Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production
Abstract
:1. Introduction
2. Medium-Chain Fatty Acid Production by Bacterial Isolates
3. MCFA Production form Complex Feedstocks with Microbial Communities
3.1. Organic Fraction of Municipal Solid Waste (OFMSW)
3.2. Food Waste (FW)
3.3. Lignocellulosic Biomass (LCB)
3.4. Ethanol, Brewery, Distillery, and Winery Waste (EBDWW)
3.5. Dairy Processing Wastewater (DPW)
3.6. Manure
3.7. Ideal Feedstocks and Processes for MCFA Production
4. Metabolic Features of Medium-Chain Fatty Acid Production
4.1. Reverse β-Oxidation
4.2. Terminating Reverse β-Oxidation
4.3. Energy-Conservation Coupled with Reverse β-Oxidation
4.4. Additional Electron Bifurcating Enzymes for Energy Conservation and Redox Management
4.5. Hypothesized Routes for MCFA Production from Ethanol with and without Acetate as an Electron Acceptor
4.6. Thermodynamic and Energetic Drivers of MCFA Production
5. Path Forward
5.1. Controlling Product Length
5.2. Microbial Community Assembly, Function, and Resiliency
5.3. Product Uses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nunez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.S.; et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef] [Green Version]
- He, P.J. Anaerobic digestion: An intriguing long history in China. Waste Manag. 2010, 30, 549–550. [Google Scholar] [CrossRef] [PubMed]
- World Biogas Association. Global Potential of Biogas; World Biogas Association: London, UK, 2019. [Google Scholar]
- Mancini, A.; Imperlini, E.; Nigro, E.; Montagnese, C.; Daniele, A.; Orru, S.; Buono, P. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules 2015, 20, 17339–17361. [Google Scholar] [CrossRef] [PubMed]
- Marten, B.; Pfeuffer, M.; Schrezenmeir, J. Medium-chain triglycerides. Int. Dairy J. 2006, 16, 1374–1382. [Google Scholar] [CrossRef]
- Bach, A.C.; Babayan, V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr. 1982, 36, 950–962. [Google Scholar] [CrossRef]
- Sun, Y.; Bu, D.P.; Wang, J.Q.; Cui, H.; Zhao, X.W.; Xu, X.Y.; Sun, P.; Zhou, L.Y. Supplementing different ratios of short- and medium-chain fatty acids to long-chain fatty acids in dairy cows: Changes of milk fat production and milk fatty acids composition. J. Dairy Sci. 2013, 96, 2366–2373. [Google Scholar] [CrossRef]
- Vyas, D.; Teter, B.B.; Erdman, R.A. Milk fat responses to dietary supplementation of short- and medium-chain fatty acids in lactating dairy cows. J. Dairy Sci. 2012, 95, 5194–5202. [Google Scholar] [CrossRef] [Green Version]
- Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A.G.; Pieper, R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim. Health Res. Rev. 2011, 12, 83–93. [Google Scholar] [CrossRef]
- Angenent, L.T.; Richter, H.; Buckel, W.; Spirito, C.M.; Steinbusch, K.J.J.; Plugge, C.M.; Strik, D.; Grootscholten, T.I.M.; Buisman, C.J.N.; Hamelers, H.V.M. Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. Environ. Sci. Technol. 2016, 50, 2796–2810. [Google Scholar] [CrossRef]
- Sarria, S.; Kruyer, N.S.; Peralta-Yahya, P. Microbial synthesis of medium-chain chemicals from renewables. Nat. Biotechnol. 2017, 35, 1158–1166. [Google Scholar] [CrossRef]
- Harvey, B.G.; Meylemans, H.A. 1-Hexene: A renewable C6 platform for full-performance jet and diesel fuels. Green Chem. 2014, 16, 770–776. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.H.; He, P.J.; Shao, L.M.; Lu, F. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review. J. Environ. Sci. 2019, 86, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Venkateswar Reddy, M.; Kumar, G.; Mohanakrishna, G.; Shobana, S.; Al-Raoush, R.I. Review on the production of medium and small chain fatty acids through waste valorization and CO2 fixation. Bioresour. Technol. 2020, 309, 123400. [Google Scholar] [CrossRef] [PubMed]
- Molisch, H. Die Purpurbakterien Nach Neuen Untersuchungen: Eine Mikrobiologische Studie; Verlag von Gustav Fischer: Jena, German, 1907. [Google Scholar]
- Esmarch, E. Über die Reinkultur eines Spirillum. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung I 1887, 1, 225–230. [Google Scholar]
