Effect of Variety on Rehydration Characteristics of Dried Apples
Abstract
:1. Introduction
- To determine the effect of variety and rehydration temperature on the rehydration characteristics of dried apples;
- To fit the experimental rehydration data obtained to the Peleg model, Weibull model and Fick’s second law model in order to: (i) estimate their suitability to describe the rehydration behavior of dried apples, (ii) obtain the values of models constants which have physical meaning and therefore can enable the explanation of the phenomena occurring during rehydration of different varieties of dried apples.
2. Materials and Methods
- Standard error of estimation SEE
- Coefficient of determination R2
- Root mean square error RMSE
3. Results and Discussion
- for mass:
- for dry matter:
- for volume:
4. Conclusions
- Apple variety and temperature of rehydrating water had a statistically significant influence on the value of the equilibrium mass of the rehydrated sample. The highest value demonstrated Cortland variety rehydrated at 20 °C, the lowest Ligol one at 20 °C. The rate of water absorption during the early stage of rehydration at 20 °C was the highest for Champion and the lowest for Cortland, and the discussed rate becomes higher at a higher rehydration temperature;
- The apple variety had a statistically insignificant influence on the loss of dry matter. The rate of dry matter loss during the early stage of the rehydration for some apple variety depended in a statistically significant way on the rehydration temperature, and at 20 °C was higher than at 70 °C;
- Apple variety and temperature of rehydrating water had a statistically significant influence on the value of the equilibrium volume of the rehydrated sample. The highest value demonstrated Gray Reinette at 45 °C, the lowest Champion at 70 °C;
- Comparing the results obtained for three considered models, namely Peleg model, Weibull model and Fick’s second law model, the diffusion model can be considered as the most appropriate for describing the rehydration behavior of dried apples;
- The values of the water diffusion coefficient to the second power of the cube thickness ratio (D/L2) depend on the apple variety, but the differences were statistically insignificant. Apple var. Champion demonstrated the highest values of D/L2 at the rehydration temperatures of 20–70 °C. The lowest value of the discussed parameter at 20 °C was obtained for Gray Reinette, whereas Ligol showed the lowest D/L2 at 45 and 70 °C. The values of D/L2 increased with rehydration temperature, but the differences were statistically insignificant;
- Taking into account all the obtained results, it can be stated that apple var. Champion showed a greater rate of water absorption during the entire process of rehydration than other investigated varieties; therefore, it could easily apply for special purpose food products;
- The apple variety had a statistically significant influence on the color attribute B of raw apple. The highest value demonstrated Cortland, the lowest Gray Reinette one. The apple variety had a statistically significant influence on the color attribute of dried apple. The highest value demonstrated Champion, the lowest Gray Reinette and Ligol. Apple variety and temperature of rehydrating water had a statistically significant influence on the color attribute of the rehydrated apples.
Author Contributions
Funding
Conflicts of Interest
References
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-induced protein and microstructure damages of squid fillets affected moisture distribution and rehydration ability during rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
