Computational Optimization of Porous Structures for Electrochemical Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pore Network Model
2.2. Structure Tool
2.3. Invasion Tool
3. Results and Discussion
3.1. General Results
3.2. Drainage Simulation
3.3. Drainage Simulation
3.4. Upscaling to Continuum Model
3.5. Macroscopic Continuum Model
4. Conclusions
Symbols and Abbreviations
Symbols | ||
Abase | Base area | m2 |
Normalized concentration | - | |
Concentration | kg/m3 | |
Diameter | µm | |
Diffusion coefficient | m2/s | |
Throat index | - | |
Relative permeability | - | |
Absolute permeability | m2 | |
Distance between nodes | µm | |
Length of throat | µm | |
Mass flow rate | kg/s | |
Capillary pressure | Pa | |
Liquid pressure | Pa | |
Pore radius | µm | |
Throat radius | µm | |
Mean radius | µm | |
Resistance factor | kg/m3∙s | |
Time | s | |
Velocity | m/s | |
Volume of pore | m3 | |
Volume of solid | m3 | |
Volume of throat | m3 | |
Volume of voids | m3 | |
Thickness of PTL | m | |
Porosity | % | |
Kinematic viscosity | m2/s | |
Density of liquid | kg/m3 | |
Contact angle | ||
Surface tension | N/m | |
Liquid fraction | - | |
Tortuosity | - | |
Abbreviations | ||
µ-CT | Microcomputed tomography | |
FIB | Focused ion beam | |
HTL | High-to-low | |
LTH | Low-to-high | |
PSD | Pore size distribution | |
PTL | Porous transport layer | |
SEM | Scanning electron microscopy | |
TEM | Transmission electron microscopy |
Author Contributions
Funding
Conflicts of Interest
References
- Grigoriev, S.A.; Millet, P.; Volobuev, S.A.; Fateev, V.N. Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrog. Energy 2009, 34, 4968–4973. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Z.; Karahan, H.E.; Shao, Q.; Wei, L.; Chen, Y. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries. Small 2018, 14, e1801929. [Google Scholar] [PubMed]
- García-García, R.; García, R.E. Microstructural effects on the average properties in porous battery electrodes. J. Power Sources 2016, 309, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Baumgaertel, A.C.; Wang, Y.M.; Biener, J.; Biener, M.M. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. ACS Nano 2015, 9, 2194–2202. [Google Scholar] [PubMed]
- Xing, L.; Shi, W.; Su, H.; Xu, Q.; Das, P.K.; Mao, B.; Scott, K. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization. Energy 2019, 177, 445–464. [Google Scholar] [CrossRef]
- Mayr, G.; Gresslehner, K.H.; Hendorfer, G. Non-destructive testing procedure for porosity determination in carbon fibre reinforced plastics using pulsed thermography. Quant. InfraRed Thermogr. J. 2017, 14, 263–274. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Chen, C.; Song, Y.; Ni, P. High throughput rapid detection for SLM manufactured elements using ultrasonic measurement. Measurement 2019, 144, 234–242. [Google Scholar] [CrossRef]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar]
- Arbabi, F.; Kalantarian, A.; Abouatallah, R.; Wang, R.; Wallace, J.S.; Bazylak, A. Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers. J. Power Sources 2014, 258, 142–149. [Google Scholar] [CrossRef]
- Rigby, S.P. Structural Characterisation of Natural and Industrial Porous Materials: A Manual; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Three dimensional characterization of morphology and internal structure of soft material agglomerates produced in spray fluidized bed by X-ray tomography. Powder Technol. 2016, 300, 46–60. [Google Scholar] [CrossRef]
- Vilcáez, J.; Morad, S.; Shikazono, N. Pore-scale simulation of transport properties of carbonate rocks using FIB-SEM 3D microstructure: Implications for field scale solute transport simulations. J. Nat. Gas Sci. Eng. 2017, 42, 13–22. [Google Scholar] [CrossRef]
- Li, G.; Li, X.-S.; Li, C. Measurement of Permeability and Verification of Kozeny-Carman Equation Using Statistic Method. Energy Procedia 2017, 142, 4104–4109. [Google Scholar] [CrossRef]