- Munk, A.C.; Copeland, A.; Lucas, S.; Lapidus, A.; Del Rio, T.G.; Barry, K.; Detter, J.C.; Hammon, N.; Israni, S.; Pitluck, S.; et al. Complete genome sequence of Rhodospirillum rubrum type strain (S1). Stand. Genomic Sci. 2011, 4, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Gest, H. A serendipic legacy: Erwin Esmarch’s isolation of the first photosynthetic bacterium in pure culture. Photosynt. Res. 1995, 46, 473–478. [Google Scholar] [CrossRef]
- Barker, H.A. The production of caproic and butyric acids by the methane fermentation of ethyl alcohol. Arch. Mikrobiol. 1937, 8, 415–421. [Google Scholar] [CrossRef]
- Barker, H.A.; Taha, S.M. Clostridium kluyverii, an Organism Concerned in the Formation of Caproic Acid from Ethyl Alcohol. J. Bacteriol. 1942, 43, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Gildemyn, S.; Molitor, B.; Usack, J.G.; Nguyen, M.; Rabaey, K.; Angenent, L.T. Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation. Biotechnol. Biofuels 2017, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Seedorf, H.; Fricke, W.F.; Veith, B.; Bruggemann, H.; Liesegang, H.; Strittmatter, A.; Miethke, M.; Buckel, W.; Hinderberger, J.; Li, F.; et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc. Natl. Acad. Sci. USA 2008, 105, 2128–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, H.; Molitor, B.; Diender, M.; Sousa, D.Z.; Angenent, L.T. A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction. Front. Microbiol. 2016, 7, 1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Hinderberger, J.; Seedorf, H.; Zhang, J.; Buckel, W.; Thauer, R.K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 2008, 190, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Huang, H.; Moll, J.; Thauer, R.K. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J. Bacteriol. 2010, 192, 5115–5123. [Google Scholar] [CrossRef] [Green Version]
- Genthner, B.R.; Davis, C.L.; Bryant, M.P. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl. Environ. Microbiol. 1981, 42, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation. Biomass Bioenergy 2016, 93, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Prevot, A.; Taffanel, J. Action of water soluble vitamins on the fermentation of glucose by Plectridium tetani. Compte Rendu des Seances de la Societe de Biologie 1942, 136, 384–385. [Google Scholar]
- Holdeman, V.L.; Cato, E.P.; Moore, W.E.C. Amended Description of Ramibacterium Alactolyticum Prevot and Taffanel With Proposal of a Neotype Strain. Int. J. Syst. Bacteriol. 1967, 17, 323–341. [Google Scholar] [CrossRef]
- Moore, W.E.C.; Holdeman, L.V. New Names and Combinations in the Genera Bacteroides Castellani and Chalmers, Fusobacterium Knorr, Eubacterium Prevot, Propionbacterium Delwich, and Lactobacillus Orla-Jensen. Int. J. Syst. Bacteriol. 1973, 23, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Integrative Human Microbiome Project Research Network Consortium. The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Elsden, S.R.; Lewis, D. The production of fatty acids by a gram-negative coccus. Biochem. J. 1953, 55, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, J.; Davis, R.E.; Lindahl, I.L.; Warwick, E.J. Bacterial Changes in the Rumen During the Onset of Feed-lot Bloat of Cattle and Characteristics of Peptostreptococcus elsdenii n. sp. Appl. Microbiol. 1959, 7, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogosa, M. Transfer of Peptostreptococcus elsdenii Gutierrez et al. to a New Genus, Megasphaera [M. elsdenii (Gutierrez et al.) comb. nov.]. Int. J. Syst. Bacteriol. 1971, 21, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Riley, L.A.; Hatmaker, E.A.; Guss, A.M.; Westpheling, J. Development of emerging model microorganisms: Megasphaera elsdenii for biomass and organic acid upgrading to fuels and chemicals. In Proceedings of the 2019 Genomic Sciences Program Annual Principal Investigator (PI) Meeting, Tysons, VA, USA, 25 February 2019. [Google Scholar]
- Nelson, R.; Peterson, D.; Karp, E.; Beckham, G.; Salvachúa, D. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate. Fermentation 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.J.; Moen, G.N. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Appl. Microbiol. Biotechnol. 2013, 97, 4075–4081. [Google Scholar] [CrossRef]
