Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits
Abstract
:1. Introduction
2. Spirits: Definition and Main Categories
- Wine spirit—spirit drink “produced exclusively by the distillation at less than 86% vol. of wine, wine fortified for distillation or wine distillate distilled at less than 86% vol”;
- Brandy—spirit drink “produced from wine spirit to which wine distillate may be added, provided that that wine distillate has been distilled at less than 94,8% vol. and does not exceed a maximum of 50% of the alcoholic content of the finished product”;
- Grape marc spirit—spirit drink “produced exclusively from grape marc fermented and distilled either directly by water vapor or after the water has been added and both of the following conditions are fulfilled: (i) each and every distillation is carried out at less than 86% vol.; (ii) the first distillation is carried out in the presence of the marc itself; (iii) a quantity of lees may be added to the grape marc that does not exceed 25 kg of lees per 100 kg of grape marc used; (iv) the quantity of alcohol derived from the lees shall not exceed 35% of the total quantity of alcohol in the finished product”;
- Fruit spirit—spirit drink “(i) produced exclusively by the alcoholic fermentation and distillation, with or without stones, of fresh and fleshy fruit, including bananas, or the must of such fruit, berries or vegetables (ii) each and every distillation shall be carried out at less than 86% vol.”.
- Honey spirit—spirit drink “(i) produced exclusively by fermentation and distillation of honey mash; (ii) it is distilled at less than 86% vol”.
3. Methanol: Source and Impact on Human Health
4. Methanol: Spirits Occurrence and Legal Limits
Major Volatile Compounds (mg/L of 100% Volume Alcohol) | Wine Spirit [37] | Grape Marc Spirit [37] | Arbutus Spirit [16] | Honey Spirit [15] | Juniper Flavoured Spirit * [15,38] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |
Ethanal | 22.9 | 872.5 | 418.0 | 3549.2 | 180.0 | 580.0 | 31 | 33.6 | 0.0 | 1403.0 |
ethyl acetate | 64.9 | 1976.7 | 619.1 | 5407.3 | 10,490.0 | 1170.0 | 291.1 | 303.7 | 0.0 | 3565.0 |
Methanol | 299.0 | 1239.1 | 3394.2 | 23,708.9 | 4870.0 | 8980.0 | 157.9 | 180.9 | 0.0 | 4550.0 |
2–Butanol | 0.0 | 266.7 | 0.0 | 233.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 |
1–Propanol | 157.2 | 482.1 | 281.2 | 804.2 | 110.0 | 250.0 | 360.3 | 372.9 | 0.0 | 545.0 |
2-Methyl-1-propanol | 340.9 | 956.3 | 395.2 | 1213.7 | 390.0 | 970.0 | 445.9 | 450.9 | 0.0 | 894.0 |
2-Propen-1-ol | 0.0 | 47.7 | 0.0 | 26.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 |
1–Butanol | 0.0 | 40.8 | 13.7 | 89.3 | 0.0 | 0.0 | 8.2 | 8.8 | 0.0 | 0.0 |
2 + 3-Methyl-1-butanol | 1270.3 | 3138.7 | 514.2 | 4814.2 | 940.0 | 1650.0 | 3011.5 | 3118.7 | 55.0 | 5382.0 |
5. Factors that Influence the Methanol Content in Spirits
5.1. Raw Material
5.2. Alcoholic Fermentation
5.3. From Fermentation to Distillation
5.4. Distillation Process
5.5. Wood Aging Process
6. Methanol Quantification in Spirits
6.1. Current Methods
6.2. Methanol Quantification by Vibrational Spectroscopy
- (a)
- Using FTIR-ATR:
- Lachenmeier [130] applied the FTIR spectroscopy in combination with multivariate data analysis to assess the quantification of parameters density, ethanol, methanol, ethyl acetate, propanol-1, isobutanol, and 2-/3-methyl-1-butanol of spirit drinks. The calibration model obtained presented an r2 of 0.997 for cross-validation and 0.981 test-set validation;
- Coldea et al. [131] applied FTIR spectroscopy and chemometrics techniques to evaluate the quality of fruit spirits traditionally produced in Romania. In this study, the methanol fingerprint was identified in the 1020 and 1112 cm-1. Using PLS regression, these authors found that the FTIR spectra could be useful for authenticity control of the provenience region and the type of the fruit spirit;
- Anjos et al. [132] used FTIR-ATR in the spectral region of 4000 to 400 cm−1 to forecast the alcoholic strength, methanol content, acetaldehyde, and fusel alcohol content of grape mark and wine spirits, applying partial least square (PLS). For methanol content, a very good model was obtained using the peaks at 1085 and 1043 cm−1 corresponding to the C–O stretch absorption bands, with r2 of 99.2 and ratios of performance to deviation (RPD) of 11.1.
