Stability Analysis of Delayed Tumor-Antigen-ActivatedImmune Response in Combined BCG and IL-2Immunotherapy of Bladder Cancer
Abstract
:1. Introduction
2. Description of the Model
- -
- BCG bacteria within the bladder as B;
- -
- APCs (dendritic cells (DCs) and macrophages) as A;
- -
- activated/matured APC’s after BCG internalization and processing as ;
- -
- activated/matured APC’s specific to tumor Ag as ;
- -
- effector T lymphocytes consisting mostly of CTLs that react to BCG as ;
- -
- effector T lymphocytes consisting mostly of CTLs that react to tumor Ags as ;
- -
- IL-2 units injected inside the bladder as ;
- -
- tumor cells infected with BCG as ;
- -
- tumor cells not infected by BCG as ;
- -
- transforming growth factor-beta (TGF-) denotes as .
3. Equilibria
3.1. Equilibrium with ,
- (1)
- From (9’) it follows that one of the possible is .
- (2)
- (10’) it follows (via ).
- (3)
- From (8’) it follows (via ).
- (4)
- From (4’) it follows (via and ).
- (5)
- From (6’) it follows (via and ).
- (6)
- (7)
- From (3’) it follows (via , ).
- (8)
- From (5’) it follows that if then but via (7’) it is impossible. So, from it follows .
- (9)
- From (5’) and (7’) the system for , it follows (via )
3.2. Equilibria with ,
- (1)
- From (2’) it follows .
- (2)
- From (3’) it follows (via ).
- (3)
- From (5’) it follows (via ).
- (4)
- From (4’) it follows (via ).
- (5)
- From (6’) it follows (via ).
- (6)
- From (1’) it follows (via ).
- (7)
- From (7’) it follows (via ).
- (8)
- From (9’) it follows or (via ).
- (9)
- From (10’) it follows or (via or ).
- (10)
- From (8’) it follows (via ).
- (1)
- tumor-free ()
- (2)
- not tumor-free ()
4. Centralization and Linearization
5. Stability
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Solution of (3)
Appendix A.2. Solution of (4)
Appendix A.3. Centralization and Linearization of a Nonlinear Equation
Appendix A.4. Schur Complement
References
- Kassouf, W.; Traboulsi, S.L.; Kulkarni, G.S.; Breau, R.H.; Zlotta, A.; Fairey, A.; So, A.; Lacombe, L.; Rendon, R.; Aprikian, A.G.; et al. CUA guidelines on the management of non-muscle invasive bladder cancer. Can. Urol. Assoc. J. 2015, 9, 690–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastasiadis, A.; de Reijke, T.M. Best practice in the treatment of nonmuscle invasive bladder cancer. Ther. Adv. Urol. 2012, 4, 13–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunimovich-Mendrazitsky, S.; Pisarev, V.; Kashdan, E. Modeling and simulation of a low-grade urinary bladder carcinoma. Comput. Biol. Med. 2015, 58, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Harhay, M.O.; Ayepola, O.O.; Dos Santos, J.P.; David, A.R.; Ogunlana, O.O.; Gadanya, M.A.; Osamor, V.C.; Amuta, O.A.; Iweala, E.E.; et al. Estimate of the incidence of bladder cancer in Africa: A systematic review and Bayesian meta-analysis. Int. J. Urol. 2019, 26, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, D.; Sotolongo-Grau, O.; Espinosa, R.; Sotolongo-Costo, R.O.; Miranda, J.A.S.; Antozanz, J.C. Assessment of cancer immunotherapy outcome in terms of the immune response time features. Math. Med. Biol. 2007, 24, 287–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, A.; Eidinger, D.; Bruce, A.W. Intracavity Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 1976, 116, 180–183. [Google Scholar] [CrossRef]
- Pettenati, C.; Ingersoll, M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- Lee, C.F.; Chang, S.Y.; Hsieh, D.S.; Yu, D.S. Immunotherapy for bladder cancer using recombinant bacillus Calmette-Guerin DNA vaccines and interleukin-12 DNA vaccine. J. Urol. 2004, 171, 1343–1347. [Google Scholar] [CrossRef]
- Shapiro, A.; Gofrit, O.; Pode, D. The treatment of superficial bladder tumor with IL-2 and BCG. J. Urol. 2007, 177, 81. [Google Scholar] [CrossRef]
- Guzev, E.; Halachmi, S.; Bunimovich-Mendrazitsky, S. Additional extension of the mathematical model for BCG immunotherapy of bladder cancer and its validation by auxiliary tool. Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 675–689. [Google Scholar] [CrossRef]
- Kitamura, H.; Tsukamoto, T. Immunotherapy for Urothelial Carcinoma. Current Status and Perspectives. Cancers 2011, 3, 3055–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malek, T.R.; Bayer, A.L. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 2004, 4, 665–674. [Google Scholar] [CrossRef] [PubMed]
- D’onofrio, A.; Gatti, F.; Cerrai, P.; Fresci, L. Delay-induced oscillatory dynamics of tumor-immune system interaction. Math. Comp. Mod. 2010, 51, 572–591. [Google Scholar] [CrossRef]