- Krokida, M.K.; Philippopoulos, C. Rehydration of dehydrated foods. Dry. Technol. 2005, 23, 799–830. [Google Scholar] [CrossRef]
- Seguí, L.; Fito, P.; Fito, P.J. A study on the rehydration ability of isolated apple cells after osmotic dehydration treatments. J. Food Eng. 2013, 115, 145–153. [Google Scholar] [CrossRef]
- Maldonado, S.; Arnau, E.; Bertuzzi, M. Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes. J. Food Eng. 2010, 96, 333–341. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Chaguri, L.; Fernandes, C. Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. J. Food Eng. 2008, 86, 584–594. [Google Scholar] [CrossRef]
- Giraldo, G.; Vazquez, R.; Martin-Esparza, M.E.; Chiralt, A. Rehydration kinetics and soluble solids lixiviation of candied mango fruit as affected by sucrose concentration. J. Food Eng. 2006, 77, 825–834. [Google Scholar] [CrossRef]
- Lewicki, P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998, 1, 1–22. [Google Scholar] [CrossRef]
- Lewicki, P.P. Some remarks on rehydration of dried foods. J. Food Eng. 1998, 36, 81–87. [Google Scholar] [CrossRef]
- Taiwo, K.; Angersbach, A.; Knorr, D. Rehydration studies on pretreated and osmotically dehydrated apple slices. J. Food Sci. 2002, 67, 842–847. [Google Scholar] [CrossRef]
- Severini, C.; Baiano, A.; De Pilli, T.; Carbone, B.F.; DeRossi, A. Combined treatments of blanching and dehydration: Study on potato cubes. J. Food Eng. 2005, 68, 289–296. [Google Scholar] [CrossRef]
- Doymaz, I.; Sahin, M. Effect of temperature and pre-treatment on drying and rehydration characteristics of broccoli slices. J. Food Meas. Charact. 2016, 10, 364–373. [Google Scholar] [CrossRef]
- Kocabay, Ö.G.; Ismail, O. Investigation of rehydration kinetics of open-sun dried okra samples. Heat Mass Transf. 2017, 53, 2155–2163. [Google Scholar] [CrossRef]
- Kumar, H.S.P.; Radhakrishna, K.; Nagaraju, P.K.; Rao, D.V. Effect of combination drying on the physico-chemical characteristics of carrot and pumpkin. J. Food Process. Preserv. 2001, 25, 447–460. [Google Scholar] [CrossRef]
- Giri, S.; Prasad, S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Yi, J.; Zhou, L.; Bi, J.; Liu, X.; Qinqin, C.; Wu, X. Influences of microwave pre-drying and explosion puffing drying induced cell wall polysaccharide modification on physicochemical properties, texture, microstructure and rehydration of pitaya fruit chips. LWT 2016, 70, 271–279. [Google Scholar] [CrossRef]
- Wang, J.; Chao, Y. Effect of 60Co irradiation on drying characteristics of apple. J. Food Eng. 2003, 56, 347–351. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Lemus-Mondaca, R.; Bilbao-Sáinz, C.; Fito, P.; Andrés, A. Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). J. Food Eng. 2008, 85, 42–50. [Google Scholar] [CrossRef]
- Rafiq, A.; Chowdhary, J.; Hazarika, M.K.; Makroo, H.A. Temperature dependence on hydration kinetic model parameters during rehydration of parboiled rice. J. Food Sci. Technol. 2015, 52, 6090–6094. [Google Scholar] [CrossRef] [Green Version]
- Rhim, J.-W.; Koh, S.; Kim, J.-M. Effect of freezing temperature on rehydration and water vapor adsorption characteristics of freeze-dried rice porridge. J. Food Eng. 2011, 104, 484–491. [Google Scholar] [CrossRef]
- Markowski, M.; Zielińska, D. Kinetics of water absorption and soluble-solid loss of hot-air-dried carrots during rehydration. Int. J. Food Sci. Technol. 2011, 46, 1122–1128. [Google Scholar] [CrossRef]
- Oliveira, F.A.R.; Ilincanu, L. Rehydration of dried plant tissues: Basic concepts and mathematical modelling. In Processing Foods. Quality Optimization and Process Assessment; Oliveira, F.A.R., Oliveira, J.C., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 1999; pp. 201–227. ISBN 978-0-8493-7905-5. [Google Scholar]