- Prabhu, R.; Altman, E.; Eiteman, M.A. Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions. Appl. Environ. Microb. 2012, 78, 8564–8570. [Google Scholar] [CrossRef] [Green Version]
- Henning, P.H.; Horn, C.H.; Leeuw, K.J.; Meissner, H.H.; Hagg, F.M. Effect of ruminal administration of the lactate-utilizing strain Megasphaera elsdenii (Me) NCIMB 41125 on abrupt or gradual transition from forage to concentrate diets. Anim. Feed Sci. Tech. 2010, 157, 20–29. [Google Scholar] [CrossRef]
- Soto-Cruz, O.; Favela-Torres, E.; Saucedo-Castaneda, G. Modeling of growth, lactate consumption, and volatile fatty acid production by Megasphaera elsdenii cultivated in minimal and complex media. Biotechnol. Progr. 2002, 18, 193–200. [Google Scholar] [CrossRef]
- Soto-Cruz, O.; Chavez-Rivera, R.; Saucedo-Castaneda, G. Stimulation of the Megasphaera elsdenii’s butyrate production in continuous culture by a yeast additive. Braz. Arch. Biol. Technol. 2001, 44, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Hino, T.; Kuroda, S. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl. Environ. Microbiol. 1993, 59, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Marx, H.; Graf, A.B.; Tatto, N.E.; Thallinger, G.G.; Mattanovich, D.; Sauer, M. Genome sequence of the ruminal bacterium Megasphaera elsdenii. J. Bacteriol. 2011, 193, 5578–5579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatmaker, E.A.; Klingeman, D.M.; O’Dell, K.B.; Riley, L.A.; Papanek, B.; Guss, A.M. Complete Genome Sequences of Two Megasphaera elsdenii Strains, NCIMB 702410 and ATCC 25940. Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bag, S.; Ghosh, T.S.; Das, B. Whole-Genome Sequence of a Megasphaera elsdenii Strain Isolated from the Gut of a Healthy Indian Adult Subject. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.R.; Lee, C.H.; Lee, D.Y.; Park, J.B. Genome-Scale Metabolic Network Reconstruction and In Silico Analysis of Hexanoic acid Producing Megasphaera elsdenii. Microorganisms 2020, 8, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, R.J.; McKain, N.; McEwan, N.R.; Miyagawa, E.; Chaudhary, L.C.; King, T.P.; Walker, N.D.; Apajalahti, J.H.A.; Newbold, C.J. Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate. Int. J. Syst. Evol. Microbiol. 2003, 53, 965–970. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, Y.; Liang, C.; Li, X.; Wei, N.; Zhang, W.; Zhou, Y.; Yang, Y.; Bo, T. The synthesis of n-caproate from lactate: A new efficient process for medium-chain carboxylates production. Sci. Rep. 2015, 5, 14360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Zhou, Y.; Wang, Y.; Wu, T.; Li, X.; Li, D.; Tao, Y. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol. Biofuels 2017, 10, 102. [Google Scholar] [CrossRef]
- Tao, Y.; Zhu, X.; Wang, H.; Wang, Y.; Li, X.; Jin, H.; Rui, J. Complete genome sequence of Ruminococcaceae bacterium CPB6: A newly isolated culture for efficient n-caproic acid production from lactate. J. Biotechnol. 2017, 259, 91–94. [Google Scholar] [CrossRef]
- Jeon, B.S.; Kim, B.C.; Um, Y.; Sang, B.I. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl. Microbiol. Biotechnol. 2010, 88, 1161–1167. [Google Scholar] [CrossRef]
- Andersen, S.J.; De Groof, V.; Khor, W.C.; Roume, H.; Props, R.; Coma, M.; Rabaey, K. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products. Front. Bioeng. Biotechnol. 2017, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Bengelsdorf, F.R.; Poehlein, A.; Daniel, R.; Durre, P. Genome Sequence of the Caproic Acid-Producing Bacterium Caproiciproducens galactitolivorans BS-1(T) (JCM 30532). Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.C.; Seung Jeon, B.; Kim, S.; Kim, H.; Um, Y.; Sang, B.I. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 2015, 65, 4902–4908. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.S.; Kim, S.; Sang, B.I. Megasphaera hexanoica sp. nov., a medium-chain carboxylic acid-producing bacterium isolated from a cow rumen. Int. J. Syst. Evol. Microbiol. 