- (b)
- Using RAMAN:
- Boyaci et al. [133] proposed a method for direct quantification of ethanol and methanol in distilled alcoholic beverages. In this research, calibration models for ethanol and methanol concentrations in the ranges of 0–7 M and 0–10 M, respectively, were performed. An r2 value of 0.998 for ethanol and 0.998 for methanol for linear correlations were plotted. The aforementioned authors used the important bands of methanol at 1019 cm–1 that corresponded to C–O stretching;
- Goes et al. [134] used Raman spectroscopy and a statistical procedure based on principal component analysis to determine the presence of methanol content in beverages;
- Song et al. [135] used handheld Raman spectroscopy, with an excitation laser emitting at 1064 nm to online detect methanol content in a spirit. For their analysis, they used the spectral information located at 1074.6 cm−1 (bending vibration of C-O-H). The prediction of methanol concentration was made with an r2 of 0.999. More recently, Ellis et al. [136] proposed a methodology for through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. These authors used the peak at 1030 cm−1 assigned to the methanol C–O stretching vibration, to make their validation. In this study, the PLS model developed had an r2 between 0.9518 and 0.9734.
- (c)
- Using NIR:
- Yang et al. [128], applied multivariate calibration in data collected with two-dimensional NIR, to make the determination of methanol in white spirit. In this study, the N-way partial least squares technique was applied to the impure methanol solution; the obtained average relative error and root mean square error was 2.97 and 0.064%, respectively. They concluded that the adulteration level by methanol was taken in the region of 4300– 4450 cm−1.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paine, A.J.; Dayan, A.D. Defining a tolerable concentration of methanol in alcoholic drinks. Hum. Exp. Toxicol. 2001, 20, 563–568. [Google Scholar] [CrossRef]
- Abegg, S.; Magro, L.; van den Broek, J.; Pratsinis, S.E.; Güntner, A.T. A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. Nat. Food 2020, 1, 351–354. [Google Scholar] [CrossRef]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A review of methanol poisoning: A crisis beyond ocular toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Śliwińska, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The analysis of raw spirits-A review of methodology. J. Inst. Brew. 2016, 122, 5–10. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and of the Council (EU). 2019/787 Definition, description, presentation and labelling of spirit drinks, the use of the names of spirit drinks in the presentation and labelling of other foodstuff. Off. J. Eur. Union 2019, L 130, 1–54. [Google Scholar]
- School, C.L. United States Code of Federal Regulations. Title 27: Alcohol, Tobacco Products, and Firearms, Chapter 1, Subpart C. Standards of Identity for Distilled Spirits. Available online: https://www.law.cornell.edu/cfr/text/27/5.22 (accessed on 19 June 2020).
- López, F.; Rodríguez-Bencomo, J.J.; Orriols, I.; Pérez-Correa, J.R. Fruit Brandies. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 531–552. ISBN 978-0-12-800850-8. [Google Scholar]
- Spaho, N. Distillation techniques in the fruit spirits production. In Distillation-Innovative Applications and Modeling; InTech: London, UK, 2017; pp. 129–152. [Google Scholar]
- Porto, C. Da Grappa: Production, sensory properties and market development. In Alcoholic Beverages: Sensory Evaluation and Consumer Research; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 299–314. [Google Scholar]
- Louw, L.; Lambrechts, M.G. 13-Grape-based brandies: Production, sensory properties and sensory evaluation. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Piggott, J.B.T.-A.B., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 281–298. ISBN 978-0-85709-051-5. [Google Scholar]
- Botelho, G.; Galego, L. Manual de Boas Práticas de Fabrico de Aguardente de Medronho, 3rd ed.; Quântica Editora–Conteúdos Especializados, Lda.: Porto, Portugal, 2019; ISBN 978-989-892-789-7. [Google Scholar]
- International Organisation of Vine and Wine (OIV). FOCUS 2019 Industrial Use of Wine; 2019. Available online: http://www.oiv.int/public/medias/6957/focus-oiv-2019-industrial-use-of-wine.pdf (accessed on 10 September 2020).
