Plasmonic-Active Nanostructured Thin Films
Abstract
:1. Introduction
2. Composition of PANTFs
3. Substrates
4. Intermediate Layer for Stabilizing PANTFs
5. Fabrication of Plasmonic-Active Nanostructured Thin Film
5.1. Patterned Template for PANTFs Synthesis
5.1.1. Electron Beam Lithography (EBL)
5.1.2. Nanosphere Lithography
5.1.3. Nanoimprint Lithography
5.1.4. Porous Membrane-Based Lithography
5.2. Patterned Substrate for PANTFs Synthesis
5.3. Planar Thin Films for PANTFs Synthesis
5.3.1. PANTF by Removal of Material
5.3.2. PANTF by Addition of Material
5.4. Transfer of Film and Nanoparticles
6. Characterization of PANTFs
6.1. Sensitivity
6.2. Imaging
6.3. Simulations
7. Types of PANTFs
7.1. PANTFs with Gaps
7.2. PANTFs with Elevated Nanofeatures
7.2.1. Film over Nanospheres
7.2.2. Array of Nanodomes and Nanopillars
7.2.3. Randomly Oriented Nanospikes and Nanobricks
7.3. Transferred Films
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P.M.; Oddershede, L.B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130. [Google Scholar] [CrossRef] [PubMed]
- Tokel, O.; Inci, F.; Demirci, U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014, 114, 5728–5752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Jiang, N.; Zhuo, X.; Wang, J. Active plasmonics: Principles, structures, and applications. Chem. Rev. 2017, 118, 3054–3099. [Google Scholar] [CrossRef]
- Kang, H.; Buchman, J.T.; Rodriguez, R.S.; Ring, H.L.; He, J.; Bantz, K.C.; Haynes, C.L. Stabilization of silver and gold nanoparticles: Preservation and improvement of plasmonic functionalities. Chem. Rev. 2018, 119, 664–699. [Google Scholar] [CrossRef]
- Shao, L.; Susha, A.S.; Cheung, L.S.; Sau, T.K.; Rogach, A.L.; Wang, J. Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments. Langmuir 2012, 28, 8979–8984. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, S.; Agrawal, A.; Rodriguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R.A.; Kornowski, A.; Weller, H.; Liz-Marzan, L.M. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26, 14943–14950. [Google Scholar] [CrossRef] [PubMed]
- Couture, M.; Live, L.S.; Dhawan, A.; Masson, J.F. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays. Analyst 2012, 137, 4162–4170. [Google Scholar] [CrossRef] [PubMed]
- Rindzevicius, T.; Alaverdyan, Y.; Kaell, M.; Murray, W.A.; Barnes, W.L. Long-range refractive index sensing using plasmonic nanostructures. J. Phys. Chem. C 2007, 111, 11806–11810. [Google Scholar] [CrossRef]
- Bryche, J.F.; Gillibert, R.; Barbillon, G.; Gogol, P.; Moreau, J.; de la Chapelle, M.L.; Bartenlian, B.; Canva, M. Plasmonic enhancement by a continuous gold underlayer: Application to SERS sensing. Plasmonics 2016, 11, 601–608. [Google Scholar] [CrossRef]
- Henzie, J.; Lee, J.; Lee, M.H.; Hasan, W.; Odom, T.W. Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 2009, 60, 147–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willets, K.A.; Wilson, A.J.; Sundaresan, V.; Joshi, P.B. Super-resolution imaging and plasmonics. Chem. Rev. 2017, 117, 7538–7582. [Google Scholar] [CrossRef] [PubMed]
- Susman, M.D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates. Chem. Mater. 2012, 24, 2501–2508. [Google Scholar] [CrossRef]
- Li, W.; Ren, K.; Zhou, J. Aluminum-based localized surface plasmon resonance for biosensing. Trends Anal. Chem. 2016, 80, 486–494. [Google Scholar] [CrossRef]
- Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotech. 2011, 6, 28–32. [Google Scholar] [CrossRef]
- Reddy, H.; Guler, U.; Kudyshev, Z.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics 2017, 4, 1413–1420. [Google Scholar] [CrossRef]