- Galach, M. Dynamics of the tumor-immune system competition: The effect of time delay. Int. J. Appl. Math. Comp. Sci. 2003, 3, 395–406. [Google Scholar]
- Kolmanovskii, V.; Shaikhet, L. Some peculiarities of the general method of Lyapunov functionals construction. Appl. Math. Lett. 2002, 15, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Shaikhet, L. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. In SIAM Studies in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Xu, S.; Lam, J. A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 2008, 39, 1095–1113. [Google Scholar] [CrossRef]
- Shaikhet, L.; Bunimovich-Mendrazitsky, S. Stability analysis of delayed immune response BCG infection in bladder cancer treatment model by stochastic perturbations. Comput. Math. Methods Med. 2018. [Google Scholar] [CrossRef]
- Fridman, E.; Shaikhet, L. Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay. Syst. Control. Lett. 2019, 124, 83–91. [Google Scholar] [CrossRef]
- Berezansky, L.; Bunimovich-Mendrazitsky, S.; Shklyar, B. Stability and controllability issues in mathematical modeling of the intensive treatment of leukemia. J. Optim. Theory Appl. 2015, 167, 326–341. [Google Scholar] [CrossRef]
- Biot, C.; Rentsch, C.A.; Gsponer, J.R.; Birkhäuser, F.D.; Jusforgues-Saklani, H.; Lemaître, F.; Auriau, C.; Bachmann, A.; Bousso, P.; Demangel, C.; et al. Preexisting BCG-Specific T Cells Improve Intravesical Immunotherapy for Bladder Cancer. Sci. Transl. Med. 2012, 4, 137. [Google Scholar] [CrossRef]
- Kronik, N.; Kogan, Y.; Schlegel, P.G.; Wölfl, M. Improving T-cell immunotherapy for melanoma through a mathematically motivated strategy: Efficacy in numbers? J. Immunother. 2012, 35, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunimovich-Mendrazitsky, S.; Halachmi, S.; Kronik, N. Improving bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer by adding interleukin 2 (IL-2): A mathematical model. Math. Med. Biol. J. IMA 2015, 30, 159–188. [Google Scholar] [CrossRef]
- Bunimovich-Mendrazitsky, S.; Shochat, E.; Stone, L. Mathematical Model of BCG Immunotherapy in Superficial Bladder Cancer. Bull. Math. Biol. 2007, 69, 1847–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunimovich-Mendrazitsky, S.; Gluckman, J.C.; Chaskalovic, J. A mathematical model of combined bacillus calmette-guerin (BCG) and interleukin (IL)-2 immunotherapy of superficial bladder cancer. J. Theor. Biol. 2011, 277, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Ludewig, B.; Krebs, P.; Junt, T.; Metters, H.; Ford, N.J.; Anderson, R.M.; Bocharov, G. Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur. J. Immunol. 2004, 34, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Kirschner, D.E. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 2004, 227, 463–486. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.; Thompson, J.A.; Byrd, D.; Riddell, S.R.; Roche, P.; Celis, E.; Greenberg, P.D. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 2002, 99, 16168–16173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archuleta, R.J.; Mullens, P.; Primm, T.P. The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex. Arch. Microbiol. 2002, 178, 311–314. [Google Scholar] [CrossRef]
- Wigginton, J.; Kirschner, D. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 2001, 166, 1951–1967. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.A.; Makalkin, I.A.; Taylor, M.A.; Perelson, A.S. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 1994, 56, 295–321. [Google Scholar] [CrossRef]
- Vegh, Z.; Mazumder, A. Generation of tumor cell lysate-loaded dendritic cells preprogrammed for IL-12 production and augmented T cell response. Cancer Immunol. Immunother. 2003, 52, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Fikri, Y.; Pastoret, P.P.; Nyabenda, J. Costimulatory molecule requirement for bovine WC1 + gammadelta T cells proliferative response to bacterial superantigens. Scand. J. Immunol. 2002, 55, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Kronin, V.; Fitzmaurice, C.J.; Caminschi, I.; Shortman, K.; Jackson, D.C.; Brown, E.L. Differential effect of CD8(+) and CD8(-) dendritic cells in the stimulation of secondary CD4(+) T cells. Int. Immunol. 2001, 13, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shochat, E.; Hart, D.; Agur, Z. Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Math. Model. Methods Appl. Sci. 1999, 9, 599–615. [Google Scholar] [CrossRef]
- Kogan, Y.; Forys, U.; Shukron, O.; Kronik, N.; Agur, Z. Cellular immunotherapy for high grade Gliomas: Mathematical analysis deriving efficacious infusion rates based on patient requirements. SIAM J. Appl. Math. 2010, 70, 1953–1976. [Google Scholar] [CrossRef] [Green Version]