- Prothon, F.; Ahrné, L.M.; Funebo, T.; Kidman, S.; Langton, M.; Sjöholm, I. Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and rehydration characteristics. LWT 2001, 34, 95–101. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Nayak, C.A.; Raghavarao, K. Influence of osmotic pre-treatments on rehydration characteristics of carrots. J. Food Eng. 2004, 65, 287–292. [Google Scholar] [CrossRef]
- Markowski, M.; Stankiewicz, I.; Zapotoczny, P.; Borowska, J. Effect of variety on drying characteristics and selected quality attributes of dried carrots. Dry. Technol. 2006, 24, 1011–1018. [Google Scholar] [CrossRef]
- Kaptso, K.; Yanou, N.N.; Komnek, A.; Hounhouigan, J.; Scher, J.; Mbofung, C. Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. J. Food Eng. 2008, 86, 91–99. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Piortrowski, D.; Janowicz, M.; Sitkiewicz, I.; Lenart, A. The influence of temperature and pressure in vacuum-dryer chamber on rehydration of dried strawberries. Acta Agrophysica 2011, 17, 289–300. (In Polish) [Google Scholar]
- Guz, T.; Rydzak, L.; Domin, M. Influence of Selected Parameters and different methods of implementing vacuum impregnation of apple tissue on its effectiveness. Processes 2020, 8, 428. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.K. Apples. In Handbook of Fruits and Fruit Processing; Hui, Y.H., Ed.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 263–278. ISBN 978-0-470-27773-7. [Google Scholar]
- Bora, G.C.; Pathak, R.; Ahmadi, M.; Mistry, P. Image processing analysis to track colour changes on apple and correlate to moisture content in drying stages. Food Qual. Saf. 2018, 2, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Willix, J.; Lovatt, S.J.; Amos, N. Additional thermal conductivity values of foods measured by a guarded hot plate. J. Food Eng. 1998, 37, 159–174. [Google Scholar] [CrossRef]
- Chakespari, A.G.; Rajabipour, A.; Mobli, H. Mass modeling of two apple varieties by geometrical attributes. Austraian J. Agric. Eng. 2010, 1, 112–118. [Google Scholar]
- Santos, E.D.S.; Corrêa, P.C.; Baptestini, F.M.; Botelho, F.M.; Magalhães, F.E.D.A. Mathematical modeling of dehydration of ’Fuji’ and ’Gala’ apples slices using infrared. Food Sci. Technol. 2011, 31, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Torabi, A.; Tabatabaekoloor, R.; Hashemi, S.J. Volume modelling of three apple varieties based on physical parameters. Int. J. Agric. Food Sci. Technol. 2013, 4, 461–466. [Google Scholar]
- Cruz, A.C.; Guiné, R.P.F.; Gonçalves, J.C. Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). Int. J. Fruit Sci. 2015, 15, 54–78. [Google Scholar] [CrossRef]
- Pissard, A.; Baeten, V.; Dardenne, P.; Dupont, P.; Lateur, M. Use of NIR Spectroscopy on Fresh Apples to Determine the Phenolic Compounds and Dry Matter Content in Peel and Flesh. Biotechnol. Agron. Soc. Environ. 2018, 22, 3–12. [Google Scholar] [CrossRef]
- Ugolik, M.; Lech, W.; Kulawik, K. Varieties of Apple Trees; Plantpress: Cracow, Poland, 1996. (In Polish) [Google Scholar]
- Kaleta, A.; Górnicki, K. Some remarks on evaluation of drying models of red beet particles. Energy Convers. Manag. 2010, 51, 2967–2978. [Google Scholar] [CrossRef]
- Horwitz, W. (Ed.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; ISBN 978-0-935584-75-2. [Google Scholar]
- Mazza, G. Dehydration of carrots. Int. J. Food Sci. Technol. 2007, 18, 113–123. [Google Scholar] [CrossRef]