- Gopalan, K.K.; Paulillo, B.; Mackenzie, D.M.; Rodrigo, D.; Bareza, N.; Whelan, P.R.; Shivayogimath, A.; Pruneri, V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Lett. 2018, 18, 5913–5918. [Google Scholar] [CrossRef]
- Agrawal, A.; Cho, S.H.; Zandi, O.; Ghosh, S.; Johns, R.W.; Milliron, D.J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Niu, J.; Danesh, M.; Liu, J.; Chen, Y.; Ke, L.; Qiu, C.; Yang, H. Localized surface plasmon resonance in graphene nanomesh with Au nanostructures. Appl. Phys. Lett. 2016, 109, 041106. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Lin, Y.; Deng, J.; Di, J. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors. ACS Appl. Mater. Interfaces 2013, 5, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Abargues, R.; Nickel, U.; Rodriguez-Canto, P. Charge dissipation in e-beam lithography with Novolak-based conducting polymer films. Nanotechnology 2008, 19, 125302. [Google Scholar] [CrossRef]
- Shir, D.; Ballard, Z.S.; Ozcan, A. Flexible plasmonic sensors. IEEE J. Sel. Top. Quantum Electron. 2015, 22, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Sugavaneshwar, R.P.; Ishii, S.; Dao, T.D.; Ohi, A.; Nabatame, T.; Nagao, T. Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications. ACS Photonics 2017, 5, 814–819. [Google Scholar] [CrossRef]
- Lin, E.H.; Tsai, W.S.; Lee, K.L.; Lee, M.C.M.; Wei, P.K. Enhancing angular sensitivity of plasmonic nanostructures using mode transition in hexagonal gold nanohole arrays. Sens. Actuators B Chem. 2017, 241, 800–805. [Google Scholar] [CrossRef]
- Chuo, Y.; Hohertz, D.; Landrock, C.; Omrane, B.; Kavanagh, K.L.; Kaminska, B. Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing. IEEE Sens. J. 2013, 13, 3982–3990. [Google Scholar] [CrossRef]
- Aouani, H.; Wenger, J.; Gérard, D.; Rigneault, H.; Devaux, E.; Ebbesen, T.W.; Mahdavi, F.; Xu, T.; Blair, S. Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. ACS Nano 2009, 3, 2043–2048. [Google Scholar] [CrossRef]
- Habteyes, T.G.; Dhuey, S.; Wood, E.; Gargas, D.; Cabrini, S.; Schuck, P.J.; Alivisatos, A.P.; Leone, S.R. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 2012, 6, 5702–5709. [Google Scholar] [CrossRef]
- Zhu, S.; Du, C.; Fu, Y.; Deng, Q.; Shi, L. Influence of Cr adhesion layer on detection of amyloid-derived diffusible ligands based on localized surface plasmon resonance. Plasmonics 2009, 4, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Najiminaini, M.; Vasefi, F.; Kaminska, B.; Carson, J. Optical resonance transmission properties of nano-hole arrays in a gold film: Effect of adhesion layer. Opt. Express 2011, 19, 26186–26197. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, M.; Bastos Da Silva Fanta, A.; Jensen, F.; Wagner, J.B.; Han, A. Influence of Ti and Cr adhesion layers on ultrathin Au films. ACS Appl. Mater. Interfaces 2017, 9, 37374–37385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegfried, T.; Ekinci, Y.; Martin, O.J.; Sigg, H. Engineering metal adhesion layers that do not deteriorate plasmon resonances. ACS Nano 2013, 7, 2751–2757. [Google Scholar] [CrossRef] [Green Version]
- Cortie, M.B.; McDonagh, A.M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735. [Google Scholar] [CrossRef] [Green Version]
- Baburin, A.S.; Merzlikin, A.M.; Baryshev, A.V.; Ryzhikov, I.A.; Panfilov, Y.V.; Rodionov, I.A. Silver-based plasmonics: Golden material platform and application challenges. Opt. Mater. Express 2019, 9, 611–642. [Google Scholar] [CrossRef]
- Horák, M.; Bukvišová, K.; Švarc, V.; Jaskowiec, J.; Křápek, V.; Šikola, T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018, 8, 9640. [Google Scholar] [CrossRef]