- Kronik, N.; Kogan, Y.; Vainstein, V.; Agur, Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 2008, 57, 425–439. [Google Scholar] [CrossRef]
- Klinger, M.; Brandl, C.; Zugmaier, G.; Hijazi, Y.; Bargou, R.C.; Topp, M.S.; Gökbuget, N.; Neumann, S.; Goebeler, M.; Viardot, A.; et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012, 119, 6226–6233. [Google Scholar] [CrossRef]
- Schiphorst, P.P.; Chang, P.C.; Clar, N.; Schoemaker, R.; Osanto, S. Pharmacokinetics of interleukin-2 in two anephric patients with metastatic renal cell cancer. Ann. Oncol. 1999, 10, 1381–1383. [Google Scholar] [CrossRef]
- Lamm, D.L. Improving Patient Outcomes: Optimal BCG Treatment Regimen to Prevent Progression in Superficial Bladder Cancer. Eur. Urol. Suppl. 2006, 5, 654–659. [Google Scholar] [CrossRef]
- Nave, O.; Hareli, S.; Elbaz, M.; Iluz, I.H.; Bunimovich-Mendrazitsky, S. BCG and IL—2 model for bladder cancer treatment with fast and slow dynamics based on S PV F method—Stability analysis. Math. Biosci. Eng. 2019, 16, 5346–5379. [Google Scholar] [CrossRef]
- Haynsworth, E.V. On the Schur Complement. Basel Math. Notes 1968, 20, 17. [Google Scholar]
Parameters | Physical Interpretation (Units) | Estimated Value | Reference |
---|---|---|---|
APC half life | 0.038 | [27] | |
Activated APC half life | 0.138 | [28] | |
Effector cells mortality rate w/o IL-2 | 0.19 | [23] and calculated | |
Effector cells mortality rate with IL-2 | 0.034 | [29] | |
BCG half life | 0.1 | [30] | |
The rate of BCG binding with APC | [31] adjusted for liters | ||
Infection rate of tumor cells by BCG | From model simulation | ||
Rate of E deactivation after binding with infected tumor cells | [32] | ||
Rate of destruction of infected tumor cells by effector cells | [32] | ||
Production rate of TAA-APC | [33] | ||
Recruitment rate of effector cells in response to signals released by BCG-infected and activated APC | [34] | ||
Recruitment rate of effector cells in response to signals released by TAA-infected and activated APC | [35] | ||
Initial APC cell numbers | 4700 | [28] | |
Rate of recruited additional resting APCs | [27] | ||
r | Tumor growth rate | 0.0048–0.0085 | [36] |
b | Bio-effective dose of BCG [c.f.u./week] | From clinical data provided by Dr. Sarel Halachmi | |
Migration rate of TAA-APC and bacteria activated APC to the lymph node | 0.034 | [27] | |
Efficacy of an effector cell on tumor cell | [37] | ||
g | Michaelis-Menten constant for BCG activated CTLs and for TAA-CTLs[cells] | From model simulation | |
Michaelis-Menten constant for tumor cells[cells] | 5200 | [24] | |
K | Maximal tumor cell population [cells] | [38] | |
Rate of IL-2 production IU | 0.007 | [39] and simulations | |
The proportion of IL-2 used for differentiation of effector cells IU | [35] | ||
Degradation rate | 11.5 | [35,40] | |
Recruitment rate of Tumor-Ag-activated APC cells in response to signals released after binding effector cells, that react to BCG infection, with infected tumor cells [] | 0.01 | From model simulation | |
The release term per tumor cell [] | [23] | ||
Michaelis-Menten saturation dynamics. The dependence on is decreasing from 0 to [none] | 0.69 | [23] | |
Michaelis constant [] | 10000 | [23] | |
The constant rate, accounts for degradation of [] | 166.32 | [23] | |
Michaelis-Menten constant for IL-2 [cells] | 10000 | From model calculations | |
Rate of external source [units per treatment] | – | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunimovich-Mendrazitsky, S.; Shaikhet, L. Stability Analysis of Delayed Tumor-Antigen-ActivatedImmune Response in Combined BCG and IL-2Immunotherapy of Bladder Cancer. Processes 2020, 8, 1564. https://doi.org/10.3390/pr8121564
Bunimovich-Mendrazitsky S, Shaikhet L. Stability Analysis of Delayed Tumor-Antigen-ActivatedImmune Response in Combined BCG and IL-2Immunotherapy of Bladder Cancer. Processes. 2020; 8(12):1564. https://doi.org/10.3390/pr8121564
Chicago/Turabian StyleBunimovich-Mendrazitsky, Svetlana, and Leonid Shaikhet. 2020. "Stability Analysis of Delayed Tumor-Antigen-ActivatedImmune Response in Combined BCG and IL-2Immunotherapy of Bladder Cancer" Processes 8, no. 12: 1564. https://doi.org/10.3390/pr8121564
APA StyleBunimovich-Mendrazitsky, S., & Shaikhet, L. (2020). Stability Analysis of Delayed Tumor-Antigen-ActivatedImmune Response in Combined BCG and IL-2Immunotherapy of Bladder Cancer. Processes, 8(12), 1564. https://doi.org/10.3390/pr8121564