Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solvent Mixture Preparations
2.3. FFA Solubility Determination
2.4. Hansen Solubility Parameters (HSPs) of FFA and Pure Solvents
2.5. Solute-Solvent Interactions and Determination of Ideal Solubility and Activity Coefficients
2.6. Apparent Thermodynamic Analysis of FFA Solution
2.7. Enthalpy–Entropy Compensation Analysis
2.8. Computational Modeling
2.9. Statistical Evaluation
3. Results and Discussion
3.1. Solubility Data of FFA in Various Carbitol + Water Mixtures and Their Literature Comparison
3.2. HSPs
3.3. Solute-Solvent Interactions and Determination of Ideal Solubility and Activity Coefficients
3.4. Apparent Thermodynamic Analysis of FFA Solution
3.5. Enthalpy–Entropy Compensation Analysis
3.6. Computation Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acree, W.E., Jr. IUPAC-NIST solubility data series. 102. Solubility of non-steroidal anti-inflammatory drugs (NSAIDs) in neat organic solvents and organic solvent mixtures. J. Phys. Chem. Ref. Data 2014, 43, E023102. [Google Scholar] [CrossRef] [Green Version]
- Perlovich, G.L.; Surov, A.O.; Bauer-Brandl, A. Thermodynamic properties of flufenamic and niflumic acids—Specific and non-specific interactions in solution and in crystal lattices, mechanism of solvation, partitioning and distribution. J. Pharm. Biomed. Anal. 2007, 45, 679–687. [Google Scholar] [CrossRef]
- Shazly, G.A.; Ibrahim, M.A.; Badran, M.M.; Zuheir, K.M.A. Utilizing Pluronic F-127 and Gelucire 50/13 solid dispersions for enhanced skin delivery of flufenamic acid. Drug Dev. Res. 2012, 73, 299–307. [Google Scholar] [CrossRef]
- Alshehri, S.; Shakeel, F. Solubility measurement, thermodynamics and molecular interactions of flufenamic acid in different neat solvents. J. Mol. Liq. 2017, 240, 447–453. [Google Scholar] [CrossRef]
- Kale, A.R.; Kakade, S.; Bhosale, A. A review on: Solubility enhancement techniques. Curr. Pharm. Res. 2020, 10, 3630–3647. [Google Scholar]
- Mohammadian, E.; Rahimpour, E.; Martinez, F.; Jouyban, A. Budesonide solubility in polyethylene glycol 400 + water at different temperatures: Experimental measurement and mathematical modelling. J. Mol. Liq. 2019, 274, 418–425. [Google Scholar] [CrossRef]
- Dadmand, S.; Kamari, F.; Acree, W.E., Jr.; Jouyban, A. Solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points. AAPS PharmSciTech. 2019, 20, E10. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S.; Imran, M.; Haq, N.; Alanazi, A.; Anwer, M.K. Experimental and computational approaches for solubility measurement of pyridazinone derivative in binary (DMSO + water) systems. Molecules 2020, 25, 171. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, F.; Haq, N.; Raish, M.; Anwer, M.K.; Al-Shdefat, R. Solubility and thermodynamic analysis of sinapic acid in various neat solvents at different temperatures. J. Mol. Liq. 2016, 222, 167–171. [Google Scholar] [CrossRef]