- Suermann, M.; Takanohashi, K.; Lamibrac, A.; Schmidt, T.J.; Büchi, F.N. Influence of Operating Conditions and Material Properties on the Mass Transport Losses of Polymer Electrolyte Water Electrolysis. J. Electrochem. Soc. 2017, 164, F973. [Google Scholar] [CrossRef] [Green Version]
- Piller, M.; Casagrande, D.; Schena, G.; Santini, M. Pore-scale simulation of laminar flow through porous media. J. Phys. Conf. Ser. 2014, 501, 12010. [Google Scholar] [CrossRef]
- AlRatrout, A.; Blunt, M.J.; Bijeljic, B. Spatial Correlation of Contact Angle and Curvature in Pore-Space Images. Water Resour. Res. 2018, 54, 6133–6152. [Google Scholar] [CrossRef] [Green Version]
- Börnhorst, M.; Walzel, P.; Rahimi, A.; Kharaghani, A.; Tsotsas, E.; Nestle, N.; Besser, A.; Kleine Jäger, F.; Metzger, T. Influence of pore structure and impregnation–drying conditions on the solid distribution in porous support materials. Dry. Technol. 2016, 34, 1964–1978. [Google Scholar] [CrossRef]
- Halter, J.; Bevilacqua, N.; Zeis, R.; Schmidt, T.J.; Büchi, F.N. The impact of the catalyst layer structure on phosphoric acid migration in HT-PEFC—An operando X-ray tomographic microscopy study. J. Electroanal. Chem. 2020, 859, 113832. [Google Scholar] [CrossRef]
- Kunz, P.; Paulisch, M.; Osenberg, M.; Bischof, B.; Manke, I.; Nieken, U. Prediction of Electrolyte Distribution in Technical Gas Diffusion Electrodes: From Imaging to SPH Simulations. Transp. Porous Med. 2020, 132, 381–403. [Google Scholar] [CrossRef] [Green Version]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Chevalier, S.; Fazeli, M.; Mack, F.; Galbiati, S.; Manke, I.; Bazylak, A.; Zeis, R. Role of the microporous layer in the redistribution of phosphoric acid in high temperature PEM fuel cell gas diffusion electrodes. Electrochim. Acta 2016, 212, 187–194. [Google Scholar] [CrossRef]
- Sinha, P.K.; Wang, C.-Y. Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell. Chem. Eng. Sci. 2008, 63, 1081–1091. [Google Scholar] [CrossRef]
- Liu, T.; Lin, J.; Wu, H.; Xia, C.; Chen, C.; Zhan, Z. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells. J. Electroceram. 2018, 40, 138–143. [Google Scholar] [CrossRef]
- Dashtian, H.; Shokri, N.; Sahimi, M. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Adv. Water Resour. 2018, 112, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Q.; Baychev, T.G.; Jivkov, A.P. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 2016, 192, 101–117. [Google Scholar] [CrossRef]
- Agaesse, T.; Lamibrac, A.; Büchi, F.N.; Pauchet, J.; Prat, M. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images. J. Power Sources 2016, 331, 462–474. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, F.; Duru, P.; Geoffroy, S.; Prat, M. Three periods of drying of a single square capillary tube. Phys. Rev. Lett. 2009, 103, 124502. [Google Scholar] [CrossRef] [Green Version]
- Naillon, A.; Duru, P.; Marcoux, M.; Prat, M. Evaporation with sodium chloride crystallization in a capillary tube. J. Cryst. Growth 2015, 422, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Vorhauer, N.; Tsotsas, E.; Prat, M. Temperature gradient induced double stabilization of the evaporation front within a drying porous medium. Phys. Rev. Fluids 2018, 3, 217. [Google Scholar] [CrossRef] [Green Version]
- Shokri, N.; Lehmann, P.; Vontobel, P.; Or, D. Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resour. Res. 2008, 44, 815. [Google Scholar] [CrossRef] [Green Version]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, L.; Prat, M.; Duru, P. Slow invasion of a nonwetting fluid from multiple inlet sources in a thin porous layer. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 84, 56311. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, L.; Prat, M. Slow invasion of a fluid from multiple inlet sources in a thin porous layer: Influence of trapping and wettability. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2013, 87, 43005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saif, T.; Lin, Q.; Butcher, A.R.; Bijeljic, B.; Blunt, M.J. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Appl. Energy 2017, 202, 628–647. [Google Scholar] [CrossRef]