- Peleg, M. An Empirical model for the description of moisture sorption curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Garcia-Pascual, P.; Sanjuan, N.; Bon, J.; Carreres, J.E.; Mulet, A. Rehydration process ofBoletus edulis mushroom: Characteristics and modelling. J. Sci. Food Agric. 2005, 85, 1397–1404. [Google Scholar] [CrossRef]
- Solomon, W. Hydration kinetics of lupin (Lupinus albus) seeds. J. Food Process. Eng. 2007, 30, 119–130. [Google Scholar] [CrossRef]
- Ohaco, E.; Ichiyama, B.; Lozano, J.E.; De Michelis, A. Rehydration of Rosa rubiginosa fruits dried with hot air. Dry. Technol. 2014, 33, 696–703. [Google Scholar] [CrossRef]
- Ricce, C.; Rojas, M.L.; Miano, A.C.; Siche, R.; Augusto, P.E.D. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res. Int. 2016, 89, 701–708. [Google Scholar] [CrossRef]
- Link, J.V.; Tribuzi, G.; Laurindo, J.B. Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT 2017, 84, 717–725. [Google Scholar] [CrossRef]
- Markowski, M.; Bondaruk, J.; Błaszczak, W. Rehydration behavior of vacuum-microwave-dried potato cubes. Dry. Technol. 2009, 27, 296–305. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. Modeling the rehydration process of dried tomato. Dry. Technol. 2009, 27, 1078–1088. [Google Scholar] [CrossRef]
- Machado, M.F.; Oliveira, F.A.R.; Cunha, L.M. Effect of milk fat and total solids concentration on the kinetics of moisture uptake by ready-to-eat breakfast cereal. Int. J. Food Sci. Technol. 1999, 34, 47–57. [Google Scholar] [CrossRef]
- Benseddik, A.; Azzi, A.; Zidoune, M.; Khanniche, R.; Besombes, C. Empirical and diffusion models of rehydration process of differently dried pumpkin slices. J. Saudi Soc. Agric. Sci. 2019, 18, 401–410. [Google Scholar] [CrossRef]
- Saguy, S.I.; Marabi, A.; Wallach, R. New approach to model rehydration of dry food particulates utilizing principles of liquid transport in porous media. Trends Food Sci. Technol. 2005, 16, 495–506. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Clarenton Press: Oxford, UK, 1975; ISBN 0-19-853344-6. [Google Scholar]
- Pabis, S.; Jayas, D.S.; Cenkowski, S. Grain Drying: Theory and Practice; John Wiley: New York, NY, USA, 1998; ISBN 978-0-471-57387-6. [Google Scholar]
- Melquíades, Y.I.; López, C.; Rosas-Mendoza, M. Rehydration kinetics study of the dehydrated carrot (daucus carota). Inf. Tecnol. 2009, 20, 65–72. [Google Scholar] [CrossRef]
- Falade, K.O.; Abbo, E.S. Air-drying and rehydration characteristics of date palm (Phoenix dactylifera L.) fruits. J. Food Eng. 2007, 79, 724–730. [Google Scholar] [CrossRef]
- Gowen, A.; Abu-Ghannam, N.; Frias, J.M.; Oliveira, J.C. Influence of pre-blanching on the water absorption kinetics of soybeans. J. Food Eng. 2007, 78, 965–971. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Lewicki, P.P. Rehydration properties of dried plant tissues. Int. J. Food Sci. Technol. 2006, 41, 1040–1046. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K.; Winiczenko, R.; Chojnacka, A. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Convers. Manag. 2013, 67, 179–185. [Google Scholar] [CrossRef]
- Garcia-Pascual, P.; Sanjuan, N.; Melis, R.; Mulet, A. Morchella esculenta (morel) rehydration process modelling. J. Food Eng. 2006, 72, 346–353. [Google Scholar] [CrossRef]
- McMINN, W.; Magee, T. Physical characteristics of dehydrated potatoes-Part II. J. Food Eng. 1997, 33, 49–55. [Google Scholar] [CrossRef]
- Sopade, P.; Xun, P.Y.; Halley, P.J.; Hardin, M. Equivalence of the Peleg, Pilosof and Singh–Kulshrestha models for water absorption in food. J. Food Eng. 2007, 78, 730–734. [Google Scholar] [CrossRef]
- Marabi, A.; Livings, S.; Jacobson, M.; Saguy, S.I. Normalized Weibull distribution for modeling rehydration of food particulates. Eur. Food Res. Technol. 2003, 217, 311–318. [Google Scholar] [CrossRef]