- Alshehri, S.; Shakeel, F. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures. J. Mol. Liq. 2020, 307, E112970. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S.; Haq, N.; Elzayat, E.; Ibrahim, M.; Altamimi, M.A.; Mohsin, K.; Alanazi, F.K.; Alsarra, I.A. Solubility determination and thermodynamic data of apigenin in binary (Transcutol® + water) mixtures. Ind. Crops Prod. 2018, 116, 56–63. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamic function of apremilast in different (Transcutol + water) cosolvents mixtures: Measurement, correlation and molecular interactions. J. Ind. Eng. Chem. 2017, 56, 99–107. [Google Scholar] [CrossRef]
- Shakeel, F.; Imran, M.; Abida, H.N.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamic/solvation behavior of 6-phenyl-4,5-dihydropyridazin-3(2H)-one in different (Transcutol + water) mixtures. J. Mol. Liq. 2017, 230, 511–517. [Google Scholar] [CrossRef]
- Norouzi, F.; Jouyban, A.; Martínez, F.; Barzegar-Jalali, M.; Rahimpour, E. Solubility of celecoxib in carbitol + water mixtures at various temperatures: Experimental data and mathematical modeling. Phys. Chem. Liq. 2019, 57, 755–767. [Google Scholar] [CrossRef]
- Barzegar-Jalali, M.; Rahimpour, E.; Martínez, F.; Jouyban, A. Solubility and thermodynamics of lamotrigine in carbitol + water mixtures from T = (293.2 to 313.2) K. Chem. Eng. Comm. 2018, 206, 182–192. [Google Scholar] [CrossRef]
- Moffat, A.C. Clarke’s Isolation and Identification of Drugs; Pharmaceutical Press: London, UK, 1986. [Google Scholar]
- Wenkers, B.P.; Lippold, B.C. Skin penetration of nonsteroidal anti-inflammatory drugs out of a lipophilic vehicle: Influence of the viable epidermis. J. Pharm. Sci. 1999, 88, 1326–1331. [Google Scholar] [CrossRef]
- Rytting, E.; Lentz, K.A.; Chen, X.Q.; Qian, F.; Venkatesh, S. Aqueous and cosolvent solubility data for drug-like organic compounds. AAPS J. 2005, 7, E10. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Byrn, S.R.; Pinal, R. The solution properties of mefenamic acid and a closely related analogue are indistinguishable in polar solvents but significantly different in nonpolar environments. J. Pharm. Sci. 2012, 101, 4529–4539. [Google Scholar] [CrossRef]
- Surov, A.O.; Szterner, P.; Zielenkiewicz, W.; Perlovich, G.L. Thermodynamic and structural study of tolfenamic acid polymorphs. J. Pharm. Biomed. Anal. 2009, 50, 831–840. [Google Scholar] [CrossRef]
- Domanska, U.; Pobudkowska, A.; Pelczarska, A. Solubility of sparingly soluble drug derivatives of anthranilic acid. J. Phys. Chem. B 2011, 115, 2547–2554. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Inst. 1965, 4, 117–122. [Google Scholar]
- Pinho, S.P.; Macedo, E.A. Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents. J. Chem. Eng. Data 2005, 50, 29–32. [Google Scholar] [CrossRef]
- Zhu, Q.N.; Wang, Q.; Hu, Y.B.; Abliz, X. Practical determination of the solubility parameters of 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids by inverse gas chromatography and the Hansen solubility parameter. Molecules 2019, 24, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanazi, A.; Alshehri, S.; Altamimi, M.; Shakeel, F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: Experimental and computational approaches. J. Mol. Liq. 2020, 299, E112211. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshamsan, A.; Alkholief, M.; Alsarra, I.A.; Ali, R.; Haq, N.; Anwer, M.K.; Shakeel, F. Solubility measurement and various solubility parameters of glipizide in different neat solvents. ACS Omega 2020, 5, 1708–1716. [Google Scholar] [CrossRef]