- Versini, G.; Franco, M.A.; Moser, S.; Barchetti, P.; Manca, G. Characterisation of apple distillates from native varieties of Sardinia island and comparison with other Italian products. Food Chem. 2009, 113, 1176–1183. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Mygdalia, A.S.; Natskoulis, P. Characterization and safety evaluation of the traditional Greek fruit distillate “Mouro” by flavor compounds and mineral analysis. Food Chem. 2004, 86, 625–636. [Google Scholar] [CrossRef]
- Anjos, O.; Canas, S.; Gonçalves, J.C.; Caldeira, I. Development of a spirit drink produced with strawberry tree (Arbutus unedo L.) fruit and honey. Beverages 2020, 6, 38. [Google Scholar] [CrossRef]
- Caldeira, I.; Gomes, F.; Mira, H.; Botelho, G. Distillates composition obtained of fermented Arbutus unedo L. fruits from different seedlings and clonal plants. Ann. Agric. Sci. 2019, 64, 21–28. [Google Scholar] [CrossRef]
- Morales, R. El madroño y sus usos. Plantas y cultura popular: La etnobotánica en España. Quercus 1995, 12, 8–10. [Google Scholar]
- Soufleros, E.H.; Mygdalia, S.A.; Natskoulis, P. Production process and characterization of the traditional Greek fruit distillate “Koumaro” by aromatic and mineral composition. J. Food Compos. Anal. 2005, 18, 699–716. [Google Scholar] [CrossRef]
- Spaho, N.; Dürr, P.; Grba, S.; Velagić-Habul, E.; Blesić, M. Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. J. Inst. Brew. 2013, 119, 48–56. [Google Scholar] [CrossRef]
- Anjos, O.; Frazão, D.; Caldeira, I. Physicochemical and sensorial characterization of honey spirits. Foods 2017, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Anjos, O.; Santos, R.; Estevinho, L.M.; Caldeira, I. FT-RAMAN methodology for the monitoring of honeys’ spirit distillation process. Food Chem. 2020, 305, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Wormit, A.; Usadel, B. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 2018, 19, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Komarova, T.V.; Sheshukova, E.V.; Dorokhov, Y.L. Cell wall methanol as a signal in plant immunity. Front. Plant Sci. 2014, 5, 2012–2015. [Google Scholar] [CrossRef] [Green Version]
- Vanitha, T.; Khan, M. Role of pectin in food processing and food packaging. In Pectins-Extraction, Purification, Characterization and Applications; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Broxterman, S.E.; Schols, H.A. Interactions between pectin and cellulose in primary plant cell walls. Carbohydr. Polym. 2018, 192, 263–272. [Google Scholar] [CrossRef]
- Dorokhov, Y.L.; Shindyapina, A.V.; Sheshukova, E.V.; Komarova, T.V. Metabolic methanol: Molecular pathways and physiological roles. Physiol. Rev. 2015, 95, 603–644. [Google Scholar] [CrossRef]
- Deitrich, R.; Zimatkin, S.; Pronko, S. Oxidation of ethanol in the brain and its consequences. Alcohol Res. Health 2006, 29, 266–273. [Google Scholar]
- Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis. 2012, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulpule, K.; Dringen, R. Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes. Glia 2012, 60, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Seme, M.T.; Summerfelt, P.; Henry, M.M.; Neitz, J.; Eells, J.T. Formate-induced inhibition of photoreceptor function in methanol intoxication. J. Pharmacol. Exp. Ther. 1999, 289, 361–370. [Google Scholar] [PubMed]
- Bouchard, M.; Brunet, R.C.; Droz, P.O.; Carrier, G. A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans. Toxicol. Sci. 2001, 64, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Kraut, J.A.; Kurtz, I. Toxic alcohol ingestions: Clinical features, diagnosis, and management. Clin. J. Am. Soc. Nephrol. 2008, 3, 208–225. [Google Scholar] [CrossRef]
- Horton, V.L.; Higuchi, M.A.; Rickert, D.E. Physiologically based pharmacokinetic model for methanol in rats, monkeys, and humans. Toxicol. Appl. Pharmacol. 1992, 117, 26–36. [Google Scholar] [CrossRef]
