Molecular Recognition and Cell Surface Biochemical Response of Bacillus thuringiensis on Triphenyltin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Chemicals
2.2. Microbial Culture
2.3. Mechanical Properties Analysis of Bacillus thuringiensis upon Recognizing Different Media
2.4. Cellular Morphology
2.5. Effect of TPT on Cell Recognition of Cu2+
2.6. Effect of TPT and Copper on Cells
2.7. Statistical Analysis
3. Results and Discussion
3.1. Recognition and Binding of Different Compounds
3.2. Effect of TPT on Cellular Morphology of Bacillus thuringiensis
3.3. Changes in Mechanical Properties of Bacillus thuringiensis during Biodegradation of Phenyltin
3.4. Effect of TPT on Cu2+ Recognition by Bacillus thuringiensis
3.5. Cell Surface Response to the Combination of Triphenyltin and Copper Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, L.L.; Wang, J.T.; Chung, K.N.; Leu, M.Y.; Meng, P.J. Distribution and accumulation of organotin species in sea water, sediment sand organisms collected from a Taiwan mariculture area. Mar. Pollut. Bull. 2011, 63, 535–540. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho Oliveira, R.; Santelli, R.E. Occurrence and chemical speciation analysis of organotin compounds in the environment: A review. Talanta 2010, 82, 9–24. [Google Scholar]
- Zhao, Y.J.; He, J.C.; Chen, Q.; He, J.; Hou, H.Q.; Zheng, Z. Evaluation of 206 nm UV radiation for degrading organometallics in waste water. Chem. Eng. J. 2011, 167, 22–27. [Google Scholar] [CrossRef]
- Podratz, P.L.; Merlo, E.; Sena, G.C.; Morozesk, M.; Bonomo, M.M.; Matsumoto, S.T.; da Costa, M.B.; Zamprogno, G.C.; Brandao, P.A.; Carneiro, M.T.; et al. Accumulation of organotins in sea food leads to reproductive tract abnormalities in female rats. Reprod. Toxicol. 2015, 57, 29–42. [Google Scholar]
- Cole, R.F.; Mills, G.A.; Parker, R.; Bolam, T.; Birchenough, A.; Kröger, S.; Fones, G.R. Trends in the analysis and monitoring of organotins in the aquatic environment. Trends Environ. Anal. Chem. 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ye, J.; Ma, J.; Tang, L.; Huang, J. Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophilia and their influence on cellular metabolism. J. Hazard. Mater. 2014, 276, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Yin, H.; Peng, H.; Bai, J.; Xie, D.; Wang, L. Biosorption and biodegradation of triphenyltin by Brevibacillus brevis. Bioresour. Technol. 2013, 129, 236–241. [Google Scholar]
- Huang, J.; Ye, J.; Ma, J.; Gao, J.; Chen, S.; Wu, X. Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by Bacillus thuringiensis and tea saponin. Chem. Eng. J. 2014, 249, 167–173. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Ou, H.; Li, Q.; Ye, J.; Yin, H. Correlation among phenyltins molecular properties, degradation and cellular influences on Bacillus thuringiensis in the presence of biosurfactant. Biochem. Eng. J. 2016, 105, 71–79. [Google Scholar]
- Wang, L.; Yi, W.; Ye, J.; Qin, H.; Long, Y.; Yang, M.; Li, Q. Interactions among triphenyltin degradation, phospholipid synthesis and membrane characteristics of Bacillus thuringiensis in the presence of d-malic acid. Chemosphere 2017, 169, 403–412. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Qin, H.; Yang, M.; Ye, J.; Long, Y.; Ou, H. Proteome and phospholipid alteration reveal metabolic network of Bacillus thuringiensis under triclosan stress. Sci. Total Environ. 2018, 615, 508–516. [Google Scholar]
- Zhou, P; Chen, Y.; Lu, Q.; Qin, H.; Ou, H.; He, B.; Ye, J. Cellular metabolism network of Bacillus thuringiensis related to erythromycin stress and degradation. Ecotoxicol. Environ. Saf. 2018, 160, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Bao, V.W.W.; Leung, K.M.Y. Binary mixture toxicities of triphenyltin with tributyltin or copper to five marine organisms:Implications on environmental risk assessment. Mar. Pollut. Bull. 2017, 124, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, M.; Chang, Y.; Niu, N.; Guan, Y.; Ye, M.; Li, C.; Tang, J. Directly observing alterations of morphology and mechanical properties of living cancer cells with atomic force microscopy. Talanta 2019, 191, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.; Aebi, U.; Bentires-Alj, M.; Schoenenberger, C.-A.; et al. The Nanomechanical Signature of Breast Cancer. Biophys. J. 2013, 104, 321a. [Google Scholar] [Green Version]