- Anwer, M.K.; Muqtader, M.; Iqbal, M.; Ali, R.; Almutairy, B.K.; Alshetaili, A.; Alshahrani, S.M.; Aldawsari, M.F.; Alalaiwe, A.; Shakeel, F. Estimating the solubility, solution thermodynamics, and molecular interactions of aliskiren hemifumarate in alkyl imidazolium based ionic liquids. Molecules 2019, 24, 2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; He, H.; Huang, Z.; Zhang, P.; Sha, J.; Li, T.; Ren, B. Solubility, thermodynamic modeling and Hansen solubility parameter of 5-norbornene-2,3-dicarboximide in three binary solvents (methanol, ethanol, ethyl acetate + DMF) from 278.15 K to 323.15 K. J. Mol. Liq. 2020, 300, E112097. [Google Scholar] [CrossRef]
- Ruidiaz, M.A.; Delgado, D.R.; Martínez, F.; Marcus, Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010, 299, 259–265. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions; Van Nostrand Reinhold: New York, NY, USA, 1970. [Google Scholar]
- Manrique, Y.J.; Pacheco, D.P.; Martínez, F. Thermodynamics of mixing and solvation of ibuprofen and naproxen in propylene glycol + water cosolvent mixtures. J. Sol. Chem. 2008, 37, 165–181. [Google Scholar] [CrossRef]
- Holguín, A.R.; Rodríguez, G.A.; Cristancho, D.M.; Delgado, D.R.; Martínez, F. Solution thermodynamics of indomethacin in propylene glycol + water mixtures. Fluid Phase Equilib. 2012, 314, 134–139. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.A. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistic effect. J. Phys. Chem. 1976, 80, 2341–2351. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alsarra, I.A.; Alshehri, S. Solubility, Hansen solubility parameters and thermodynamic behavior of emtricitabine in various (polyethylene glycol-400 + water) mixtures: Computational modeling and thermodynamics. Molecules 2020, 25, 1559. [Google Scholar] [CrossRef] [Green Version]
- Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = (278–348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [Google Scholar] [CrossRef]
- Manzurola, E.; Apelblat, A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127–1136. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T.J. Solubilization of Drugs by Cosolvents; Yalkowsky, S.H., Ed.; Techniques of Solubilization of Drugs; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 91–134. [Google Scholar]
- Sotomayor, R.G.; Holguín, A.R.; Romdhani, A.; Martínez, F.; Jouyban, A. Solution thermodynamics of piroxicam in some ethanol + water mixtures and correlation with the Jouyban–Acree Model. J. Sol. Chem. 2013, 42, 358–371. [Google Scholar] [CrossRef]
- Jouyban, A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J. Pharm. Pharm. Sci. 2008, 11, 32–58. [Google Scholar] [CrossRef]