- Femenia, A.; Bestard, M.; Sanjuan, N.; Rosselló, C.; Mulet, A. Effect of rehydration temperature on the cell wall components of broccoli (Brassica oleracea L. Var. italica) plant tissues. J. Food Eng. 2000, 46, 157–163. [Google Scholar] [CrossRef]
- Górnicki, K. Modelling of Selected Vegetables and Friuts Rehydration; Wydawnictwo SGGW: Warsaw, Poland, 2011. (In Polish) [Google Scholar]
- Maté, J.I.; Zwietering, M.H.; Riet, K.V. The effect of blanching on the mechanical and rehydration properties of dried potato slices. Eur. Food Res. Technol. 1999, 209, 343–347. [Google Scholar] [CrossRef]
- Stępień, B. Rehydration of carrot dried using various methods. Acta Agrophysica 2008, 11, 239–251. [Google Scholar]
- Bilbao-Sainz, C.; Andrés, A.; Fito, P. Hydration kinetics of dried apple as affected by drying conditions. J. Food Eng. 2005, 68, 369–376. [Google Scholar] [CrossRef]
- Maskan, M. Effect of maturation and processing on water uptake characteristics of wheat. J. Food Eng. 2001, 47, 51–57. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D. Rehydration as an Index of Changes Occuring in Plant. Tissues during Drying; Fundacja Rozwój SGGW: Warsaw, Poland, 1999. (In Polish) [Google Scholar]
- Cunningham, S.; McMINN, W.; Magee, T.; Richardson, P. Modelling water absorption of pasta during soaking. J. Food Eng. 2007, 82, 600–607. [Google Scholar] [CrossRef]
- Ergün, K.; Çalışkan, G.; Dirim, S.N. Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transf. 2016, 52, 2697–2705. [Google Scholar] [CrossRef]
- Rojas, M.L.; Augusto, P.E.D. Ethanol pre-treatment improves vegetable drying and rehydration: Kinetics, mechanisms and impact on viscoelastic properties. J. Food Eng. 2018, 233, 17–27. [Google Scholar] [CrossRef]
- Turhan, M.; Sayar, S.; Gunasekaran, S. Application of Peleg model to study water absorption in chickpea during soaking. J. Food Eng. 2002, 53, 153–159. [Google Scholar] [CrossRef]
- Lin, T.M.; Durance, T.D.; Scaman, C.H. Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res. Int. 1998, 31, 111–117. [Google Scholar] [CrossRef]
- Abu-Ghannam, N.; McKenna, B. The application of Peleg’s equation to model water absorption during the soaking of red kidney beans (Phaseolus vulgaris L.). J. Food Eng. 1997, 32, 391–401. [Google Scholar] [CrossRef]
- Singh, S.; Raina, C.S.; Bawa, A.S.; Saxena, D.C. Effect of pretreatments on drying and rehydration kinetics and color of sweet potato slices. Dry. Technol. 2006, 24, 1487–1494. [Google Scholar] [CrossRef]
- Doulia, D.; Tzia, K.; Gekas, V. A knowledge base for the apparent mass diffusion coefficient (D EFF) of foods. Int. J. Food Prop. 2000, 3, 1–14. [Google Scholar] [CrossRef]
- Maroulis, Z.; Saravacos, G.D.; Panagiotou, N.M.; Krokida, M.K. Moisture diffusivity data compilation for foodstuffs: Effect of material moisture content and temperature. Int. J. Food Prop. 2001, 4, 225–237. [Google Scholar] [CrossRef]
- Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 1996, 14, 2225–2253. [Google Scholar] [CrossRef]
- Handbook of Industrial Drying, 2nd ed.; Mujumdar, A.S. (Ed.) Dekker: New York, NY, USA, 1995; ISBN 978-0-8247-8996-1. [Google Scholar]
- Resio, A.N.C.; Aguerre, R.J.; Suárez, C. Study of some factors affecting water absorption by amaranth grain during soaking. J. Food Eng. 2003, 60, 391–396. [Google Scholar] [CrossRef]
- Cunningham, S.; McMINN, W.; Magee, T.; Richardson, P. Effect of processing conditions on the water absorption and texture kinetics of potato. J. Food Eng. 2008, 84, 214–223. [Google Scholar] [CrossRef]