- Christoph, N.; Bauer-Christoph, C. Flavour of spirit drinks: Raw materials, fermentation, distillation, and ageing. Flavours Fragr. Chem. Bioprocess. Sustain. 2007, 219–239. [Google Scholar] [CrossRef]
- Belchior, A.P.; Canas, S.; Caldeira, I.; Carvalho, E. Aguardentes Vinícolas-Tecnologias de Produção e Envelhecimento. Controlo de Qualidade; Publindústria-Edições Técnicas: Porto, Portugal, 2015; ISBN 978-989-723-133-9. [Google Scholar]
- Luís, A.C.P.M.N.; Mota, D.; Anjos, O.; Caldeira, I. Single-laboratory validation of determination of acetaldehyde, ethyl acetate, methanol and fusel alcohols in wine spirits, brandies and marc spirits using GC-FID. Ciência Téc. Vitiv. 2011, 26, 69–76. [Google Scholar]
- Anjos, O.; Nunes, D.; Caldeira, I. First evaluation of a traditional Portuguese alcoholic beverage, prepared with maceration of juniper berries. Cienc. e Tec. Vitivinic. 2013, 28, 59–69. [Google Scholar]
- Bindler, F.; Voges, E.; Laugel, P. The problem of methanol concentration admissible in distilled fruit spirits. Food Addit. Contam. 1988, 5, 343–351. [Google Scholar] [CrossRef]
- Pang, X.; Li, Z.; Chen, J.; Gao, L.; Han, B.-Z. A comprehensive review of spirit drink safety standards and regulations from an international perspective. J. Food Prot. 2017, 80, 431–442. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and of the Council (EC). No 110/2008 Definition, description, presentation, labelling and the protection of geographical indications of spirit drinks. Off. J. Eur. Union 2008, L39, 16–54. [Google Scholar]
- Coldea, T.E.R.; Socaciu, C.; Pârv, M.; Vodnar, D. Gas-chromatographic analysis of major volatile compounds found in traditional fruit brandies from Transylvania, Romania. Not. Bot. Horti Agrobo. 2011, 39, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Tešević, V.; Nikićević, N.; Jovanović, A.; Djoković, D.; Vujisić, L.; Vučković, I.; Bonić, M. Volatile components from old plum brandies. Food Technol. Biotechnol. 2005, 43, 367–372. [Google Scholar]
- Satora, P.; Tuszyński, T. Influence of indigenous yeasts on the fermentation and volatile profile of plum brandies. Food Microbiol. 2010, 27, 418–424. [Google Scholar] [CrossRef]
- Winterová, R.; Mikulíková, R.; Mazáč, J.; Havelec, P. Assessment of the authenticity of fruit spirits by gas chromatography and stable isotope ratio analyses. Czech J. Food Sci. 2008, 26, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Jung, A.; Jung, H.; Auwärter, V.; Pollak, S.; Farr, A.M.; Hecser, L.; Schiopu, A. Volatile congeners in alcoholic beverages: Analysis and forensic significance. Rom. J. Leg. Med. 2010, 18, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Kostik, V.; Memeti, S.; Bauer, B. Gas-chromatographic analysis of some volatile congeners in different types of strong alcoholic fruit spirits. J. Hyg. Eng. Des. 2013, 4, 98–102. [Google Scholar]
- Popović, B.T.; Mitrović, O.V.; Leposavić, A.P.; Paunović, S.A.; Jevremović, D.R.; Nikićević, N.J. Chemical and sensory characterization of plum spirits obtained from cultivar Čačanska Rodna and its parent cultivars. J. Serb. Chem. Soc. 2019, 84, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Balcerek, M.; Pielech-przybylska, K.; Patelski, P.; Sapi, E. The usefulness of intermediate products of plum processing for alcoholic fermentation and chemical composition of the obtained distillates. J. Food Sci. 2013, 78, S770–S776. [Google Scholar] [CrossRef]
- Md, C.; Elena, T.; Ibolya, F.; Erzsébet, F. A survey on the methanol content of home distilled alcoholic beverages in Transylvania (Romania). Acta Med. Marisiensis 2013, 59, 206–208. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Tarko, T. Oenological characteristics of fermented apple musts and volatile profile of brandies obtained from different apple cultivars. Biomolecules 2020, 10, 853. [Google Scholar] [CrossRef]
