 27 May 2019).
- ĐBSCL có tiềm năng năng lượng sinh khối lớn nhất nước. Available online: http://m.icon.com.vn/vi-VN/c620/127733/DBSCL-co-tiem-nang-nang-luong-sinh-khoi-lon-nhat-nuoc.aspx (accessed on 24 February 2019).
- Biomass Energy in Vietnam. Available online: https://www.bioenergyconsult.com/biomass-energy-vietnam/ (accessed on 10 April 2019).
No. | Location’s Name | Symbol |
---|---|---|
1 | Kien Giang | DMU/001 |
2 | An Giang | DMU/002 |
3 | Dong Thap | DMU/003 |
4 | Soc Trang | DMU/004 |
5 | Long An | DMU/005 |
6 | Tra Vinh | DMU/006 |
7 | Tien Giang | DMU/007 |
8 | Can Tho | DMU/008 |
No. | Criteria | Weight |
---|---|---|
1 | ECO1 | 0.1650 |
2 | ECO2 | 0.1042 |
3 | ECO3 | 0.1968 |
4 | EVN1 | 0.0589 |
5 | EVN2 | 0.0572 |
6 | EVN3 | 0.0404 |
7 | TEC1 | 0.0547 |
8 | TEC2 | 0.1283 |
9 | TEC3 | 0.1163 |
10 | SOP1 | 0.0236 |
11 | SOP1 | 0.0210 |
12 | SOP3 | 0.0144 |
13 | SOP4 | 0.0193 |
DMU/001 | DMU/002 | DMU/003 | DMU/004 | DMU/005 | DMU/006 | DMU/007 | DMU/008 | |
---|---|---|---|---|---|---|---|---|
ECO1 | 0.2851 | 0.3326 | 0.3801 | 0.3801 | 0.4276 | 0.3326 | 0.2851 | 0.3801 |
ECO2 | 0.3567 | 0.3567 | 0.3121 | 0.4013 | 0.3567 | 0.2675 | 0.3567 | 0.4013 |
ECO3 | 0.3472 | 0.3038 | 0.3472 | 0.3906 | 0.3472 | 0.3472 | 0.3906 | 0.3472 |
EVN1 | 0.3845 | 0.3417 | 0.3417 | 0.2990 | 0.3845 | 0.3417 | 0.3845 | 0.3417 |
EVN2 | 0.3636 | 0.3636 | 0.3182 | 0.4091 | 0.3636 | 0.3182 | 0.3182 | 0.3636 |
EVN3 | 0.3219 | 0.3219 | 0.3678 | 0.4138 | 0.3219 | 0.2759 | 0.3678 | 0.4138 |
TEC1 | 0.3845 | 0.3417 | 0.3417 | 0.3417 | 0.2990 | 0.3417 | 0.3845 | 0.3845 |
TEC1 | 0.3786 | 0.3366 | 0.3786 | 0.2945 | 0.3786 | 0.3366 | 0.3786 | 0.3366 |
TEC3 | 0.3522 | 0.3522 | 0.3082 | 0.3962 | 0.3962 | 0.3522 | 0.3522 | 0.3082 |
SOP1 | 0.3581 | 0.3134 | 0.4029 | 0.3581 | 0.3581 | 0.3134 | 0.3581 | 0.3581 |
SOP2 | 0.3038 | 0.3472 | 0.3472 | 0.3906 | 0.3472 | 0.3906 | 0.3472 | 0.3472 |
SOP3 | 0.3581 | 0.3581 | 0.4029 | 0.3581 | 0.3581 | 0.3581 | 0.3134 | 0.3134 |
SOP4 | 0.3465 | 0.3898 | 0.3465 | 0.3898 | 0.3032 | 0.3465 | 0.3898 | 0.3032 |
DMU/001 | DMU/002 | DMU/003 | DMU/004 | DMU/005 | DMU/006 | DMU/007 | DMU/008 | |
---|---|---|---|---|---|---|---|---|
ECO1 | 0.0470 | 0.0549 | 0.0627 | 0.0627 | 0.0706 | 0.0549 | 0.0470 | 0.0627 |
ECO2 | 0.0372 | 0.0372 | 0.0325 | 0.0418 | 0.0372 | 0.0279 | 0.0372 | 0.0418 |
ECO3 | 0.0683 | 0.0598 | 0.0683 | 0.0769 | 0.0683 | 0.0683 | 0.0769 | 0.0683 |
EVN1 | 0.0226 | 0.0201 | 0.0201 | 0.0176 | 0.0226 | 0.0201 | 0.0226 | 0.0201 |
EVN2 | 0.0208 | 0.0208 | 0.0182 | 0.0234 | 0.0208 | 0.0182 | 0.0182 | 0.0208 |
EVN3 | 0.0130 | 0.0130 | 0.0149 | 0.0167 | 0.0130 | 0.0111 | 0.0149 | 0.0167 |
TEC1 | 0.0210 | 0.0187 | 0.0187 | 0.0187 | 0.0164 | 0.0187 | 0.0210 | 0.0210 |
TEC1 | 0.0486 | 0.0432 | 0.0486 | 0.0378 | 0.0486 | 0.0432 | 0.0486 | 0.0432 |
TEC3 | 0.0410 | 0.0410 | 0.0358 | 0.0461 | 0.0461 | 0.0410 | 0.0410 | 0.0358 |
SOP1 | 0.0085 | 0.0074 | 0.0095 | 0.0085 | 0.0085 | 0.0074 | 0.0085 | 0.0085 |
SOP2 | 0.0064 | 0.0073 | 0.0073 | 0.0082 | 0.0073 | 0.0082 | 0.0073 | 0.0073 |
SOP3 | 0.0052 | 0.0052 | 0.0058 | 0.0052 | 0.0052 | 0.0052 | 0.0045 | 0.0045 |
SOP4 | 0.0067 | 0.0075 | 0.0067 | 0.0075 | 0.0059 | 0.0067 | 0.0075 | 0.0059 |
DMU | Di+ | Di− |
---|---|---|
DMU/001 | 0.0265 | 0.0190 |
DMU/002 | 0.0255 | 0.0151 |
DMU/003 | 0.0192 | 0.0221 |
DMU/004 | 0.0145 | 0.0301 |
DMU/005 | 0.0119 | 0.0312 |
DMU/006 | 0.0254 | 0.0144 |
DMU/007 | 0.0252 | 0.0242 |
DMU/008 | 0.0170 | 0.0247 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Tsai, T.-T.; Huang, Y.-F. A Model for Optimizing Location Selection for Biomass Energy Power Plants. Processes 2019, 7, 353. https://doi.org/10.3390/pr7060353
Wang C-N, Tsai T-T, Huang Y-F. A Model for Optimizing Location Selection for Biomass Energy Power Plants. Processes. 2019; 7(6):353. https://doi.org/10.3390/pr7060353
Chicago/Turabian StyleWang, Chia-Nan, Tsang-Ta Tsai, and Ying-Fang Huang. 2019. "A Model for Optimizing Location Selection for Biomass Energy Power Plants" Processes 7, no. 6: 353. https://doi.org/10.3390/pr7060353
APA StyleWang, C. -N., Tsai, T. -T., & Huang, Y. -F. (2019). A Model for Optimizing Location Selection for Biomass Energy Power Plants. Processes, 7(6), 353. https://doi.org/10.3390/pr7060353