- Feng, H.; Tang, J. Microwave finish drying of diced apples in a spouted bed. J. Food Sci. 2006, 63, 679–683. [Google Scholar] [CrossRef]
- Nadian, M.H.; Rafiee, S.; Golzarian, M.R. Real-time monitoring of color variations of apple slices and effects of pre-treatment and drying air temperature. J. Food Meas. Charact. 2016, 10, 493–506. [Google Scholar] [CrossRef]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amiot, M.; Aubert, S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef]
- Dixon, J.; Hewett, E.W. Temperature affects postharvest color change of apples. J. Am. Soc. Hortic. Sci. 1998, 123, 305–310. [Google Scholar] [CrossRef]
- Lozano, J.E. Fruit manufacturing: Scientific basis, engineering properties, and deteriorative reactions of technological importance. In Food Engineering Series; Springer: New York, NY, USA, 2006. [Google Scholar]
- Contreras, C.; Martín-Esparza, M.; Chiralt, A.; Martínez-Navarrete, N. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. J. Food Eng. 2008, 88, 55–64. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Gondek, E.; Witrowa-Rajchert, D.; Nowak, D. Effect of drying on respiration of apple slices. J. Food Eng. 2001, 49, 333–337. [Google Scholar] [CrossRef]
Quantity | Variety of Apple | Time (h) | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 0.16 | 0.33 | 0.5 | 0.83 | 1.5 | 3 | 6 | ||
mass (g) | Champion | 10 | 24.56 ± 0.11 c | 27.51 ± 0.35 b | 30.46 ± 0.60 b | 32.86 ± 0.46 b | 36.94 ± 0.34 b | 41.34 ± 0.51 b | 45.69 ± 1.15 bc |
Cortland | 10 | 16.42 ± 0.83 a | 22.40 ± 1.57 a | 24.48 ± 1.69 a | 29.03 ± 1.91 a | 34.04 ± 2.11 ab | 42.03 ± 2.53 b | 47.57 ± 2.31 c | |
Gray Reinette | 10 | 19.34 ± 0.66 b | 22.02 ± 0.72 a | 24.69 ± 1.03 a | 28.14 ± 0.90 a | 32.24 ± 0.58 a | 36.74 ± 0.28 a | 41.34 ± 0.93 ab | |
Ligol | 10 | 19.07 ± 0.41 b | 22.03 ± 0.41 a | 24.28 ± 0.15 a | 26.34 ± 0.04 a | 30.84 ± 0.21 a | 34.50 ± 0.04 a | 38.28 ± 0.30 a | |
dry matter (g) | Champion | 9.5 | 7.29 ± 0.25 b | 6.73 ± 0.20 ab | 6.18 ± 0.53 a | 4.90 ± 0.27 a | 4.01 ± 0.16 a | 3.53 ± 0.09 a | 3.11 ± 0.23 a |
Cortland | 9.5 | 7.80 ± 0.04 c | 6.23 ± 0.07 a | 5.84 ± 0.06 a | 5.21 ± 0.13 a | 4.60 ± 0.09 b | 3.73 ± 0.13 ab | 3.28 ± 0.01 a | |
Gray Reinette | 9.5 | 7.79 ± 0.13 c | 7.00 ± 0.20 b | 6.21 ± 0.39 a | 5.39 ± 0.24 a | 4.68 ± 0.14 b | 3.76 ± 0.07 ab | 2.95 ± 0.18 a | |
Ligol | 9.5 | 6.98 ± 0.09 a | 6.32 ± 0.04 a | 5.67 ± 0.13 a | 5.01 ± 0.04 a | 4.58 ± 0.20 b | 3.97 ± 0.09 b | 3.38 ± 0.05 a | |
volume (cm3) | Champion | 20 | 29.66 ± 0.55 ab | 32.67 ± 1.11 a | 35.45 ± 1.68 a | 38.32 ± 0.83 ab | 41.84 ± 0.19 a | 48.60 ± 1.33 a | 51.55 ± 0.40 a |
Cortland | 20 | 27.08 ± 1.14 a | 33.51 ± 2.14 a | 34.88 ± 2.19 a | 37.70 ± 2.25 a | 41.75 ± 1.78 a | 46.22 ± 2.65 a | 50.32 ± 1.88 a | |
Gray Reinette | 20 | 31.71 ± 0.78 b | 34.99 ± 0.24 a | 38.45 ± 0.54 a | 42.87 ± 0.51 b | 47.98 ± 0.63 b | 57.91 ± 0.98 b | 62.99 ± 0.55 b | |
Ligol | 20 | 29.60 ± 1.89 ab | 33.62 ± 2.53 a | 35.90 ± 1.18 a | 38.59 ± 0.21 ab | 43.21 ± 1.09 ab | 43.94 ± 0.98 a | 49.09 ± 0.99 a |
Variety of Apple | Tr (°C) | me (g) | k1 (h/g) | k2 (1/g) | R2 |
---|---|---|---|---|---|
Champion | 20 | 45.51 cd | 0.0094 ab | 0.0282 bc | 0.9748 |
45 | 47.18 d | 0.0081 a | 0.0269 b | 0.9608 | |
70 | 44.48 bcd | 0.0049 a | 0.0290 bc | 0.9656 | |
Cortland | 20 | 52.93 e | 0.0238 e | 0.0233 a | 0.9595 |
Gray Reinette | 20 | 43.27 abcd | 0.0181 d | 0.0301 c | 0.9847 |
45 | 45.36 cd | 0.0151 bcd | 0.0283 bc | 0.9627 | |
70 | 42.82 abc | 0.0106 ab | 0.0305 cd | 0.9747 | |
Ligol | 20 | 39.13 a | 0.0176 cd | 0.0343 e | 0.9840 |
45 | 40.11 ab | 0.0154 bcd | 0.0332 de | 0.9883 | |
70 | 42.38 abcd | 0.0103 abc | 0.0309 cd | 0.9796 |