- Arnob, M.M.P.; Zhao, F.; Li, J.; Shih, W.C. EBL-based fabrication and different modeling approaches for nanoporous gold nanodisks. ACS Photonics 2017, 4, 1870–1878. [Google Scholar] [CrossRef]
- Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117. [Google Scholar] [CrossRef]
- Haynes, C.L.; Van Duyne, R.P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Hicks, E.M.; Zhang, X.; Zou, S.; Lyandres, O.; Spears, K.G.; Schatz, G.C.; Van Duyne, R.P. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J. Phys. Chem. B 2005, 109, 22351–22358. [Google Scholar] [CrossRef] [PubMed]
- Halpern, A.R.; Corn, R.M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762. [Google Scholar] [CrossRef]
- Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Kaell, M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 2004, 4, 1003–1007. [Google Scholar] [CrossRef]
- Im, H.; Lee, S.H.; Wittenberg, N.J.; Johnson, T.W.; Lindquist, N.C.; Nagpal, P.; Norris, D.J.; Oh, S.H. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 2011, 5, 6244–6253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Es-Souni, M.; Habouti, S. Ordered nanomaterial thin films via supported anodized alumina templates. Front. Mater. 2014, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Yeom, S.H.; Kim, O.G.; Kang, B.H.; Kim, K.J.; Yuan, H.; Kwon, D.H.; Kim, H.R.; Kang, S.W. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Opt. Express 2011, 19, 22882–22891. [Google Scholar] [CrossRef]
- McPhillips, J.; Murphy, A.; Jonsson, M.P.; Hendren, W.R.; Atkinson, R.; Höök, F.; Zayats, A.V.; Pollard, R.J. High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 2010, 4, 2210–2216. [Google Scholar] [CrossRef]
- Kabashin, A.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.; Atkinson, R.; Pollard, R.; Podolskiy, V.; Zayats, A. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867. [Google Scholar] [CrossRef]
- Hahn, C.; Hajebifard, A.; Berini, P. Helium focused ion beam direct milling of plasmonic heptamer-arranged nanohole arrays. Nanophotonics 2019. [Google Scholar] [CrossRef]
- Bhattarai, J.K.; Sharma, A.; Fujikawa, K.; Demchenko, A.V.; Stine, K.J. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy. Carbohydr. Res. 2015, 405, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canalejas-Tejero, V.; Herranz, S.; Bellingham, A.; Moreno-Bondi, M.C.; Barrios, C.A. Passivated aluminum nanohole arrays for label-free biosensing applications. ACS Appl. Mater. Interfaces 2014, 6, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Johnson, T.W.; Lindquist, N.C.; Im, H.; Norris, D.J.; Oh, S.H. Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays. Adv. Funct. Mater. 2012, 22, 4439–4446. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Ye, S.; Wu, S.; Zhang, J.; Cui, L.; Li, A.; Wang, T.; Li, S.; Yang, B. Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission. J. Mater. Chem. 2012, 22, 8903–8910. [Google Scholar] [CrossRef]
- Brolo, A.G.; Gordon, R.; Leathem, B.; Kavanagh, K.L. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 2004, 20, 4813–4815. [Google Scholar] [CrossRef]
- Lee, S.H.; Bantz, K.C.; Lindquist, N.C.; Oh, S.H.; Haynes, C.L. Self-assembled plasmonic nanohole arrays. Langmuir 2009, 25, 13685–13693. [Google Scholar] [CrossRef]
- Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Hoeoek, F.; Sutherland, D.S.; Kaell, M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005, 5, 2335–2339. [Google Scholar] [CrossRef]
- Chen, J.; Shi, J.; Decanini, D.; Cambril, E.; Chen, Y.; Haghiri-Gosnet, A.M. Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography. Microelectron. Eng. 2009, 86, 632–635. [Google Scholar] [CrossRef]