- Sardari, F.; Jouyban, A. Solubility of nifedipine in ethanol + water and propylene glycol + water mixtures at 293.2 to 313.2 K. Ind. Eng. Chem. Res. 2013, 52, 14353–14358. [Google Scholar] [CrossRef]
- Khoubnasabjafari, M.; Shayanfar, A.; Martínez, F.; Acree, W.E., Jr.; Jouyban, A. Generally trained models to predict solubility of drugs in carbitol + water mixtures at various temperatures. J. Mol. Liq. 2016, 219, 435–438. [Google Scholar] [CrossRef]
- Nozohouri, S.; Shayanfar, A.; Cardenas, Z.J.; Martinez, F.; Jouyban, A. Solubility of celecoxib in N-methyl-2-pyrrolidone + water mixtures at various temperatures: Experimental data and thermodynamic analysis. Korean J. Chem. Eng. 2017, 34, 1435–1443. [Google Scholar] [CrossRef]
- Vay, K.; Scheler, S.; Frieß, W. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. Int. J. Pharm. 2011, 416, 202–209. [Google Scholar] [CrossRef]
Material | Molecular Formula | Molar Mass (g mol−1) | CAS Registry No. | Purification Method | Mass Fraction Purity | Analysis Method | Source |
---|---|---|---|---|---|---|---|
FFA | C14H10F3NO2 | 281.23 | 530-78-9 | None | >0.97 | HPLC | Sigma-Aldrich |
Carbitol | C6H14O3 | 134.17 | 111-90-0 | None | >0.99 | GC | Gattefossé |
Water | H2O | 18.07 | 7732-18-5 | None | - | - | Milli-Q |
m | xe | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0 | 5.80 × 10−7 | 8.01 × 10−7 | 1.06 × 10−6 | 1.32 × 10−6 | 1.63 × 10−6 |
0.1 | 2.16 × 10−6 | 2.83 × 10−6 | 3.70 × 10−6 | 4.54 × 10−6 | 5.54 × 10−6 |
0.2 | 7.42 × 10−6 | 9.76 × 10−6 | 1.27 × 10−5 | 1.53 × 10−5 | 1.86 × 10−5 |
0.3 | 2.67 × 10−5 | 3.43 × 10−5 | 4.30 × 10−5 | 5.11 × 10−5 | 6.10 × 10−5 |
0.4 | 9.39 × 10−5 | 1.22 × 10−4 | 1.49 × 10−4 | 1.76 × 10−4 | 2.11 × 10−4 |
0.5 | 3.36 × 10−4 | 4.12 × 10−4 | 4.99 × 10−4 | 5.84 × 10−4 | 6.83 × 10−4 |
0.6 | 1.21 × 10−3 | 1.43 × 10−3 | 1.73 × 10−3 | 1.99 × 10−3 | 2.32 × 10−3 |
0.7 | 4.25 × 10−3 | 4.95 × 10−3 | 5.81 × 10−3 | 6.62 × 10−3 | 7.58 × 10−3 |
0.8 | 1.53 × 10−2 | 1.73 × 10−2 | 2.00 × 10−2 | 2.24 × 10−2 | 2.55 × 10−2 |
0.9 | 5.37 × 10−2 | 5.99 × 10−2 | 6.78 × 10−2 | 7.51 × 10−2 | 8.44 × 10−2 |
1 | 1.90 × 10−1 | 2.07 × 10−1 | 2.31 × 10−1 | 2.53 × 10−1 | 2.81 × 10−1 |
xidl | 6.35 × 10−2 | 7.36 × 10−2 | 8.50 × 10−2 | 9.79 × 10−2 | 1.12 × 10−1 |
m | γi | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0.0 | 110,000 | 91,900.0 | 80,400.0 | 74,200.0 | 69,200.0 |
0.1 | 30,323.3 | 25,981.8 | 22,959.3 | 21,588.6 | 20,326.8 |
0.2 | 8567.52 | 7541.16 | 6691.26 | 6385.92 | 6056.82 |
0.3 | 2379.81 | 2148.02 | 1977.9 | 1916.43 | 1846.53 |
0.4 | 677.404 | 601.039 | 570.85 | 555.446 | 534.634 |
0.5 | 188.975 | 178.627 | 170.372 | 167.843 | 164.91 |
0.6 | 52.4835 | 51.2066 | 49.1446 | 49.0884 | 48.3886 |
0.7 | 14.9338 | 14.8694 | 14.6094 | 14.7924 | 14.8495 |
0.8 | 4.13227 | 4.24933 | 4.24812 | 4.37149 | 4.4018 |
0.9 | 1.18203 | 1.22716 | 1.2527 | 1.30404 | 1.3335 |
1 | 0.333385 | 0.355174 | 0.367864 | 0.387139 | 0.400476 |
m | ΔsolH0/kJ mol−1 | ΔsolG0/kJ mol−1 | ΔsolS0/J mol−1 K−1 | R2 |
---|---|---|---|---|
0 | 40.56 | 35.35 | 16.91 | 0.9942 |
0.1 | 38.08 | 32.14 | 19.31 | 0.9943 |