2017, 67, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeon, B.S.; Sang, B.I. An Efficient New Process for the Selective Production of Odd-Chain Carboxylic Acids by Simple Carbon Elongation Using Megasphaera hexanoica. Sci. Rep. 2019, 9, 11999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaiz, M.; Baur, T.; Brahner, S.; Poehlein, A.; Daniel, R.; Bengelsdorf, F.R. Caproicibacter fermentans gen. nov., sp. nov., a new caproate-producing bacterium and emended description of the genus Caproiciproducens. Int. J. Syst. Evol. Microbiol. 2020, 70, 4269–4279. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Popp, D.; Strauber, H.; Harms, H.; Kleinsteuber, S. Draft Genome Sequences of Three Clostridia Isolates Involved in Lactate-Based Chain Elongation. Microbiol. Resour. Announc. 2020, 9. [Google Scholar] [CrossRef]
- Liu, B.; Popp, D.; Sträuber, H.; Harms, H.; Kleinsteuber, S. Lactate-based microbial chain elongation for n- caproate and iso-butyrate production: Genomic and metabolic features of three novel Clostridia isolates. Res. Sq. in press. 2020. [Google Scholar] [CrossRef]
- Esquivel-Elizondo, S.; Bağcı, C.; Temovska, M.; Jeon, B.S.; Bessarab, I.; Williams, R.B.H.; Huson, D.H.; Angenent, L.T. The isolate Caproiciproducens sp. 7D4C2 produces n -caproate at mildly acidic conditions from hexoses: Genome and rBOX comparison with related strains and chain-elongating bacteria. BioRxiv 2020. [Google Scholar] [CrossRef]
- Scarborough, M.J.; Myers, K.S.; Donohue, T.J.; Noguera, D.R. Medium-Chain Fatty Acid Synthesis by “Candidatus Weimeria bifida” gen. nov., sp. nov., and “Candidatus Pseudoramibacter fermentans” sp. nov. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef] [Green Version]
- Willems, A.; Collins, M.D. Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov. Int. J. Syst. Bacteriol. 1996, 46, 1083–1087. [Google Scholar] [CrossRef]
- Andersen, S.J.; Candry, P.; Basadre, T.; Khor, W.C.; Roume, H.; Hernandez-Sanabria, E.; Coma, M.; Rabaey, K. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. Biotechnol. Biofuels 2015, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, H.V.M. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Appl. Energy 2014, 116, 223–229. [Google Scholar] [CrossRef]
- Grootscholten, T.I.M.; dal Borgo, F.K.; Hamelers, H.V.M.; Buisman, C.J.N. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol. Biomass Bioenergy 2013, 48, 10–16. [Google Scholar] [CrossRef]
- Nzeteu, C.O.; Trego, A.C.; Abram, F.; O’Flaherty, V. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnol Biofuels 2018, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Roghair, M.; Liu, Y.C.; Strik, D.P.B.T.B.; Weusthuis, R.A.; Bruins, M.E.; Buisman, C.J.N. Development of an Effective Chain Elongation Process From Acidified Food Waste and Ethanol Into n-Caproate. Front. Bioeng. Biotech. 2018, 6. [Google Scholar] [CrossRef]
- Reddy, M.V.; Hayashi, S.; Choi, D.; Cho, H.; Chang, Y.C. Short chain and medium chain fatty acids production using food waste under non-augmented and bio-augmented conditions. J. Clean. Prod. 2018, 176, 645–653. [Google Scholar] [CrossRef]
- Contreras-Davila, C.A.; Carrion, V.J.; Vonk, V.R.; Buisman, C.N.J.; Strik, D.P.B.T.B. Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Res. 2020, 169, 115215. [Google Scholar] [CrossRef]
- Lonkar, S.; Fu, Z.; Holtzapple, M. Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate. Biotechnol. Bioeng. 2016, 113, 2597–2604. [Google Scholar] [CrossRef]
- Scarborough, M.J.; Lynch, G.; Dickson, M.; McGee, M.; Donohue, T.J.; Noguera, D.R. Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production. Biotechnol. Biofuels 2018, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.J.; Nerdahl, M.; Brandl, D.J. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri. Bioresour. Technol. 2015, 175, 97–101. [Google Scholar] [CrossRef]
- Khor, W.C.; Andersen, S.; Vervaeren, H.; Rabaey, K. Electricity-assisted production of caproic acid from grass. Biotechnol. Biofuels 2017, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Urban, C.; Xu, J.; Sträuber, H.; dos Santos Dantas, T.R.; Mühlenberg, J.; Härtig, C.; Angenent, L.T.; Harnisch, F. Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. Energy Environ. Sci. 2017, 10, 2231–2244. [Google Scholar] [CrossRef]