- Live, L.S.; Bolduc, O.R.; Masson, J.F. Propagating surface plasmon resonance on microhole arrays. Anal. Chem. 2010, 82, 3780–3787. [Google Scholar] [CrossRef]
- Ai, B.; Yu, Y.; Möhwald, H.; Zhang, G. Novel 3D Au nanohole arrays with outstanding optical properties. Nanotechnology 2012, 24, 035303. [Google Scholar] [CrossRef]
- Luo, X.; Xing, Y.; Galvan, D.D.; Zheng, E.; Wu, P.; Cai, C.; Yu, Q. A plasmonic gold nanohole array for surface-enhanced Raman scattering detection of DNA methylation. ACS Sens. 2019. [Google Scholar] [CrossRef] [PubMed]
- Xiang, G.; Zhang, N.; Zhou, X. Localized surface plasmon resonance biosensing with large area of gold nanoholes fabricated by nanosphere lithography. Nanoscale Res. Lett. 2010, 5, 818–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Kitamura, A.; Murahashi, M.; Yamanaka, K.; Hoa, L.Q.; Yamaguchi, Y.; Tamiya, E. Novel gold-capped nanopillars imprinted on a polymer film for highly sensitive plasmonic biosensing. Anal. Chem. 2012, 84, 5494–5500. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yang, W.; Wang, J.; Zhu, J.; Qian, L.; Yang, Z. An ultranarrow SPR linewidth in the UV region for plasmonic sensing. Nanoscale 2019, 11, 4061–4066. [Google Scholar] [CrossRef]
- Norek, M.; Włodarski, M.; Matysik, P. UV plasmonic-based sensing properties of aluminum nanoconcave arrays. Curr. Appl. Phys. 2014, 14, 1514–1520. [Google Scholar] [CrossRef]
- Sharma, B.; Cardinal, M.F.; Ross, M.B.; Zrimsek, A.B.; Bykov, S.V.; Punihaole, D.; Asher, S.A.; Schatz, G.C.; Van Duyne, R.P. Aluminum film-over-nanosphere substrates for deep-UV surface-enhanced resonance Raman spectroscopy. Nano Lett. 2016, 16, 7968–7973. [Google Scholar] [CrossRef]
- Kim, D.K.; Yoo, S.M.; Park, T.J.; Yoshikawa, H.; Tamiya, E.; Park, J.Y.; Lee, S.Y. Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs. Anal. Chem. 2011, 83, 6215–6222. [Google Scholar] [CrossRef]
- Liu, B.; Chen, S.; Zhang, J.; Yao, X.; Zhong, J.; Lin, H.; Huang, T.; Yang, Z.; Zhu, J.; Liu, S. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv. Mater. 2018, 30, 1706031. [Google Scholar] [CrossRef]
- Lang, X.; Qian, L.; Guan, P.; Zi, J.; Chen, M. Localized surface plasmon resonance of nanoporous gold. Appl. Phys. Lett. 2011, 98, 093701. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667. [Google Scholar] [CrossRef]
- Park, T.H.; Mirin, N.; Lassiter, J.B.; Nehl, C.L.; Halas, N.J.; Nordlander, P. Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2008, 2, 25–32. [Google Scholar] [CrossRef]
- Jonsson, M.P.; Dahlin, A.B.; Feuz, L.; Petronis, S.; Hoeoek, F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal. Chem. 2010, 82, 2087–2094. [Google Scholar] [CrossRef]
- Nagpal, P.; Lindquist, N.C.; Oh, S.H.; Norris, D.J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009, 325, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Cushing, S.K.; Hornak, L.A.; Lankford, J.; Liu, Y.; Wu, N. Origin of localized surface plasmon resonances in thin silver film over nanosphere patterns. Appl. Phys. A 2011, 103, 955–958. [Google Scholar] [CrossRef]
- Zhang, X.; Young, M.A.; Lyandres, O.; Van Duyne, R.P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Whitney, A.V.; Elam, J.W.; Van Duyne, R.P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.F.; Gibson, K.F.; Provencher-Girard, A. Surface-enhanced Raman spectroscopy amplification with film over etched nanospheres. J. Phys. Chem. C 2010, 114, 22406–22412. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, Q.; Park, S.; Choe, A.; Fan, Z.; Ko, H. Particle-film plasmons on periodic silver film over nanosphere (AgFON): A hybrid plasmonic nanoarchitecture for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 634–642. [Google Scholar] [CrossRef]