Variety of Apple | Tr (°C) | md.m.e (g) | k1 (h/g) | k2 (1/g) | R2 |
---|---|---|---|---|---|
Champion | 20 | 2.63 a | 0.0584 cd | 0.1455 a | 0.9657 |
45 | 2.91 a | 0.0380 abc | 0.1517 a | 0.9470 | |
70 | 3.39 a | 0.0143 a | 0.1636 a | 0.9378 | |
Cortland | 20 | 3.04 a | 0.0568 cd | 0.1549 a | 0.9959 |
Gray Reinette | 20 | 2.42 a | 0.0814 d | 0.1412 a | 0.9787 |
45 | 2.33 a | 0.0468 bc | 0.1395 a | 0.9247 | |
70 | 3.14 a | 0.0234 ab | 0.1572 a | 0.9150 | |
Ligol | 20 | 3.38 a | 0.0468 bc | 0.1633 a | 0.9845 |
45 | 2.78 a | 0.0577 cd | 0.1489 a | 0.9777 | |
70 | 3.14 a | 0.0243 ab | 0.1571 a | 0.9884 |
Variety of Apple | Tr (°C) | Ve (cm3) | k1 (h/cm3) | k2 (1/cm) | R2 |
---|---|---|---|---|---|
Champion | 20 | 54.20 b | 0.0177 cd | 0.0293 b | 0.9732 |
45 | 51.44 ab | 0.0125 abcd | 0.0318 bcd | 0.9651 | |
70 | 48.68 a | 0.0106 abc | 0.0349 d | 0.9507 | |
Cortland | 20 | 51.76 ab | 0.0178 d | 0.0316 bc | 0.9137 |
Gray Reinette | 20 | 66.84 d | 0.0159 bcd | 0.0214 a | 0.9775 |
45 | 67.75 d | 0.0109 abc | 0.0214 a | 0.9763 | |
70 | 61.11 c | 0.0068 a | 0.0243 a | 0.9774 | |
Ligol | 20 | 49.44 a | 0.0136 abcd | 0.0340 cd | 0.9555 |
45 | 52.51 ab | 0.0157 bcd | 0.0309 bc | 0.9896 | |
70 | 51.62 ab | 0.0085 ab | 0.0316 bcd | 0.9566 |
Variety of Apple | Tr (°C) | Me (d.b.) | Coefficients of Constant Equations | Constant | SSE | R2 | RMSE | |||
---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | B1 | B2 | |||||||
Champion | 20 | 16.78 bcd | 0.1098 | −0.0011 | 0.0490 | 0.0005 | k1 = 0.0875 ac k2 = 0.0598 ab | 6.8415 | 0.9795 | 0.6539 |
45 | 16.35 cd | k1 = 0.0656 ab k2 = 0.0614 abd | 10.0500 | 0.9556 | 0.8473 | |||||
70 | 11.48 a | k1 = 0.0272 b k2 = 0.0875 c | 3.4864 | 0.9727 | 0.539 | |||||
Cortland | 20 | 19.63 d | k1 = 0.1428 de k2 = 0.0511 a | 15.8500 | 0.9794 | 0.6144 | ||||
Gray Reinette | 20 | 20.21 d | 0.1660 | −0.0016 | 0.0448 | 0.0004 | k1 = 0.1630 ef k2 = 0.0496 a | 7.9579 | 0.9784 | 0.6842 |
45 | 18.48 cd | k1 = 0.0896 ac k2 = 0.0543 ab | 6.0174 | 0.9795 | 0.5949 | |||||
70 | 12.5 ab | k1 = 0.0506 ab k2 = 0.0803 c | 4.5392 | 0.9768 | 0.5694 | |||||
Ligol | 20 | 12.56 ab | 0.1658 | −0.0014 | 0.0804 | −0.0002 | k1 = 0.1288 cde k2 = 0.0799 cd | 2.2635 | 0.9835 | 0.4173 |
45 | 14.28 abc | k1 = 0.1125 cd k2 = 0.0703 bcd | 5.8827 | 0.9527 | 0.8085 | |||||
70 | 14.27 abc | k1 = 0.0663 ab k2 = 0.0703 bcd | 1.9776 | 0.9864 | 0.4688 |
Variety of Apple | Tr (°C) | Constant | SSE | R2 | RMSE | Coefficients of Constant Equations | SSE | R2 | RMSE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Me1 | Me2 | A1 | A2 | B1 | B2 | |||||||||
Champion | 20 | Me = 15.4613 abc α = 0.7446 ab; β = 2.1483 ab | 6.1004 | 0.9817 | 0.6377 | 15.85 | −0.0026 | 0.9007 | −0.0064 | 2.3220 | −0.0062 | 20.9321 | 0.9700 | 0.70612 |
45 | Me = 17.5000 abc α = 0.6670 ab; β = 2.4650 ab | 6.5875 | 0.9709 | 0.6860 | ||||||||||
70 | Me = 12.0491 ab α = 0.5332 a; β = 0.7294 a | 2.5934 | 0.9797 | 0.4856 | ||||||||||
Cortland | 20 | Me = 17.9032 bc α = 0.7885 ab; β = 3.8746 ab | 14.2117 | 0.9815 | 0.5888 | - | - | - | - | - | - | - | - | - |
Gray Reinette | 20 | Me = 20.6185 c α = 0.7582 ab; β = 5.8016 b | 6.6173 | 0.9820 | 0.6431 | 17.44 | −0.0029 | 0.9516 | −0.0053 | 3.8660 | −0.0027 | 48.8417 | 0.9451 | 0.9786 |
45 | Me = 16.4272 abc α = 0.7811 b; β = 2.1755 ab | 5.5915 | 0.9809 | 0.5912 | ||||||||||
70 | Me = 13.3600 a α = 0.6619 ab; β = 1.4970 a | 3.6248 | 0.9814 | 0.5280 | ||||||||||
Ligol | 20 | Me = 17.2583 abc α = 0.5996 a; β = 7.0607 b | 0.3081 | 0.9978 | 0.1602 | 8.687 | 0.1849 | 0.7847 | −0.0035 | 1.5260 | 0.0680 | 8.7741 | 0.9789 | 0.5321 |
45 | Me = 11.2023 a α = 0.9638 b; β = 1.5037 ab | 5.2318 | 0.9580 | 0.8087 | ||||||||||