- Carvajal-Arroyo, J.M.; Candry, P.; Andersen, S.J.; Props, R.; Seviour, T.; Ganigué, R.; Rabaey, K. Granular fermentation enables high rate caproic acid production from solid-free thin stillage. Green Chem. 2019, 21, 1330–1339. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, X.; Guo, W.; Bao, X.; Ren, N. Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation. Chem. Eng. J. 2020, 388. [Google Scholar] [CrossRef]
- Kucek, L.A.; Xu, J.J.; Nguyen, M.; Angenent, L.T. Waste Conversion into n-Caprylate and n-Caproate: Resource Recovery from Wine Lees Using Anaerobic Reactor Microbiomes and In-line Extraction. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Hao, J.; Guzman, J.J.L.; Spirito, C.M.; Harroff, L.A.; Angenent, L.T. Temperature-Phased Conversion of Acid Whey Waste Into Medium-Chain Carboxylic Acids via Lactic Acid: No External e-Donor. Joule 2018, 2, 280–295. [Google Scholar] [CrossRef] [Green Version]
- Duber, A.; Jaroszynski, L.; Zagrodnik, R.; Chwialkowska, J.; Juzwa, W.; Ciesielski, S.; Oleskowicz-Popiel, P. Exploiting the real wastewater potential for resource recovery—n-caproate production from acid whey. Green Chem. 2018, 20, 3790–3803. [Google Scholar] [CrossRef]
- Domingos, J.M.B.; Martinez, G.A.; Scoma, A.; Fraraccio, S.; Kerckhof, F.-M.; Boon, N.; Reis, M.A.M.; Fava, F.; Bertin, L. Effect of Operational Parameters in the Continuous Anaerobic Fermentation of Cheese Whey on Titers, Yields, Productivities, and Microbial Community Structures. ACS Sustain. Chem. Eng. 2017, 5, 1400–1407. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, F.; Dong, H.; Cao, Q.; Wang, S.; Xu, J.; Zhu, Z. Bioconversion of swine manure into high-value products of medium chain fatty acids. Waste Manag. 2020, 113, 478–487. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paes, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [Green Version]
- Badgett, A.; Newes, E.; Milbrandt, A. Economic analysis of wet waste-to-energy resources in the United States. Energy 2019, 176, 224–234. [Google Scholar] [CrossRef]
- Scarborough, M.J.; Lawson, C.E.; Hamilton, J.J.; Donohue, T.J.; Noguera, D.R. Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. mSystems 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarborough, M.J.; Hamilton, J.J.; Erb, E.A.; Donohue, T.J.; Noguera, D.R. Diagnosing and Predicting Mixed-Culture Fermentations with Unicellular and Guild-Based Metabolic Models. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Strik, D.; Buisman, C.J.N.; Kroeze, C. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environ. Sci. Technol. 2017, 51, 7159–7168. [Google Scholar] [CrossRef] [PubMed]
- Dellomonaco, C.; Clomburg, J.M.; Miller, E.N.; Gonzalez, R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476, 355–359. [Google Scholar] [CrossRef]
- Thauer, R.K.; Jungermann, K.; Henninger, H.; Wenning, J.; Decker, K. The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 1968, 4, 173–180. [Google Scholar] [CrossRef]
- Buckel, W.; Thauer, R.K. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD(+) (Rnf) as Electron Acceptors: A Historical Review. Front. Microbiol. 2018, 9, 401. [Google Scholar] [CrossRef]
- Buckel, W.; Thauer, R.K. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem. Rev. 2018, 118, 3862–3886. [Google Scholar] [CrossRef] [Green Version]
- Hartmanis, M.G.; Gatenbeck, S. Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate. Appl. Environ. Microbiol. 1984, 47, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Kuhns, M.; Trifunovic, D.; Huber, H.; Muller, V. The Rnf complex is a Na(+) coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun. Biol. 2020, 3, 431. [Google Scholar] [CrossRef]
- Tremblay, P.L.; Zhang, T.; Dar, S.A.; Leang, C.; Lovley, D.R. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 2012, 4, e00406–e00412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biegel, E.; Schmidt, S.; Gonzalez, J.M.; Muller, V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci. 2011, 68, 613–634. [Google Scholar] [CrossRef] [PubMed]
