Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fe3O4@HCO Composite Adsorbent-Sodium Alginate Microbeads
2.2. Characterization Methods
2.3. Batch Adsorption Experiments
2.4. Analysis
3. Results and Discussion
3.1. SAB Spheroidizing Effect
3.2. Characterization
3.3. The Effects of pH, Temperature and Coexisting Ions
3.4. Adsorption Isotherms
3.5. Adsorption Process and Kinetics
3.6. Adsorption Mechanisms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Hu, X.Y.; Kong, L.H.; He, M.C. Kinetics and Mechanism of Photopromoted Oxidative Dissolution of Antimony Trioxide. Environ. Sci. Technol. 2014, 48, 14266–14272. [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; Belzile, N.; Chen, Y. Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth Sci. Rev. 2002, 57, 125–176. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; He, M.C.; Guo, X.J.; Zhou, R.J. Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis. Sep. Purif. Technol. 2010, 76, 184–190. [Google Scholar] [CrossRef]
- Mendil, D.; Bardak, H.; Tuzen, M.; Soylak, M. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry. Talanta 2013, 107, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Han, F.; Pan, B.; Niu, Y.; Nie, G. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. J. Environ. Sci. 2014, 26, 307–314. [Google Scholar] [CrossRef]
- Du, X.; Qu, F.S.; Liang, H.; Li, K.; Yu, H.R.; Bai, L.M.; Li, G.B. Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process. Chem. Eng. J. 2014, 254, 293–301. [Google Scholar] [CrossRef]
- Guo, X.J.; Wu, Z.J.; He, M.C.; Meng, X.G.; Jin, X.; Zhang, J. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. J. Hazard. Mater. 2014, 276, 339–345. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M.; Bundschuh, J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 223, 545–559. [Google Scholar] [CrossRef]
- Navarro, P.; Alguacil, F.J. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 2002, 66, 101–105. [Google Scholar] [CrossRef]
- Fan, H.T.; Sun, Y.; Tang, Q.; Li, W.L.; Sun, T. Selective adsorption of antimony (III) from aqueous solution by ion-imprinted organic–inorganic hybrid sorbent: Kinetics, isotherms and thermodynamics. J. Taiwan. Inst. Chem. Eng. 2014, 45, 2640–2648. [Google Scholar] [CrossRef]
- Leyva, A.G.; Marrero, J.; Smichowski, P.; Cicerone, D. Sorption of Antimony onto Hydroxyapatite. Environ. Sci. Technol. 2001, 35, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Mazumdar, S.; Singh, S.K. Magnetic adsorbents for the treatment of water/wastewater-A review. J. Water Process Eng. 2015, 7, 244–265. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Dias, R.; Kharisov, B.I. Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv. 2014, 5, 6695–6719. [Google Scholar] [CrossRef]
- Yang, H.J.; Li, H.Y.; Zhai, J.L.; Sun, L.; Zhao, Y.; Yu, H.W. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J. 2014, 246, 10–19. [Google Scholar] [CrossRef]
- Wan, C.L.; Wang, L.; Lee, D.J. Fungi aerobic granules and use of Fe (III)-treated granules for biosorption of antimony(V). J. Taiwan Inst. Chem. Eng. 2014, 45, 2610–2614. [Google Scholar] [CrossRef]
- You, D.; Min, X.Y.; Liu, L.L.; Ren, Z. New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: From experimental to theoretical study. J. Hazard. Mater. 2018, 346, 218. [Google Scholar] [CrossRef]
- Han, L.F.; Sun, H.R.; Ro, K.S.; Libra, J.A.; Xing, B.S. Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour. Technol. 2017, 234, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Chmielewská, E.; Tylus, W.; Drábik, M. Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal. Microporous Mesoporous Mater. 2017, 248, 222–233. [Google Scholar] [CrossRef]
- Qi, Z.L.; Joshi, T.P.; Liu, R.P.; Liu, H.J.; Qu, J.H. Synthesis of Ce (III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J. Hazard. Mater. 2017, 329, 193–204. [Google Scholar] [CrossRef]