70 | Me = 14.6891 ab α = 0.6585 ab; β = 1.9488 ab | 0.7570 | 0.9948 | 0.3076 |
Variety of Apple | Tr (°C) | D/L2 (1/h) | SSE | R2 | RMSE |
---|---|---|---|---|---|
Champion | 20 | 0.01578 ab | 0.0546 | 0.9542 | 0.0567 |
45 | 0.01926 ab | 0.0470 | 0.9429 | 0.0560 | |
70 | 0.06987 b | 0.0972 | 0.8965 | 0.0865 | |
Cortland | 20 | 0.00894 a | 0.0642 | 0.9680 | 0.0386 |
Gray Reinette | 20 | 0.00772 a | 0.0242 | 0.9732 | 0.0367 |
45 | 0.01480 ab | 0.0451 | 0.9474 | 0.0500 | |
70 | 0.03124 ab | 0.0576 | 0.9543 | 0.0620 | |
Ligol | 20 | 0.01399 ab | 0.0263 | 0.9700 | 0.0434 |
45 | 0.01446 ab | 0.0483 | 0.9214 | 0.0695 | |
70 | 0.02436 ab | 0.0284 | 0.9604 | 0.0533 |
Variety of Apple | Material | RGB Channel | ||||
---|---|---|---|---|---|---|
R | G | B | ||||
Champion | Raw | 203.2 ± 4.6 h | 199.6 ± 4.6l m | 173.7 ± 6.7 ij | ||
Dried | 235.4 ± 5.4 k | 225.7 ± 6.1 n | 178.4 ± 7.4 jk | |||
Rehydrated | Tr (°C) | Place | ||||
20 | side | 200.9 ± 5.5 fgh | 196.0 ± 5.6 klm | 165.6 ± 8.3 ghij | ||
center | 200.3 ± 8.0 fgh | 196.3 ± 8.4 klm | 166.4 ± 9.1 ghij | |||
45 | side | 203.5 ± 4.9 h | 196.7 ± 4.7 klm | 167.8 ± 7.5 ghij | ||
center | 204.6 ± 7.1 h | 197.8 ± 7.3 klm | 167.7 ± 8.4 ghij | |||
70 | side | 197.4 ± 6.0 defgh | 189.7 ± 6.2 ghijklm | 167.1 ± 5.2 ghij | ||
center | 198.7 ± 4.2 defgh | 191.6 ± 3.8 hijklm | 166.0 ± 3.4 ghij | |||
Cortland | Raw | 204.2 ± 5.7 h | 202.7 ± 5.2 m | 193.9 ± 5.3 k | ||
Dried | 230.2 ± 7.9 ik | 201.1 ± 16.9 lm | 163.2 ± 18.6 efghij | |||
Rehydrated | Tr (°C) | Place | ||||
20 | side | 184.4 ± 7.6 a | 152.6 ± 14.9 a | 121.5 ± 20.2 a | ||
center | 187.7 ± 8.2 ab | 160.7 ± 11.2 ab | 133.4 ± 12.0 abc | |||
Gray Reinette | Raw | 193.3 ± 9.0 abcdefg | 180.7 ± 10.2 efghi | 145.6 ± 10.6 bcde | ||
Dried | 226.7 ± 9.3 ik | 199.3 ± 10.2 lm | 146.0 ± 9.1 bcdef | |||
Rehydrated | Tr (°C) | Place | ||||
20 | side | 185.4 ± 8.5 a | 161.3 ± 15.1 abc | 121.2 ± 16.5 a | ||
center | 190.5 ± 4.3 abcde | 177.7 ± 6.7 efgh | 151.0 ± 6.6 cdefg | |||
45 | side | 197.2 ± 5.7 bcdefgh | 181.3 ± 9.6 efghij | 146.0 ± 14.7 bcdef | ||
center | 201.8 ± 4.3 gh | 187.0 ± 6.8 fghijkl | 158.1 ± 8.0 defghi | |||
70 | side | 190.2 ± 8.8 abcde | 175.2 ± 10.2 cdef | 143.1 ± 11.4 bcd | ||
center | 197.3 ± 6.3 cdefgh | 187.1 ± 6.1 fghijkl | 157.2 ± 7.6 defghi | |||
Ligol | Raw | 202.9 ± 7.5 h | 195.4 ± 7.9 jklm | 171.2 ± 8.9 hij | ||
Dried | 221.5 ± 8.2 i | 192.5 ± 9.6 ijklm | 150.1 ± 10.1 cdefg | |||
Rehydrated | Tr (°C) | Place | ||||
20 | side | 189.3 ± 5.4 abcd | 160.7 ± 9.6 ab | 125.1 ± 10.8 a | ||
center | 189.3 ± 7.0 abcd | 170.0 ± 11.8 bcde | 145.4 ± 12.2 bcd | |||
45 | side | 190.4 ± 6.1 abcde | 162.8 ± 10.6 abcd | 129.3 ± 13.5 ab | ||
center | 197.7 ± 5.7 defgh | 178.3 ± 7.0 efghi | 152.9 ± 6.1 defg | |||
70 | side | 196.4 ± 5.1 bcdefgh | 175.6 ± 8.1 defg | 145.5 ± 11.0 bcde | ||
center | 199.1 ± 6.3 efgh | 184.8 ± 7.4 fghijk | 163.6 ± 8.3 fghij |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górnicki, K.; Choińska, A.; Kaleta, A. Effect of Variety on Rehydration Characteristics of Dried Apples. Processes 2020, 8, 1454. https://doi.org/10.3390/pr8111454
Górnicki K, Choińska A, Kaleta A. Effect of Variety on Rehydration Characteristics of Dried Apples. Processes. 2020; 8(11):1454. https://doi.org/10.3390/pr8111454
Chicago/Turabian StyleGórnicki, Krzysztof, Aneta Choińska, and Agnieszka Kaleta. 2020. "Effect of Variety on Rehydration Characteristics of Dried Apples" Processes 8, no. 11: 1454. https://doi.org/10.3390/pr8111454
APA StyleGórnicki, K., Choińska, A., & Kaleta, A. (2020). Effect of Variety on Rehydration Characteristics of Dried Apples. Processes, 8(11), 1454. https://doi.org/10.3390/pr8111454