- Majasan, J.O.; Iacoviello, F.; Cho, J.I.S.; Maier, M.; Lu, X.; Neville, T.P.; Dedigama, I.; Shearing, P.R.; Brett, D.J.L. Correlative study of microstructure and performance for porous transport layers in polymer electrolyte membrane water electrolysers by X-ray computed tomography and electrochemical characterization. Int. J. Hydrog. Energy 2019, 44, 19519–19532. [Google Scholar] [CrossRef]
- Lettenmeier, P.; Kolb, S.; Sata, N.; Fallisch, A.; Zielke, L.; Thiele, S.; Gago, A.S.; Friedrich, K.A. Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers. Energy Environ. Sci. 2017, 10, 2521–2533. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R.; Neuweiler, I. Modeling Overpotentials Related to Mass Transport Through Porous Transport Layers of PEM Water Electrolysis Cells. J. Electrochem. Soc. 2020, 167, 114511. [Google Scholar] [CrossRef]
- Altaf, H.; Vorhauer, N.; Tsotsas, E.; Vidaković-Koch, T. Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes 2020, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Deiner, L.J.; Reitz, T.L. Inkjet and Aerosol Jet Printing of Electrochemical Devices for Energy Conversion and Storage. Adv. Eng. Mater. 2017, 19, 1600878. [Google Scholar] [CrossRef]
- Talukdar, K.; Delgado, S.; Lagarteira, T.; Gazdzicki, P.; Friedrich, K.A. Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers. J. Power Sources 2019, 427, 309–317. [Google Scholar] [CrossRef]
- Shrestha, P.; Ouellette, D.; Lee, J.; Ge, N.; Wong, A.K.C.; Muirhead, D.; Liu, H.; Banerjee, R.; Bazylak, A. Graded Microporous Layers for Enhanced Capillary-Driven Liquid Water Removal in Polymer Electrolyte Membrane Fuel Cells. Adv. Mater. Interfaces 2019, 6, 1901157. [Google Scholar] [CrossRef]
- Bevilacqua, N.; Eifert, L.; Banerjee, R.; Köble, K.; Faragó, T.; Zuber, M.; Bazylak, A.; Zeis, R. Visualization of electrolyte flow in vanadium redox flow batteries using synchrotron X-ray radiography and tomography—Impact of electrolyte species and electrode compression. J. Power Sources 2019, 439, 227071. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Shrestha, P.; Ge, N.; Lee, C.; Fahy, K.F.; Zeis, R.; Schulz, V.P.; Hatton, B.D.; Bazylak, A. Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer Electrolyte Membrane Fuel Cells. ACS Appl. Energy Mater. 2020, 3, 2695–2707. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Vorhauer, N.; Altaf, H.; Tsotsas, E.; Vidakovic-Koch, T. Pore Network Simulation of Gas-Liquid Distribution in Porous Transport Layers. Processes 2019, 7, 558. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Zhao, B.; Abouatallah, R.; Wang, R.; Bazylak, A. Compressible-Gas Invasion into Liquid-Saturated Porous Media: Application to Polymer-Electrolyte-Membrane Electrolyzers. Phys. Rev. Appl. 2019, 11, 054029. [Google Scholar] [CrossRef]
- Garcia-Navarro, J.; Schulze, M.; Friedrich, K.A. Understanding the Role of Water Flow and the Porous Transport Layer on the Performance of Proton Exchange Membrane Water Electrolyzers. ACS Sustain. Chem. Eng. 2019, 7, 1600–1610. [Google Scholar] [CrossRef]
- Lenormand, R. Liquids in porous media. J. Phys. Condens. Matter 1990, 2, SA79–SA88. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.K.; Zhao, B.; Fahy, K.F.; Bazylak, A. Transient Gas Distribution in Porous Transport Layers of Polymer Electrolyte Membrane Electrolyzers. J. Electrochem. Soc. 2020, 167, 24508. [Google Scholar] [CrossRef]