0.2 | 36.21 | 28.98 | 23.45 | 0.9946 |
0.3 | 32.43 | 25.83 | 21.41 | 0.9956 |
0.4 | 31.34 | 22.63 | 28.26 | 0.9937 |
0.5 | 27.88 | 19.52 | 27.14 | 0.998 |
0.6 | 25.82 | 16.33 | 30.79 | 0.9989 |
0.7 | 22.84 | 13.21 | 31.25 | 0.9992 |
0.8 | 20.12 | 10.04 | 32.74 | 0.9987 |
0.9 | 17.8 | 6.9 | 35.37 | 0.9992 |
1 | 15.41 | 3.75 | 37.83 | 0.9973 |
m | a | b | R2 | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|---|
0 | 2.01 | −4872.80 | 0.9944 | 2.73 | |
0.1 | 2.3 | −4575.50 | 0.9945 | 2.53 | |
0.2 | 2.8 | −4350.00 | 0.9947 | 2.35 | |
0.3 | 2.55 | −3896.20 | 0.9957 | 2.03 | |
0.4 | 3.38 | −3765.20 | 0.9939 | 2.2 | |
0.5 | 3.24 | −3349.90 | 0.9981 | 1.39 | 1.58 |
0.6 | 3.68 | −3101.10 | 0.9989 | 1.03 | |
0.7 | 3.74 | −2744.30 | 0.9992 | 0.84 | |
0.8 | 3.92 | −2417.60 | 0.9987 | 0.97 | |
0.9 | 4.24 | −2138.30 | 0.9992 | 0.62 | |
1 | 4.54 | −1850.90 | 0.9972 | 0.73 |
m | A | B | C | R2 | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|---|---|
0 | 939.33 | −47,907.30 | −139.18 | 0.9993 | 1.43 | |
0.1 | 846.56 | −43,337.80 | −125.36 | 0.999 | 1.37 | |
0.2 | 750.42 | −38,676.20 | −111.01 | 0.9985 | 1.31 | |
0.3 | 618.72 | −32,187.80 | −91.49 | 0.999 | 1.16 | |
0.4 | 677.29 | −34,706.60 | −100.07 | 0.9982 | 1.46 | |
0.5 | 354.45 | −19,479.00 | −52.14 | 0.9995 | 0.7 | 0.95 |
0.6 | 143.72 | −9538.04 | −20.79 | 0.999 | 0.64 | |
0.7 | 110.9 | −7670.58 | −15.90 | 0.9993 | 0.55 | |
0.8 | −132.19 | 3822.7 | 20.21 | 0.999 | 0.78 | |
0.9 | −97.61 | 2530.17 | 15.13 | 0.9994 | 0.41 | |
1 | −219.47 | 8425.15 | 33.27 | 0.9992 | 0.64 |
m | LogxYal | RMSD (%) | Overall RMSD (%) | ||||
---|---|---|---|---|---|---|---|
298.2 K | 303.2 K | 308.2 K | 313.2 K | 318.2 K | |||
0.1 | −5.68 | −5.55 | −5.44 | −5.35 | −5.26 | 1.83 | |
0.2 | −5.13 | −5.01 | −4.90 | −4.82 | −4.74 | 1.8 | |
0.3 | −4.58 | −4.47 | −4.37 | −4.29 | −4.21 | 1.35 | |
0.4 | −4.02 | −3.93 | −3.83 | −3.76 | −3.69 | 3.14 | |
0.5 | −3.47 | −3.38 | −3.30 | −3.23 | −3.16 | 0.99 | 1.53 |
0.6 | −2.92 | −2.84 | −2.77 | −2.70 | −2.64 | 2.23 | |
0.7 | −2.37 | −2.30 | −2.23 | −2.18 | −2.12 | 0.55 | |
0.8 | −1.82 | −1.76 | −1.70 | −1.65 | −1.59 | 1.46 | |
0.9 | −1.27 | −1.22 | −1.17 | −1.12 | −1.07 | 0.42 |
System | Jouyban–Acree | Jouyban–Acree–van’t Hoff | ||
---|---|---|---|---|
A1 | 4.54 | |||
Carbitol + water | Ji | 86.01 | B1 | −1850.90 |
A2 | 2.01 | |||
B2 | −4872.80 | |||
Ji | 74.42 | |||
RMSD (%) | 0.76 | 0.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, F.; Alshehri, S. Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures. Processes 2020, 8, 1204. https://doi.org/10.3390/pr8101204
Shakeel F, Alshehri S. Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures. Processes. 2020; 8(10):1204. https://doi.org/10.3390/pr8101204
Chicago/Turabian StyleShakeel, Faiyaz, and Sultan Alshehri. 2020. "Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures" Processes 8, no. 10: 1204. https://doi.org/10.3390/pr8101204
APA StyleShakeel, F., & Alshehri, S. (2020). Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures. Processes, 8(10), 1204. https://doi.org/10.3390/pr8101204