- Biegel, E.; Schmidt, S.; Muller, V. Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ. Microbiol. 2009, 11, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Westphal, L.; Wiechmann, A.; Baker, J.; Minton, N.P.; Muller, V. The Rnf Complex Is an Energy-Coupled Transhydrogenase Essential To Reversibly Link Cellular NADH and Ferredoxin Pools in the Acetogen Acetobacterium woodii. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Buckel, W.; Thauer, R.K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim. Biophys. Acta 2013, 1827, 94–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schut, G.J.; Adams, M.W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production. J. Bacteriol. 2009, 191, 4451–4457. [Google Scholar] [CrossRef] [Green Version]
- Spirito, C.M.; Marzilli, A.M.; Angenent, L.T. Higher Substrate Ratios of Ethanol to Acetate Steered Chain Elongation toward n-Caprylate in a Bioreactor with Product Extraction. Environ. Sci. Technol. 2018, 52, 13438–13447. [Google Scholar] [CrossRef]
- Spirito, C.M.; Richter, H.; Rabaey, K.; Stams, A.J.; Angenent, L.T. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr. Opin. Biotechnol. 2014, 27, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180. [Google Scholar] [CrossRef]
- Kucek, L.A.; Spirito, C.M.; Angenent, L.T. High n-caprylate productivities and specificities from dilute ethanol and acetate: Chain elongation with microbiomes to upgrade products from syngas fermentation. Energy Environ. Sci. 2016, 9, 3482–3494. [Google Scholar] [CrossRef]
- Royce, L.A.; Yoon, J.M.; Chen, Y.X.; Rickenbach, E.; Shanks, J.V.; Jarboe, L.R. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 2015, 29, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yoon, J.M.; Jarboe, L.; Shanks, J.V. Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress. Appl. Microbiol. Biotechnol. 2015, 99, 4397–4408. [Google Scholar] [CrossRef] [PubMed]
- Borrull, A.; Lopez-Martinez, G.; Poblet, M.; Cordero-Otero, R.; Rozes, N. New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae. Yeast 2015, 32, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Roghair, M.; Liu, Y.; Adiatma, J.C.; Weusthuis, R.A.; Bruins, M.E.; Buisman, C.J.N.; Strik, D.P.B.T.B. Effect of n-Caproate Concentration on Chain Elongation and Competing Processes. ACS Sustain. Chem. Eng. 2018, 6, 7499–7506. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Chen, L.; Hei, M.; Liu, T.; Feng, Y.; Yang, G.Y. Structure-guided reshaping of the acyl binding pocket of ‘TesA thioesterase enhances octanoic acid production in E. coli. Metab. Eng. 2020, 61, 24–32. [Google Scholar] [CrossRef]
- Tan, Z.; Yoon, J.M.; Chowdhury, A.; Burdick, K.; Jarboe, L.R.; Maranas, C.D.; Shanks, J.V. Engineering of E. coli inherent fatty acid biosynthesis capacity to increase octanoic acid production. Biotechnol. Biofuels 2018, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Petering, D.; Fee, J.A.; Palmer, G. The oxygen sensitivity of spinach ferredoxin and other iron-sulfur proteins. The formation of protein-bound sulfur-zero. J. Biol. Chem. 1971, 246, 643–653. [Google Scholar]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
Compound Name | Common Synonyms | Solubility 1 (mg L−1) | Electron Density 2 (g COD g−1) | pKa |
---|---|---|---|---|
Acetic acid | Ethanoic acid, C2 | Miscible | 1.07 | 4.76 |
Propionic acid | Propanoic acid, C3 | Miscible | 1.51 | 4.88 |
Butyric acid | Butanoic acid, C4 | 60,000 | 1.82 | 4.82 |
Pentanoic acid | Valeric acid, C5 | 24,000 | 2.04 | 4.84 |
Hexanoic acid | Caproic acid, C6 | 10,300 | 2.20 | 4.80 |
Heptanoic acid | Enanthic acid, C7 | 2820 | 2.34 | 4.80 |
Octanoic acid | Caprylic acid, C8 | 735 3 | 2.44 | 4.89 |
Nonanoic acid | Pelargonic acid, C9 | 284 4 | 2.53 | 4.95 |
Decanoic acid | Capric acid, C10 | 62 | 2.60 | 4.90 |
Undecanoic acid | Undecylic acid, C11 | 52 | 2.66 | 4.95 |
Dodecanoic acid | Lauric acid, C12 | 4.8 | 2.72 | 5.30 |
Name | Isolation Source | Substrates | Products | Reference |
---|---|---|---|---|
Clostridium kluyveri | Canal mud | Glucose, Fructose, Sorbitol, Mannitol, Lactate, Pyruvate, Serine, Formate | C4, C5, Ethyl crotonate, C6, C7, C8, CO2 and H2 | [14,20,21,22,23] |
