Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Results
3.2. Modeling Results
3.3. Sensitivity Analysis
3.3.1. Biomass Moisture Content
3.3.2. HHV of the Raw Biomass and Obtained Hydrochar
3.3.3. Water: Biomass Ratio and the Temperature and Composition of Process Water from HTC
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Uddin, M.H.; Reza, M.T.; Lynam, J.G.; Coronella, C.J. Effects of Water Recycling in Hydrothermal Carbonization of Loblolly Pine. Environ. Prog. Sustain. Energy 2014, 33, 1309–1315. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2018, 92, 1779–1799. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Pecchi, M.; Baratieri, M. Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review. Renew. Sustain. Energy Rev. 2019, 105, 462–475. [Google Scholar] [CrossRef]
- Rahdar, M.H.; Nasiri, F.; Lee, B. A Review of Numerical Modeling and Experimental Analysis of Combustion in Moving Grate Biomass Combustors. Energy Fuels 2019, 33, 9367–9402. [Google Scholar] [CrossRef]
- Cherubini, F.; Peters, G.P.; Berntsen, T.; Strømman, A.H.; Hertwich, E. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy 2011, 3, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Heidari, M.; Garnaik, P.P.; Dutta, A. The Valorization of Plastic Via Thermal Means: Industrial Scale Combustion Methods. In Plastics to Energy; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 295–312. [Google Scholar]
- Reza, M.T.; Werner, M.; Pohl, M.; Mumme, J. Evaluation of integrated anaerobic digestion and hydrothermal carbonization for bioenergy production. J. Vis. Exp. 2014, 88, e51734. [Google Scholar] [CrossRef] [Green Version]
- Aragón-briceño, C.; Ross, A.B.; Camargo-Valero, M.A. Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy 2017, 208, 1357–1369. [Google Scholar] [CrossRef]
- Zhang, B.; Heidari, M.; Regmi, B.; Salaudeen, S.; Arku, P.; Thimmannagari, M.; Dutta, A. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 2018, 11, 2022. [Google Scholar] [CrossRef] [Green Version]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Hydrothermal carbonization (HTC) of marine plastic debris. Fuel 2019, 257, 116033. [Google Scholar] [CrossRef]
- Kambo, H.S.; Minaret, J.; Dutta, A. Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product? Waste Biomass Valorization 2017, 9, 1181–1189. [Google Scholar] [CrossRef]
- Heidari, M.; Salaudeen, S.; Dutta, A.; Acharya, B. Effects of Process Water Recycling and Particle Sizes on Hydrothermal Carbonization of Biomass. Energy Fuels 2018, 32, 11576–11586. [Google Scholar] [CrossRef]
- Neves, L.; Oliveira, R.; Alves, M.M. Anaerobic co-digestion of coffee waste and sewage sludge. Waste Manag. 2006, 26, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Rominiyi, O.L.; Adaramola, B.A.; Ikumapayi, O.M.; Oginni, O.T.; Akinola, S.A. Potential Utilization of Sawdust in Energy, Manufacturing and Agricultural Industry; Waste to Wealth. World J. Eng. Technol. 2017, 05, 526–539. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D. Estimated Production, Consumption and Surplus Mill Wood Residue in Canada—2004: A National Report; BW McCloy & Associates Inc. and Climate Change Solutions for the Canadian Forest Service and the Forest Products Association of Canada: Ottawa, ON, Canada, 2005. [Google Scholar]