- Hang, Y.D.; Woodams, E.E. Bioresource Technology Influence of apple cultivar and juice pasteurization on hard cider and eau-de-vie methanol content. Bioresour. Technol. 2010, 101, 1396–1398. [Google Scholar] [CrossRef]
- García-Llobodanin, L.; Achaerandio, I.; Ferrando, M.; Güell, C.; López, F. Pear distillates from pear juice concentrate: Effect of lees in the aromatic composition. J. Agric. Food Chem. 2007, 55, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Versini, G.; Franco, M.A.; Moser, S.; Manca, G. Characterisation of pear distillates from wild and cultivated varieties in Sardinia. Int. J. Food Sci. Technol. 2012, 47, 2519–2531. [Google Scholar] [CrossRef]
- Nikićević, N. Effects of some production factors on chemical compostition and sensory qualities of Williams pear brandy. J. Agric. Sci. 2005, 50, 193–206. [Google Scholar]
- Hernández-Gómez, L.F.; Úbeda-Iranzo, J.; García-Romero, E.; Briones-Pérez, A. Comparative production of different melon distillates: Chemical and sensory analyses. Food Chem. 2005, 90, 115–125. [Google Scholar] [CrossRef]
- Gómez, L.F.H.; Úbeda, J.; Briones, A. Characterisation of wines and distilled spirits from melon (Cucumis melo L.). Int. J. Food Sci. Technol. 2008, 43, 644–650. [Google Scholar] [CrossRef]
- Hernández-Gómez, L.F.; Úbeda, J.; Briones, A. Melon fruit distillates: Comparison of different distillation methods. Food Chem. 2003, 82, 539–543. [Google Scholar] [CrossRef]
- Asquieri, E.R.; Gomes, A.; Ant, M. Aguardente de jabuticaba obtida da casca e borra da fabricação de fermentado de jabuticaba. Ciência e Tecnol. Aliment. 2009, 29, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.; Torrado, A.; Guerra, N.P. Major volatile composition of four distilled alcoholic beverages obtained from fruits of the forest. Chem. Eng. Trans. 2015, 44, 253–258. [Google Scholar] [CrossRef]
- González, E.A.; Agrasar, A.T.; Castro, L.M.P.; Fernández, I.O.; Guerra, N.P. Solid-state fermentation of red raspberry (Rubus ideaus L.) and arbutus berry (Arbutus unedo, L.) and characterization of their distillates. Food Res. Int. 2011, 44, 1419–1426. [Google Scholar] [CrossRef]
- González, E.A.; Fernández, I.O.; Castro, L.P.; Guerra, N.P. Production and characterization of a novel distilled alcoholic beverage produced from blueberry (Vaccinium corymbosum L.). Fruits 2016, 71, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Vulić, T.; Nikićević, N.; Stanković, L.; Veličković, M.; Todosijević, M.; Popović, B.; Urošević, I.; Stanković, M.; Beraha, I.; Tešević, V. Chemical and sensorial characteristics of fruit spirits produced from different black currant (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. Maced. J. Chem. Chem. Eng. 2012, 31, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Tesevic, V.; Nikicevic, N.; Milosavljevic, S.; Bajic, D.; Vajs, V.; Vuckovic, I.; Vujisic, L.; Djordjevic, I.; Stankovic, M.; Velickovic, M. Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of Cornelian cherry. J. Serbian Chem. Soc. 2009, 74, 117–128. [Google Scholar] [CrossRef]
- Viana, E.J.; de Tavares, I.M.C.; Rodrigues, L.M.A.; das Cardoso, M.G.; Baffa Júnior, J.C.; Gualberto, S.A.; De Oliveira, C.P. Evaluation of toxic compounds and quality parameters on the aged Brazilian sugarcane spirit. Res. Soc. Dev. 2020, 9, e395985544. [Google Scholar] [CrossRef]
- Versini, G.; Moser, S.; Franco, M.A.; Manca, G. Characterisation of strawberry tree distillate (Arbutus unedo L.) produced in Sardinia. J. Commod. Sci. Technol. Qual. 2011, 50, 197–206. [Google Scholar]
- Botelho, G.; Gomes, F.; Ferreira, F.M.; Caldeira, I. Influence of maturation degree of arbutus (Arbutus unedo L.) fruits in spirit composition and quality. Int. Sch. Sci. Res. Innov. 2015, 9, 478–483. [Google Scholar]
- Santo, D.M.C.E. Controlo e Análise do Processo de Produção de Aguardente de Medronho da Serra do Caldeirão. Master Thesis, University of Algarve, Faro, Portugal, 2010. Master in Food Technology. Available online: https://sapientia.ualg.pt/handle/10400.1/926 (accessed on 10 July 2020).