- Deng, R.J.; Jin, C.S.; Ren, B.Z.; Hou, B.L. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents. Water 2017, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, M.; Dou, X.X.; He, H.; Wang, D.S. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: Role of surface properties. Environ. Sci. Technol. 2005, 39, 7246–7253. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhu, Z.L.; Guo, Y.W.; Qiu, Y.L.; Zhao, J.F. Facile synthesis of mesoporous Ce-Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions. J. Colloid Interface Sci. 2013, 398, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dou, X.M.; Zhao, B.; Yang, M.; Takayama, T.; Kato, S. Removal of arsenic by a granular Fe-Ce oxide adsorbent: Fabrication conditions and performance. Chem. Eng. J. 2010, 162, 164–170. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, R.J.; Ren, B.Z.; Hou, B.L.; Andrew, H. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Chan, L.W.; Jin, Y.; Heng, P.W.S. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm. 2002, 242, 255–258. [Google Scholar] [CrossRef]
- Sun, W.; Xing, J.; Zou, H.H.; Chen, L.C. Study on Sodium Alginate Gel Bead Removing Cr (VI). Mod. Agric. Sci. Technol. 2015, 208, 215. [Google Scholar]
- İnal, M.; Erduran, N. Removal of various anionic dyes using sodium alginate/poly (N-vinyl-2-pyrrolidone) blend hydrogel beads. Polym. Bull. 2015, 72, 1–18. [Google Scholar] [CrossRef]
- Du, S.W.; Zhou, H.; Peng, Y.Q.; Xiong, C.Q.; Wei, D.N.; Huang, H.L. Adsorption property of sodium aliginate immobilized sludge carbon with copper. Environ. Eng. 2017, 35, 37–42. [Google Scholar]
- Zhu, W.H.; Wang, X.R.; Dong, L.F.; Wang, Q.; He, F. Mechanism of copper-iron bimetallic particles immobilized by sodium alginate in removal of Cr (VI). China Environ. Sci. 2013, 33, 1965–1971. [Google Scholar]
- Lakouraj, M.M.; Mojerlou, F.; Zare, E.N. Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydr. Polym. 2014, 106, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.H.; He, M.C.; Lin, C.Y. Adsorption of antimony (III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition. Microchem. J. 2011, 97, 85–91. [Google Scholar] [CrossRef]
- Deng, R.J.; Shao, R.; Ren, B.Z.; Andrew, H. Adsorption of Antimony (III) onto Fe (III)-Treated Humus Sludge Adsorbent: Behaviorand Mechanism Insights. Pol. J. Environ. Stud. 2019, 28, 577–586. [Google Scholar] [CrossRef]
- Hu, X.X. Study on the performance and mechanism of the removal of antimony from mine waste water by a new type of Fe-Cu binary oxide. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, June 2016. [Google Scholar]
- Wang, Q.; Zhu, S.Z.; Yang, W.J.; Zhou, Y.F. The Removal of Cr (VI) from Aqueous Solution by Magnetic Ferroferric Oxide@ Sodium Alginate Composite Adsorbent. J. China West Norm. Univ. 2017, 38, 282–287. [Google Scholar]
- Anushree; Kumar, S.; Sharma, C. Synthesis, characterization and catalytic wet air oxidation property of mesoporous Ce1−xFexO2 mixed oxides. Mater. Chem. Phys. 2015, 155, 223–231. [Google Scholar] [CrossRef]
- Farquhar, M.L.; Charnock, J.M.; Livens, F.R.; Vaughan, D.J. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 2002, 36, 1757. [Google Scholar] [CrossRef]
- Fan, H.T.; Sun, W.; Jiang, B.; Wang, Q.J.; Li, D.W.; Huang, C.C. Adsorption of antimony (III) from aqueous solution by mercapto-functionalized silica-supported organic-inorganic hybrid sorbent: Mechanism insights. Chem. Eng. J. 2016, 286, 128–138. [Google Scholar] [CrossRef]
- Leuz, A.K.; Mönch, H.; Johnson, C.A. Sorption of Sb (III) and Sb(V) to Goethite: Influence on Sb (III) Oxidation and Mobilization. Environ. Sci. Technol. 2006, 40, 7277–7282. [Google Scholar] [CrossRef]
- Li, J.L.; Bao, H.L.; Xiong, X.M.; Sun, Y.K.; Guan, X.H. Effective Sb (V) immobilization from water by zero-valent iron with weak magnetic field. Sep. Purif. Technol. 2015, 151, 276–283. [Google Scholar] [CrossRef]
- Tao, Y.F.; Yao, Y.; Ding, Y.F.; Liu, Q. Preparation of Ketorolac Tromethamine Alginate-chitosan Microcapsules. Chin. J. Pharm. 2006, 37, 401–403. [Google Scholar]