Megasphaera elsdenii | Sheep rumen | Glucose, Fructose, Maltose, Mannitol, Sorbitol, Lactate | C2, C3, C4, C5, C6, CO2 and H2 | [14,33,34,35] |
Ruminococcaceae bacterium CPB6 | Fermentation pit | Lactate, Ethanol, Glucose | C4, C6 | [14,49,50] |
Caproiciproducens galactitolivorans BS-1 | Wastewater treatment plant | Galactitol, C2 | Ethanol, Butanol, C2, C4, C6, H2 | [52,53] |
Eubacterium limosum | Pea-blanching wastes | H2 and CO2 | C2, C4, C5, C6 | [14,27,28] |
Eubacterium pyruvativorans | Sheep rumen | Formate, Acetate, Propionate, iso-butyrate, C4, Lactate | C4, C5, C6 | [48] |
Rhodospirillum rubrum | Dead mouse | Glucose, Fructose, Sucrose, CO | C6 | [10,16,17,18,19] |
Pseudoramibacter alactolyticus | Lung abscess | Glucose | Formate, C2, C4, C5, C6, C8 | [29,30,31,63] |
Megasphaera hexanoica | Cow rumen | Fructose, Mannose | C2, iso-butyrate, iso-valerate, C6, H2, CO2, H2S | [56,57] |
Clostridium sp. BL-3 | Anaerobic bioreactor | Lactate, Ethanol, Xylose, Fructose | C2, C4, iso-butyrate, C6 | [59,60] |
Clostridium sp. BL-4 | Anaerobic bioreactor | Lactate, Ethanol, Xylose, Fructose | C2, C4, iso-butyrate, C6 | [59,60] |
Clostridium sp. BL-6 | Anaerobic bioreactor | Lactate, Ethanol, Xylose, Fructose | C2, C4, iso-butyrate, C6 | [59,60] |
Caproiciproducens sp. 7D4C2 | Open-culture, chain-elongating bioreactor | Glucose, Fructose | Lactate, C2, C4, C6, H2, CO2 | [61] |
Substrate Type | Specific Substrates | Supplemental Electron Donor | Reactor Type | HRT (d) | Pre-Treatment | Inoculum | COD Conversion | Productivity (g COD L−1 d−1) | Other Products | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C6 | C7 | C8 | ||||||||||
OFMSW | Influent waste from a full-scale organic waste treatment facility | Ethanol | Up-flow fixed bed | 0.46 | Microbial hydrolysis and acidification | Acetate and ethanol consuming consortium | 19% | 61 | 4.6 | 2.1 | C2, C3, C4, C5 | [65] |
OFMSW | Approximately 90% yard waste and 10% food waste | None | Batch leach bed with leachate recirculation | 35 | Homogenization | OFMSW | 5.6% | 0.17 | 0.10 | 0.035 | C2, C3, C4, C5 | [66] |
OFMSW | Approximately 90% yard waste and 10% food waste | Ethanol | Batch leach bed with leachate recirculation | 28 | Homogenization | OFMSW | 2.3% | 0.13 | 0.033 | 0 | C2, C3, C4, C5 | [66] |
FW | Restaurant wastes | None | Leach bed with leachate recirculation | 7 | Homogenization | Full-scale granular anaerobic digester sludge | 19% | 7.3 | NR | NR | C2, C3, C4 | [67] |
FW | Outdated food scraps | Ethanol | Continuously stirred flow-through | 4 | Microbial hydrolysis and acidification | Lab-scale bioreactor | 28% | 13 | 0.35 | 0.37 | C2, C4 | [68] |
FW | Outdated food scraps | Ethanol | Continuously stirred flow-through | 1 | Microbial hydrolysis and acidification | Lab-scale bioreactor | 8.2% | 16 | 0.058 | 0.061 | C2, C4 | [68] |
FW | Food waste from homes | Ethanol | Continuously mixed batch | 51 | Microbial hydrolysis and acidification | Undescribed anaerobic bacteria | 4.1% | 0.12 | 0.0043 | 0.0048 | C2, C3, C4, C5, C10 | [69] |
FW | Food waste from homes | Ethanol | Continuously mixed batch | 28 | Microbial hydrolysis and acidification | Undescribed anaerobic bacteria, C. kluyveri | 12% | 0.64 | 0.01 | 0.01 | C2, C3, C4, C5, C10 | [69] |
FW | Outdated food scraps | None | Fed-batch | 45 | None | Lab-scale bioreactor | 14% | 4.20 | NR | trace | C2, C3, C4, C5 | [70] |
LCB | Shredded paper and chicken manure | Ethanol | Continuously mixed batch | 27 | None | Marine bacteria | 14% | 0.81 | NR | NR | C2, C4 | [71] |
LCB | Switchgrass ethanol production residues | None | Continuously stirred flow-through | 6 | None | Municipal wastewater acid digester sludge | 22% | 3.1 | trace | 0.40 | C2,C4,C5 | [72] |
LCB | Milled switchgrass | None | Unmixed batch | 3 | None | Rumen fluid | 0.33% | 0.034 | NR | NR | C2, C3, C4, C5 | [73] |
LCB | Milled switchgrass | Ethanol | Unmixed batch | 3 | None | Rumen fluid | 0.17% | 0.017 | NR | NR | C2, C3, C4, C5 | [73] |
LCB | Milled switchgrass | Ethanol | Unmixed batch | 3 | None | Rumen fluid, C. kluyveri | 35% | 3.6 | NR | NR | C2, C3, C4, C5 | [73] |
LCB | Farmland grass | None | Continuously stirred flow-through | 2 | Microbial hydrolysis and acidification | Lab-scale bioreactor | 5.4% | 5.7 | NR | NR | C2, C3, C4, C5 | [74] |