- Garreau, C. L’Armagnac. In Les Eaux-De-Vie Traditionnelles D’origine Viticola; Bertrand, A., Ed.; Lavoisier–TEC & DOC: Paris, Franch, 2008; pp. 39–60. [Google Scholar]
- Geroyiannaki, M.; Komaitis, M.E.; Stavrakas, D.E.; Polysiou, M.; Athanasopoulos, P.E.; Spanos, M. Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control 2007, 18, 988–995. [Google Scholar] [CrossRef]
- Cortés, S.; Fernández, E. Differentiation of Spanish alcoholic drinks, Orujo, obtained from red and white grape pomace distillation: Volatile composition. Int. J. Food Prop. 2011, 14, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Hang, Y.D.; Woodams, E.E. Methanol content of grappa made from New York grape pomace. Bioresour. Technol. 2008, 99, 3923–3925. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Freschet, G. Study of some volatile compounds of raw grappa obtained using marc treated in different ways and stored in plastic tunnels. J. Wine Res. 2003, 14, 139–146. [Google Scholar] [CrossRef]
- Gerogiannaki-Christopoulou, M.; Kyriakidis, N.V.; Panagiotis, E. Athanasopoulos Effect of grape variety (Vitis vinifera L.) and grape pomace fermentation conditions on some volatile compounds of the produced grape pomace distillate. OENO One 2004, 38, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Diéguez, S.C.; de la Peña, M.L.G.; Gómez, E.F. Volatile composition and sensory characters of commercial Galician Orujo spirits. J. Agric. Food Chem. 2005, 53, 6759–6765. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; AC, M.; FX, M. Review: Steam distilled spirits from fermented grape pomace. Food Sci. Tech. Int. 2000, 6, 285–300. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Bollaín, M.H.; Moser, S.; Orriols, I. Characterization and differentiation of monovarietal grape pomace distillate from native varieties of Galicia. J. Agric. Food Chem. 2010, 58, 9657–9665. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Herminia Bollaín, M.; Berstsch, K.; Orriols, I. Fast determination of principal volatile compounds in distilled spirits. Food Control 2010, 21, 1436–1441. [Google Scholar] [CrossRef]
- Diéguez, S.C.; De La Peña, M.L.G.; Gómez, E.F. Concentration of volatiles in marc distillates from Galicia according to storage conditions of the grape pomace. Chromatographia 2001, 53, S406–S411. [Google Scholar] [CrossRef]
- Orriols, I.; Rodriguez Bollaín, M.H.; Perez Fernandez, J.F. L’eau-De-Vie de Marc (‘‘Aguardente”) D’Albariño: Influence de Trois Systemes de Distillation sur les Teneurs en Composés Volátiles; Lavoisier TEC & DOC: Paris, France, 1991; p. 43. ISBN 2-85206-765-X. [Google Scholar]
- Apostolopoulou, A.A.; Flouros, A.I.; Demertzis, P.G.; Akrida-Demertzi, K. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 2005, 16, 157–164. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Rodríguez, N.; Dominguez, J.M.; Cortés, S. Characterization by chemical and sensory analysis of commercial grape marc distillate (Orujo) aged in oak wood. J. Inst. Brew. 2012, 118, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Lukic, I.; Milicevic, B.; Banovic, M.; Tomas, S.; Radeka, S.; Persuric, D. Secondary aroma compounds in fresh grape marc distillates as a result of variety and corresponding production technology. Food Technol. Biotechnol. 2011, 9862, 214–227. [Google Scholar]
- Orriols, I.; Cortez, S.M.; Fornos, D. Caracteristiques des distillats de marc du commerce «Orujo de Galicia» d´Espagne. In Les Eaux-de-Vie Traditionnelles d’Origine Viticole; Bertrand, A., Ed.; Lavoisier TEC & DOC: Paris, France, 2008; pp. 173–177. ISBN 978-2-7430-1040-9. [Google Scholar]
- Borsa, M.C.D.; Monticelli, L.; Bonello, F.; Pazo Alvarez, M.C.; Dellóro, V. Cravero Caractérisation chimique et sensorielle des distillats de marc Italiens «Grappa» produits en Piémont. In Les Eaux-de-Vie Traditionnelles d’Origine Viticole; Bertrand, A., Ed.; Lavoisier TEC & DOC: Paris, France, 2008; pp. 209–216. ISBN 978-2-7430-1040-9. [Google Scholar]
- Arrieta-Garay, Y.; Blanco, P.; López-Vázquez, C.; Rodríguez-Bencomo, J.J.; Pérez-Correa, J.R.; López, F.; Orriols, I. Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace spirits. J. Agric. Food Chem. 2014, 62, 10552–10560. [Google Scholar] [CrossRef] [PubMed]