- Schuler, T.; de Bruycker, R.; Schmidt, T.J.; Büchi, F.N. Polymer Electrolyte Water Electrolysis: Correlating Porous Transport Layer Structural Properties and Performance: Part I. Tomographic Analysis of Morphology and Topology. J. Electrochem. Soc. 2019, 166, F270–F281. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Lee, J.K.; Zhao, B.; Fahy, K.F.; LaManna, J.M.; Baltic, E.; Hussey, D.S.; Jacobson, D.L.; Schulz, V.P.; Bazylak, A. Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers. J. Power Sources 2020, 446, 227312. [Google Scholar] [CrossRef]
- Siracusano, S.; Trocino, S.; Briguglio, N.; Baglio, V.; Aricò, A.S. Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials 2018, 11, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernt, M.; Siebel, A.; Gasteiger, H.A. Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings. J. Electrochem. Soc. 2018, 165, F305–F314. [Google Scholar] [CrossRef]
- Millet, P.; Ngameni, R.; Grigoriev, S.A.; Mbemba, N.; Brisset, F.; Ranjbari, A.; Etiévant, C. PEM water electrolyzers: From electrocatalysis to stack development. Int. J. Hydrog. Energy 2010, 35, 5043–5052. [Google Scholar] [CrossRef]
- Liu, C.; Carmo, M.; Bender, G.; Everwand, A.; Lickert, T.; Young, J.L.; Smolinka, T.; Stolten, D.; Lehnert, W. Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochem. Commun. 2018, 97, 96–99. [Google Scholar] [CrossRef]
- Roque, W.L.; Costa, R.R.A. A plugin for computing the pore/grain network tortuosity of a porous medium from 2D/3D MicroCT image. Appl. Comput. Geosci. 2020, 5, 100019. [Google Scholar] [CrossRef]
- Thorat, I.V.; Stephenson, D.E.; Zacharias, N.A.; Zaghib, K.; Harb, J.N.; Wheeler, D.R. Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources 2009, 188, 592–600. [Google Scholar] [CrossRef]
- LeVeque, R.J. Numerical Methods for Conservation Laws; Birkhäuser Basel: Basel, Switzerland, 1990. [Google Scholar]
- Hundsdorfer, W.; Verwer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with MATLAB; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Griffiths, I.M.; Kumar, A.; Stewart, P.S. A combined network model for membrane fouling. J. Colloid Interface Sci. 2014, 432, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Debnath, N.; Kumar, A.; Thundat, T.; Sadrzadeh, M. Investigating fouling at the pore-scale using a microfluidic membrane mimic filtration system. Sci. Rep. 2019, 9, 10587. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Sheng, G.-P.; Luo, H.-W.; Li, W.-W.; Wang, L.-F.; Yu, H.-Q. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res. 2012, 46, 1817–1824. [Google Scholar] [CrossRef]
2D | 3D | |
---|---|---|
Network size (columns and rows) | 80 10 | 10 10 7 |
Number of pore network slices | 8 | 5 |
Number of pores | 800 | 700 |
Number of throats | 1360 | 1600 |
Average pore diameter range | (30 to 33.5) µm ± 4 µm | (30 to 32) µm ± 4 µm |
Average throat diameter range | (22 to 29) µm ± 6 µm | (22 to 26) µm ± 6 µm |
Lattice spacing | 50 µm | 50 µm |
Thickness of network | 500 µm | 350 µm |
Maximum porosity range | 45–65% | 30–50% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorhauer-Huget, N.; Altaf, H.; Dürr, R.; Tsotsas, E.; Vidaković-Koch, T. Computational Optimization of Porous Structures for Electrochemical Processes. Processes 2020, 8, 1205. https://doi.org/10.3390/pr8101205
Vorhauer-Huget N, Altaf H, Dürr R, Tsotsas E, Vidaković-Koch T. Computational Optimization of Porous Structures for Electrochemical Processes. Processes. 2020; 8(10):1205. https://doi.org/10.3390/pr8101205
Chicago/Turabian StyleVorhauer-Huget, Nicole, Haashir Altaf, Robert Dürr, Evangelos Tsotsas, and Tanja Vidaković-Koch. 2020. "Computational Optimization of Porous Structures for Electrochemical Processes" Processes 8, no. 10: 1205. https://doi.org/10.3390/pr8101205
APA StyleVorhauer-Huget, N., Altaf, H., Dürr, R., Tsotsas, E., & Vidaković-Koch, T. (2020). Computational Optimization of Porous Structures for Electrochemical Processes. Processes, 8(10), 1205. https://doi.org/10.3390/pr8101205