- Heidari, M.; Ataei, A.; Rahdar, M.H. Development and analysis of two novel methods for power generation from flare gas. Appl. Therm. Eng. 2016, 104, 687–696. [Google Scholar] [CrossRef]
- Heydari, M.; Abdollahi, M.A.; Ataei, A.; Rahdar, M.H. Technical and Economic Survey on Power Generation by Use of Flaring Purge Gas. In Proceedings of the International Conference on Chemical, Civil and Environmental Engineering (CCEE-2015), Istanbul, Turkey, 5–6 June 2015. [Google Scholar]
- Buswell, A.; Muller, H. Mechanism of methane fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Huiru, Z.; Yunjun, Y.; Liberti, F.; Pietro, B.; Fantozzi, F. Technical and economic feasibility analysis of an anaerobic digestion plant fed with canteen food waste. Energy Convers. Manag. 2019, 180, 938–948. [Google Scholar] [CrossRef]
- Yan, W.; Hastings, J.T.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 2010, 24, 4738–4742. [Google Scholar] [CrossRef]
- Mansouri, M.; De, S.; Assadi, M.; Breuhaus, P. An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration. Appl. Energy 2012, 99, 280–290. [Google Scholar] [CrossRef]
- Xu, G.; Huang, S.; Yang, Y.; Wu, Y.; Zhang, K.; Xu, C. Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas. Appl. Energy 2013, 112, 907–917. [Google Scholar] [CrossRef]
- Stemann, J.; Ziegler, F. Assessment of the Energetic Efficiency of A Continuously Operating Plant for Hydrothermal Carbonisation of Biomass. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 8–13 May 2011; Linköping University Electronic Press: Linköping, Sweden, 2011; pp. 125–132. [Google Scholar]
- U.S. Department of Energy. Combined Heat and Power Technology Fact Sheet Series Micro Turbines; DOE: Washington, DC, USA, 2016. Available online: https://www.energy.gov/sites/prod/files/2016/09/f33/CHP-Microturbines_0.pdf (accessed on 14 December 2019).
- Phyllis2. Database for the Physico-Chemical Composition of (Treated) Lignocellulosic Biomass, Micro- and Macroalgae, Various Feedstocks for Biogas Production and Biochar. Available online: https://phyllis.nl/ (accessed on 12 November 2019).
- Heidari, M.; Norouzi, O.; Salaudeen, S.A.; Acharya, B.; Dutta, A. Prediction of hydrothermal carbonization with respect to the biomass components and severity factor. Energy Fuels 2019, 33, 9916–9924. [Google Scholar] [CrossRef]
State Number | Temperature (°C) | Mass Flow Rate (g/s) | Other Properties |
---|---|---|---|
0 | 25 | 16 | 10% moisture content |
1 | 25 | 75 | p = 101 kPa |
2 | 50 | 75 | p =1800 kPa |
3 | 176.6 | 75 | p =1800 kPa |
4 | 95 | 10.06 | Contains 0.7 g/s of water |
5 | 120 | 0.43 | Gaseous mixture (mainly CO2) |
6 | 180 | 74.3 | Including 4.6 g/s mass yield from biomass flow |
7 | 60 | 74.3 | Mixture of water and acidic components |
8 | 60 | 5.56 | Including 1.54 g CH4, and the rest is CO2 |
9 | 25 | 8.38 | p = 101 kPa |
10 | 473 | 8.38 | p = 1717 kPa |
11 | 1200 | 13.94 | p = 1717 kPa |
12 | 350 | 13.94 | Gaseous outlet of GT |
13 | 230 | 13.94 | Gas |
14 | 132.8 | 13.94 | Gas |
15 | 50.53 | 13.94 | Gas emission |
16 | 120 | 0.7 | Steam |
17 | 50 | 9.36 | HHV = 24,600 [kJ/kg] |
18 | 120 | 86.92 | Gaseous mixture (mainly CO2) |
19 | 120 | 88.05 | Gaseous mixtures to sustain AD process |
20 | 25 | 88.05 | Gas emission |
21 | 40.53 | 72.92 | p = 1800 kPa |
22 | 45 | 72.92 | Rankine process water |
23 | 48 | 72.92 | Rankine process water |
24 | 540 | 72.92 | Superheat steam |