- Cortés, S.; Salgado, J.M.; Rodríguez, N.; Domínguez, J.M. The storage of grape marc: Limiting factor in the quality of the distillate. Food Control 2010, 21, 1545–1549. [Google Scholar] [CrossRef]
- Lukić, I.; Tomas, S.; Miličević, B.; Radeka, S.; Peršurić, Đ. Behaviour of volatile compounds during traditional alembic distillation of fermented Muscat Blanc and Muškat Ruža Porečki grape marcs. J. Inst. Brew. 2011, 117, 440–450. [Google Scholar] [CrossRef]
- Zocca, F.; Lomolino, G.; Curioni, A.; Spettoli, P.; Lante, A. Detection of pectinmethylesterase activity in presence of methanol during grape pomace storage. Food Chem. 2007, 102, 59–65. [Google Scholar] [CrossRef]
- Roldán, A.; Van Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Ohimain, E.I. Methanol contamination in traditionally fermented alcoholic beverages: The microbial dimension. Springerplus 2016, 5, 1607. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.N.; dos Gomes, P.C.S.; Alcarde, A.R.; Bortoletto, A.M.; Leite Neta, M.T.S.; Narain, N.; de Abud, A.K.S.; Oliveira Júnior, A.M. Characterization and volatile profile of passion fruit spirit. Int. J. Gastron. Food Sci. 2020, 21, 100223. [Google Scholar] [CrossRef]
- Zhang, H.; Woodams, E.E.; Hang, Y.D. Influence of pectinase treatment on fruit spirits from apple mash, juice and pomace. Process Biochem. 2011, 46, 1909–1913. [Google Scholar] [CrossRef]
- Madrera, R.R.; Pando, R.; Hevia, A.G.; Arce, M.B.; Valles, B.S. Production of spirits from dry apple pomace and selected yeasts. Food Bioprod. Process. 2013, 1, 623–631. [Google Scholar] [CrossRef]
- Andraous, J.I.; Claus, M.J.; Lindemann, D.J.; Berglund, K.A. Effect of liquefaction enzymes on methanol concentration of distilled fruit spirits. Am. J. Enol. Vitic. 2004, 55, 199–201. [Google Scholar]
- Bajard-Sparrow, C.; Grassin, C.; Fauveau, C.; Pellerin, P. Utilisation des pectinases pour la vinification charentaise des vins destinés a la production d’eaux-de-vie de Cognac. In Les Eaux-de-Vie Traditionnelles d’Origine Viticole; Bertrand, A., Ed.; Lavoisier TEC: Paris, Franch, 2008; pp. 65–67. [Google Scholar]
- Kana, K.; Kanellaki, M.; Ppadimitriou, A.; Koutinas, A.A. Cause of and methods to reduce methanol content of Tsicoudia, Tsipouro and Ouzo. Int. J. Food Sci. Technol. 2007, 26, 241–247. [Google Scholar] [CrossRef]
- García-Llobodanin, L.; Ferrando, M.; Güell, C.; López, F. Pear distillates: Influence of the raw material used on final quality. Eur. Food Res. Technol. 2008, 228, 75–82. [Google Scholar] [CrossRef]
- Reca, I.B.; Lionetti, V.; Camardella, L.; D’Avino, R.; Giardina, T.; Cervone, F.; Bellincampi, D. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME. Plant Mol. Biol. 2012, 79, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, I.; Gomes, F.; Botelho, G. Arbutus unedo L. spirit: Does the water addition before fermentation matters? In INCREaSE; Mortal, A., Aníbal, J., Monteiro, J., Sequeira, C., Semião, J., Moreira da Silva, M., Oliveira, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 2, pp. 206–215. ISBN 9783319702728. [Google Scholar]
- Zocca, F.; Lomolino, G.; Spettoli, P.; Lante, A. A study on the relationship between the volatile composition of Moscato and Prosecco Grappa and enzymatic activities involved in its production. J. Inst. Brew. 2008, 114, 262–269. [Google Scholar] [CrossRef]
- Silva, M.L.; Malcata, F.X. Effects of time of grape pomace fermentation and distillation cuts on the chemical composition of grape marcs. Eur. Food Res. Technol. 1999, 208, 134–143. [Google Scholar] [CrossRef]
- Nikićević, N.; Tešević, V. Possibilities for methanol content reduction in plum brandy. J. Agric. Sci. 2005, 50, 49–60. [Google Scholar]
- Xiang, X.-F.; Lan, Y.-B.; Gao, X.-T.; Xie, H.; An, Z.-Y.; Lv, Z.-H.; Duan, C.-Q.; Wu, G.-F. Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Res. Int. 2020, 137. [Google Scholar] [CrossRef]
- Faísca, M.; Galego, L.; Caldeira, I. Pesquisa de marcadores químicos e sensoriais associados ao descritor “caudas” em aguardentes vínicas. In 10° Simpósio de Vitivinicultura do Alentejo-Livro de Atas; ATEVA: Évora, Portugal; CVRA: Évora, Portugal; CCDRA: Évora, Portugal; DRAPAL: Évora, Portugal; UE: Évora, Portugal, 2016; Volume 1, pp. 269–277. Available online: https://www.ateva.pt/ateva_site_media/cms_page_media/75/LIVRO%20DE%20ACTAS%20VOL.1.pdf (accessed on 5 November 2020).