- Li, Y.C.; Geng, B.; Hu, X.X. Preparation and characterization of iron-copper binary oxide and its effective removal of antimony (III) from aqueous solution. Water Sci. Technol. 2016, 74, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Rooygar, A.A.; Mallah, M.H.; Abolghasemi, H.; Safdari, J. New “Magmolecular” Process for the Separation of Antimony (III) from Aqueous Solution. J. Chem. Eng. Data 2014, 59, 3545–3554. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Suchithra, P.S.; Radhakrishnan, P.G. Synthesis and characterization of humic acid immobilized-polymer/bentonite composites and their ability to adsorb basic dyes from aqueous solutions. Appl. Clay Sci. 2009, 43, 336–342. [Google Scholar] [CrossRef]
- Shan, C.; Ma, Z.Y.; Tong, M.P. Efficient removal of trace antimony (III) through adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater. 2014, 268, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu, S.; Bunia, I.; Racovita, S.; Neagu, V. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: Kinetics, equilibrium and thermodynamic studies. Carbohydr. Polym. 2011, 85, 376–387. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Zhao, C.; Zhu, X.; Du, S. Adsorption and desorption of antimony acetate on sodium montmorillonite. J. Colloid Interface Sci. 2010, 345, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.J.; Liu, R.P.; Zhao, X.; Qu, J.H. The mechanism of antimony (III) removal and its reactions on the surfaces of Fe-Mn Binary Oxide. J. Colloid Interface Sci. 2011, 363, 320–326. [Google Scholar] [CrossRef]
- Bée, A.; Talbot, D.; Abramson, S.; Dupuis, V. Magnetic alginate beads for Pb (II) ions removal from wastewater. J. Colloid Interface Sci. 2011, 362, 486–492. [Google Scholar] [CrossRef]
- Mittal, V.K.; Bera, S.; Narasimhan, S.V.; Velmurugan, S. Adsorption behavior of antimony (III) oxyanions on magnetite surface in aqueous organic acid environment. Appl. Surf. Sci. 2013, 266, 272–279. [Google Scholar] [CrossRef]
- Zhen, Q.; Ouyang, T.; Lin, J.D. Adsorption Characteristics of Arsenic in Water by Cerous Hydroxide. Environ. Sanit. Eng. 2008, 16, 13–15. [Google Scholar]
SA (%) | Fe3O4@HCO (%) | |||
---|---|---|---|---|
1.5 | 2 | 2.5 | 3 | |
1.5 | Slightly tailed | Better results | Better results | Slightly tailed |
2 | Better results | Better results | Better results | General effect |
2.5 | Tailing phenomenon | Tailing phenomenon | Tailing phenomenon | Tailing phenomenon |
Models Typle | Langmuir | Freundlich | D-R |
---|---|---|---|
Parameter values | = 17.338 mg g−1 | Kf = 3.24 | β = −3.86×10−9 mol2 kJ−2 |
= 0.201 L mg−1 | 1/n = 0.496 | = 85.09 mg g−1 | |
R2 = 0.9903 | R2 = 0.9763 | E = 113.8 KJ mol−1 | |
R2 = 0.9895 |
Models | Pseudo-First-Order | Pseudo-Second-Order | Elovich | Intra-Particle Diffusion |
---|---|---|---|---|
Parameters | qe = 14.886 mg g−1 | qe = 17.661 mg g−1 | a = 2.266 | a1 = −0.299 mg g−1 |
K1 = 0.048 min−1 | K2 = 0.003 min−1 | b = 0.277 | K41 = 2.035 mg g−1 h−0.5 | |
R2 = 0.982 | R2 = 0.995 | R2 = 0.992 | R2 = 0.987 | |
a2 = 8.427 mg g−1 | ||||
K42 = 0.632 mg g−1 h−0.5 | ||||
R2 = 0.981 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Deng, R.; Ren, B.; Yaseen, M.; Hursthouse, A. Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads. Processes 2020, 8, 44. https://doi.org/10.3390/pr8010044
Zhang J, Deng R, Ren B, Yaseen M, Hursthouse A. Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads. Processes. 2020; 8(1):44. https://doi.org/10.3390/pr8010044
Chicago/Turabian StyleZhang, Jun, Renjian Deng, Bozhi Ren, Mohammed Yaseen, and Andrew Hursthouse. 2020. "Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads" Processes 8, no. 1: 44. https://doi.org/10.3390/pr8010044
APA StyleZhang, J., Deng, R., Ren, B., Yaseen, M., & Hursthouse, A. (2020). Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads. Processes, 8(1), 44. https://doi.org/10.3390/pr8010044