LCB | Corn silage | None | Batch | 13 | None | Digestate from full-scale silage digester | 3.8% | 0.10 | NR | 0.0077 | C2, C3, C4, C5 | [75] |
LCB | Corn stover hydrolysate | None | Fed-batch | 9.6 | Dilution | Megasphaera elsdenii | 23% | 0.29 | NR | NR | C2, C4 | [37] |
EBDWW | Stillage and beer from a wheat bioethanol facility | None | Continuously stirred flow-through | 7.5 | None | Lab-scale bioreactor | 18% | 3.0 | NR | trace | C2, C3, C4, C5, C10 | [53] |
EBDWW | Corn beer | None | Sequencing batch reactor | 15 | None | Digestate from first phase of full-scale silage digester | 58% | 1.7 | 0.056 | 2.70 | C2, C3, C4, C6 | [75] |
EBDWW | Solids-free thin stillage | None | Up-flow reactor, granular sludge | 0.5 | None | Reactor fermenting solid-free thin stillage | 29% | 1.5 | 0.046 | 0.037 | C2, C3, C4, C5 | [76] |
EBDWW | Thin stillage from bioethanol production | None | Continuously stirred flow-through | 6 | None | Thin stillage | 0.11% | 0.060 | NR | NR | C2, C3, C4, C5 | [64] |
EBDWW | Chinese liquor-making wastewater | None | Expanded granular sludge bed | 8 | Dilution | Pit mud and activated sludge | 77% | 0.55 | 0.057 | 0.081 | C2, C3, C4, C5 | [77] |
EBDWW | Lactate-rich liquor-brewing wastewater | None | Fed-batch | 3 | Dilution | Ruminococcaceae bacterium strain CPB6, Municipal wastewater sludge | 51% | 11.6 | NR | NR | C2, C4 | [50] |
EBDWW | Wine lees with 11% ethanol by volume | None | Continuously stirred flow-through | 9.5 | Dilution | Lab-scale bioreactor | 67% | 2.0 | NR | 2.0 | C2, C3, C4, C5 | [78] |
DPW | Yogurt acid whey | None | Up-flow anaerobic filter | 2.1 | Microbial hydrolysis and acidification (thermophilic) | Lab-scale food waste fermentation | 61% | 21 | 4.3 | 4.9 | C2, C3, C4, C5, C9 | [79] |
DPW | Quark acid whey | None | Up-flow anaerobic sludge blanket | 2.5 | None | Full-scale anaerobic digester sludge | 32% | 0.24 | NR | trace | C2, C3, C4, C5 | [80] |
DPW | Cheese whey | None | Up-flow packed-bed reactor | 6 | None | Lab-scale acidogenic reactor | 22% | 1.5 | NR | NR | C2, C3, C4, C5 | [81] |
Manure | Swine manure | Ethanol | Batch | 76 | Microbial hydrolysis and acidification | Full-scale anaerobic digester sludge | 28% | 0.11 | 0.084 | 0.034 | C2, C3, C4, C5 | [82] |
Ethanol: Acetate | Product | Hydrogenase | ATP/mol Ethanol | ΔG0′/mol ATP | Model | ||
---|---|---|---|---|---|---|---|
SLP 1 | ATPS 2 | Total | |||||
1:0 | C2 | Hyd1 | 1.00 | −1.00 | 0 | - | Figure S1 |
1:0 | C4 | Hyd1 | 0.500 | −0.250 | 0.250 | −58.0 | Figure S2 |
1:0 | C6 | Hyd1 | 0.333 | 0 | 0.330 | −68.5 | Figure S3 |
1:0 | C8 | Hyd1 | 0.250 | 0.125 | 0.375 | −73.1 | Figure S4 |
1:0 | C2 | ECH | 1.00 | 0 | 1.00 | +9.65 | Figure S5 |
1:0 | C4 | ECH | 0.500 | 0.250 | 0.750 | −19.3 | Figure S6 |
1:0 | C6 | ECH | 0.333 | 0.333 | 0.678 | −33.7 | Figure S7 |
1:0 | C8 | ECH | 0.250 | 0.375 | 0.625 | −43.8 | Figure S8 |
1:1 | C4 | None | 0 | 0.500 | 0.500 | −65.4 | Figure S9 |
2:1 | C6 | None | 0 | 0.500 | 0.500 | −77.4 | Figure S10 |
3:1 | C8 | None | 0 | 0.500 | 0.500 | −79.4 | Figure S11 |
3:2 | C4 | Hyd1 | 0.167 | 0.250 | 0.417 | −73.4 | Figure S12 |
3:2 | C4 | ECH | 0.167 | 0.417 | 0.584 | −52.4 | Figure S13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatopoulou, P.; Malkowski, J.; Conrado, L.; Brown, K.; Scarborough, M. Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production. Processes 2020, 8, 1571. https://doi.org/10.3390/pr8121571
Stamatopoulou P, Malkowski J, Conrado L, Brown K, Scarborough M. Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production. Processes. 2020; 8(12):1571. https://doi.org/10.3390/pr8121571
Chicago/Turabian StyleStamatopoulou, Panagiota, Juliet Malkowski, Leandro Conrado, Kennedy Brown, and Matthew Scarborough. 2020. "Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production" Processes 8, no. 12: 1571. https://doi.org/10.3390/pr8121571
APA StyleStamatopoulou, P., Malkowski, J., Conrado, L., Brown, K., & Scarborough, M. (2020). Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production. Processes, 8(12), 1571. https://doi.org/10.3390/pr8121571