- Bhattarai, J.K.; Neupane, D.; Nepal, B.; Mikhaylov, V.; Demchenko, A.V.; Stine, K.J. Preparation, modification, characterization, and biosensing application of nanoporous gold using electrochemical techniques. Nanomaterials 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Elbourne, A.; Coyle, V.E.; Truong, V.K.; Sabri, Y.M.; Kandjani, A.E.; Bhargava, S.K.; Ivanova, E.P.; Crawford, R.J. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. Nanoscale Adv. 2019, 1, 203–212. [Google Scholar] [CrossRef] [Green Version]
NS | M | Fabrication Method | d/p/t (nm) | λmax (nm) Air or N2 | Method | Sensitivity R = (nm/RIU), FOM, E | Ref |
---|---|---|---|---|---|---|---|
NH | Al | EBE/EBL/Etching | 220/-/100 | 510 | LSPR | R = 487 | [52] |
Ag | NH Si template/EBE/peel off | 180/500/100 | NA | LSPR | R = 450 | [44] | |
NH Si template/EBE/peel off | 100/500/200 | NA | LSPR | R = 494 | [53] | ||
NSL/RIE/deposition | 290/-/80 | 550/790 | LSPR | R = 252 | [54] | ||
NSL/RIE/deposition/HF etching | 290/-/80 | 655 | LSPR | R = 648 | |||
deposition/FIB | 200/545/100 | 645 | LSPR | R = 400 | [55] | ||
NSL/RIE/EBE/lift-off | ~300/400/50 | 672 | SERS | E = 8.13 × 105 | [56] | ||
NSL/RIE/EBE/lift-off/plating | <300/400/>50 | NA | SERS | E = 3 × 106 | |||
Au | NSL/RIE/EBE/lift-off | 60/-/20 | ~620 | LSPR | R = ~70 | [57] | |
NSL/RIE/EBE/lift-off | 60/-/20 | 675 ± 10 | LSPR (1 hole) | R = ~90 | |||
NSL/PVD/lift-off | 60/-/20 | 575 | LSPR | R = ~100 | [43] | ||
UV-NL/RIE/EBE/lift-off | 200/400/50 | 583 | LSPR | R = 150 | [58] | ||
NSL/RIE/EBE/lift-off | 70/ | NA | SPP | R = >3000 | [59] | ||
NSL/RIE/EBE/lift-off | 500/-/80 | 1489 | LSPR | R = 375 | [60] | ||
NSL/EBE/mask/RIE/mask removal/lift-off | 500/-/80 | 898 | LSPR | R = 625 | |||
NSL/RIE/sputtering/lift-off | 600/1000/125 | 710 | LSPR | R = 530 ± 30 FOM = 132 | [11] | ||
600/1000/125 | NA | SPP | R = 3600 ± 200 FOM = 327 | ||||
EBL/PVD | 100/585/50 | NA | SERS | E = ~106 | [61] | ||
NSL/PVD/lift-off | 125/-/40 | 575 | LSPR | R = 36 | [62] | ||
NPi | Au | porous Al2O3 imprinted nanopillars of Cyclo-olefin polymer/sputter | 30.0–39.9/-/50 | NA | LSPR | R = 154 | [63] |
Au thin film/Porous Al2O3/ED | Film t = 5 nm 25/60/380 | NA | SPP | R = 32,000 FOM = >330 | [48] | ||
Al | LIL/deposition | 180/400/150 | 310 | SPP | R = 223 FOM = 8 | [64] | |
180/400/150 | 413 | SPP | R = 485 FOM = 20 | ||||
NC | Al | EA (120 V)/removal Al2O3 | /246.3/ | 250 | LSPR | R = 191 | [65] |
EA (195 V)/removal of Al2O3 | /456.7/ | 350 | LSPR | R = 291 | |||
FON | Al | NSL/PVD | 210/-/200 | NA | SERS | E = ~104–105 | [66] |
NPA | Cu | NSL/EBE | 100/-/30 | 580 | LSPR | R = 67.8 | [67] |
HA | Au | THL/EBE | 620/620/100 | NA | SPP | FOM = 730 | [68] |
NGF | Au | Au thin film/ED | 100–200/-/200 | 518 ± 1 | LSPR | R = 100 ± 2 | [50] |
NPG | Au | Dealloyed unsupported thin film in HNO3/transferred to substrate | 30/-/100 | ~510 | LSPR | R = 210 | [69] |
50/-/100 | NA | LSPR | R = 264 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, J.K.; Maruf, M.H.U.; Stine, K.J. Plasmonic-Active Nanostructured Thin Films. Processes 2020, 8, 115. https://doi.org/10.3390/pr8010115
Bhattarai JK, Maruf MHU, Stine KJ. Plasmonic-Active Nanostructured Thin Films. Processes. 2020; 8(1):115. https://doi.org/10.3390/pr8010115
Chicago/Turabian StyleBhattarai, Jay K., Md Helal Uddin Maruf, and Keith J. Stine. 2020. "Plasmonic-Active Nanostructured Thin Films" Processes 8, no. 1: 115. https://doi.org/10.3390/pr8010115
APA StyleBhattarai, J. K., Maruf, M. H. U., & Stine, K. J. (2020). Plasmonic-Active Nanostructured Thin Films. Processes, 8(1), 115. https://doi.org/10.3390/pr8010115