- Dufrene, Y.F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; Gerber, C.; Muller, D.J. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 2017, 12, 295–307. [Google Scholar]
- Van Der Hofstadt, M; Huttener, M.; Juarez, A.; Gomila, G. Nano scale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope. Ultramicroscopy 2015, 154, 29–36. [Google Scholar]
- Tarafdar, A; Sarkar, T.K.; Chakraborty, S.; Sinha, A.; Masto, R.E. Biofilm development of Bacillus thuringiensis on MWCNT buckypaper: Adsorption-synergic biodegradation of phenanthrene. Ecotoxicol. Environ. Saf. 2018, 157, 327–334. [Google Scholar] [CrossRef]
- Harimawan, A; Rajasekar, A.; Ting, Y.P. Bacteria attachment to surfaces--AFM force spectroscopy and physicochemical analyses. J. Colloid Interface Sci. 2011, 364, 213–218. [Google Scholar] [CrossRef]
- Zhang, T; Chao, Y.; Shih, K.; Li, X.Y.; Fang, H.H. Quantification of the lateral detachment force for bacterial cells using atomic force microscope and centrifugation. Ultramicroscopy 2011, 111, 131–139. [Google Scholar] [CrossRef]
- Adams, E.L.; Almagro-Moreno, S.; Boyd, E.F. An atomic force microscopy method for the detection of binding forces between bacteria and a lipid bilayer containing higher order gangliosides. J. Microbiol. Methods 2011, 84, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Doktycz, M.J.; Sullivan, C.J.; Hoyt, P.R.; Pelletier, D.A.; Wu, S.; Allison, D.P. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 2003, 97, 209–216. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, H.; Yin, H.; Peng, H.; Tang, L.; Gao, J.; Ma, Y. Triphenyltin biodegradation and intracellular material release by Brevibacillus brevis. Chemosphere 2014, 105, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Yin, H.; Mai, B.; Peng, H.; Qin, H.; He, B.; Zhang, N. Biosorption of chromium from aqueous solution and electroplating waste water using mixture of Candida lipolytica and dewatered sewage sludge. Bioresour. Technol. 2010, 101, 3893–3902. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A; Teruel, J.A.; Aranda, F.J. Effect of triorganotin compounds on membrane permeability. Biochim. Biophys. Acta 2005, 1720, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Ye, J.; Ou, H.; Qin, H.; Long, Y.; Ke, J. Triphenyltin recognition by primary structures of effector proteins and theprotein network of Bacillus thuringiensis during the triphenyltin degradation process. Sci. Rep. 2017, 7, 4133. [Google Scholar]
- Oves, M; Khan, M.S.; Zaidi, A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J. Biol. Sci. 2013, 20, 121–129. [Google Scholar] [CrossRef]
- Pardo, R; Herguedas, M.; Barrado, E.; Vega, M. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida. Anal. Bioanal. Chem. 2003, 376, 26–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Miller, R.M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 1994, 60, 2101–2106. [Google Scholar] [Green Version]
- Yi, W; Li, C.; Ye, J.; Long, Y.; Qin, H. Correlation between triphenyltin degradation and cellular metabolic responses of Bacillus thuringiensis. Int. Biodeterior. Biodegrad. 2017, 122, 61–68. [Google Scholar] [CrossRef]
- Özer, A.; Gürbüz, G.; Çalimli, A.; Körbahti, B.K. Biosorption of copper(II) ions on Enteromorpha prolifera: Application of response surface methodology (RSM). Chem. Eng. J. 2009, 146, 377–387. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ye, J.; Qin, H.; Liang, X.; Long, Y. Molecular Recognition and Cell Surface Biochemical Response of Bacillus thuringiensis on Triphenyltin. Processes 2019, 7, 358. https://doi.org/10.3390/pr7060358
Zhang H, Ye J, Qin H, Liang X, Long Y. Molecular Recognition and Cell Surface Biochemical Response of Bacillus thuringiensis on Triphenyltin. Processes. 2019; 7(6):358. https://doi.org/10.3390/pr7060358
Chicago/Turabian StyleZhang, Hongling, Jinshao Ye, Huaming Qin, Xujun Liang, and Yan Long. 2019. "Molecular Recognition and Cell Surface Biochemical Response of Bacillus thuringiensis on Triphenyltin" Processes 7, no. 6: 358. https://doi.org/10.3390/pr7060358
APA StyleZhang, H., Ye, J., Qin, H., Liang, X., & Long, Y. (2019). Molecular Recognition and Cell Surface Biochemical Response of Bacillus thuringiensis on Triphenyltin. Processes, 7(6), 358. https://doi.org/10.3390/pr7060358