25 | 280 | 70.4 | p = 850 kPa |
26 | 280 | 2.52 | p = 850 kPa |
27 | 230 | 2.52 | Steam to heat up HTC |
28 | 54.97 | 2.52 | Hot water |
29 | 50.53 | 2.52 | Hot water |
30 | 40 | 70.4 | Saturated steam |
31 | 40 | 70.4 | Saturated water |
State Number | Temperature (°C) | Mass Flow Rate (g/s) | Other Properties |
---|---|---|---|
0 | 25 | 16 | 10% moisture content |
1 | 50 | 14.40 | HHV = 17,800 [kJ/kg] |
2 | 110 | 1.60 | Steam |
3 | 50 | 4.38 | Water back to the cycle |
4 | 110 | 141.55 | Gaseous mixture (mainly CO2) |
5 | 50 | 141.55 | Gas emission |
6 | 40.53 | 82.80 | p = 1800 kPa |
7 | 66.14 | 82.80 | Rankine process water |
8 | 540 | 82.80 | Superheat steam |
9 | 160 | 80.02 | Entering superheat steam to low pressure GT |
10 | 40 | 80.02 | Saturated steam |
11 | 40 | 82.80 | Saturated water |
12 | 110 | 2.78 | Steam to help with drying |
Name | Chemical Formula | Weight% |
---|---|---|
Acetic acid | CH3COOH | 40 |
HMF | C5H8O3 | 40 |
levulinic acid | C6H6O3 | 20 |
Heat capacity of the biomass (kJ/kg.K) | 1.5 | Ambient temperature (°C) | 25 |
Heat capacity of water at room temperature (kJ/kg.K) | 4.18 | Ambient pressure (kPa) | 101 |
The heat of vaporization of water (kJ/kg) | 2260 | Maximum combustor temperature (°C) | 900 |
Compressor exit pressure (kPa) | 1717 | Compressor compression ratio | 17 |
Methane heating value (MJ/kg) | 55.51 | The temperature of PW leaving HTC reactor (°C) | 180 |
Flue gas temperature (°C) [25] | 150 | Exothermic heat of reaction in HTC (kJ/kg) [26] | 765 |
ST inlet temp. (°C) | 530 | GT exhaust temp. (°C) [27] | 350 |
Sample Name | Yields (%) | Ultimate Analysis (wt%) | Proximate Analysis (wt%) | Calorimetry | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Solid | Liquid | Gas | C | H | N | S | O | Ash | FC | VM | HHV (MJ/kg) | |
Raw | - | - | - | 49.22 | 6.10 | 0.01 | 0 | 44.57 | 0.10 | 17.80 | 82.10 | 17.8 |
Hydrochar | 65 | 32 | 3 | 63.51 | 5.33 | 0.02 | 0 | 31.12 | 0.02 | 31.24 | 68.74 | 24.6 |
Item | HTC-AD Scenario | DC Scenario |
---|---|---|
Biomass flow rate (g/s) | 16 | 16 |
Total produced power (kW) | 95.79 | 101 |
Efficiency (%) | 37.37 | 39.40 |
Power by the steam turbine (kW) | 90.03 | 103.10 |
Power by the gas turbine (kW) | 11.74 | - |
Net power consumed by the HTC reactor (kW) (supplied from the boiler and GT exhaust) | 6.90 | - |
The power produced by exothermic reactions (kW) | 11.02 | - |
Net energy consumed by the drier (kW) (supplied from the boiler) | 1.59 | 5.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari, M.; Salaudeen, S.; Norouzi, O.; Acharya, B.; Dutta, A. Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production. Processes 2020, 8, 43. https://doi.org/10.3390/pr8010043
Heidari M, Salaudeen S, Norouzi O, Acharya B, Dutta A. Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production. Processes. 2020; 8(1):43. https://doi.org/10.3390/pr8010043
Chicago/Turabian StyleHeidari, Mohammad, Shakirudeen Salaudeen, Omid Norouzi, Bishnu Acharya, and Animesh Dutta. 2020. "Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production" Processes 8, no. 1: 43. https://doi.org/10.3390/pr8010043
APA StyleHeidari, M., Salaudeen, S., Norouzi, O., Acharya, B., & Dutta, A. (2020). Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production. Processes, 8(1), 43. https://doi.org/10.3390/pr8010043