- Soufleros, E.; Goulettso, C.; Papadopoulou, A.; Michailides, C. Étude et description matémathique du profil de la distilattion á l´aide de collones du «Tsipouro», eau-de-vie de marc de raisin grecque. In Les Eaux-De-VieTraditionnelles d’Origine Viticole; Bertrand A, Ed.; Lavoisier TEC & DOC: Paris, France, 2008; pp. 179–188. ISBN 978-2-7430-1040-9. [Google Scholar]
- Orriols, I.; Cortez, S.M.; Lopez, C.; Fornos, D.; Suarez, R. Application de la démethylisation dans lélaboration des eaux de vie de marc. In Les Eaux-de-VieTraditionnelles d’Origine Viticole; Bertrand A, Ed.; Lavoisier TEC & DOC: Paris, France, 2008; pp. 217–221. ISBN 978-2-7430-1040-9. [Google Scholar]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Granja-Soares, J.; Roque, R.; Cabrita, M.J.; Anjos, O.; Belchior, A.P.; Caldeira, I.; Canas, S. Effect of innovative technology using staves and micro-oxygenation on the odorant and sensory profile of aged wine spirit. Food Chem. 2020, 333, 127450. [Google Scholar] [CrossRef]
- Caldeira, I.; Mateus, A.M.; Belchior, A.P. Flavour and odour profile modifications during the first five years of Lourinhã brandy maturation on different wooden barrels. Anal. Chim. Acta 2006, 563, 264–273. [Google Scholar] [CrossRef]
- Panosyan, A.G.; Mamikonyan, G.V.; Torosyan, M.; Gabrielyan, E.S.; Mkhitaryan, S.A.; Tirakyan, M.R.; Ovanesyan, A. Determination of the composition of volatiles in cognac (brandy) by headspace gas chromatography-mass spectrometry. J. Anal. Chem. 2001, 56, 1078–1086. [Google Scholar] [CrossRef]
- Puech, J.-L.; Leauté, R.; Clot, G.; Nomdedeu, L.; Mondiés, H. Évolution de divers constituants volatils et phénoliques des eaux-de-vie de cognac au cours de leur vieillissement. Sci. Aliment. 1984, 4, 65–80. [Google Scholar]
- Rodríguez Madrera, R.; Suárez Valles, B.; Picinelli Lobo, A. Chemical and sensory changes in fresh cider spirits during maturation in inert containers. J. Sci. Food Agric. 2011, 91, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strak, E. Changes in the chemical composition of plum distillate during maturation with oak chips under different conditions. Food Technol. Biotechnol. 2017, 55, 333–359. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Śliwińska, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J. Application of gas chromatography to analysis of spirit-based alcoholic beverages. Crit. Rev. Anal. Chem. 2015, 45, 201–225. [Google Scholar] [CrossRef] [PubMed]
- OIV (International Organisation of Vine and Wine). Compendium of international methods of wine and must analysis. In EC Regulation (EU) 2019/787; 2009; Volumes 1 and 2, Available online: http://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 5 May 2020).
- AOAC International. Official Methods 972. Methanol in distilled liquors. In Gas Chromatographic Method; AOAC: Rockville, MD, USA, 1973; Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2090 (accessed on 12 November 2020).
- López-Vázquez, C.; García-Llobodanin, L.; Ricardo Pérez-Correa, J.; López, F.; Blanco, P.; Orriols, I. Aromatic characterization of pot distilled kiwi spirits. J. Agric. Food Chem. 2012, 60, 2242–2247. [Google Scholar] [CrossRef]
- Wechgama, K.; Laopaiboon, L.; Laopaiboon, P. Quantitative analysis of main volatile and other compounds in traditional distilled spirits from Thai rice. Biotechnology 2008, 7, 718–724. [Google Scholar] [CrossRef] [Green Version]
- De León-Rodríguez, A.; González-Hernández, L.; De La Rosa, A.P.B.; Escalante-Minakata, P.; López, M.G. Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J. Agric. Food Chem. 2006, 54, 1337–1341. [Google Scholar] [CrossRef]
- Dragone, G.; Mussatto, S.I.; Oliveira, J.M.; Teixeira, J.A. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009, 112, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Madrera, R.R.; Valles, B.S. Determination of volatile compounds in cider spirits by Gas Chromatography with direct injection. J. Chromatogr. Sci. 2007, 45, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Downey, G. Tutorial review. Qualitative analysis in the near-infrared region. Analyst 1994, 119, 2367. [Google Scholar] [CrossRef]
- Anjos, O.; Comesaña, M.M.; Caldeira, I.; Pedro, S.I.; Oller, P.E.; Canas, S. Application of functional data analysis and FTIR-ATR spectroscopy to discriminatewine spirits ageing technologies. Mathematics 2020, 8, 896. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S.; Canas, S. Screening of different ageing technologies of wine spirit by application of Near-Infrared (NIR) Spectroscopy and volatile quantification. Processes 2020, 8, 736. [Google Scholar] [CrossRef]
- Palma, M.; Barroso, C.G. Application of FT-IR spectroscopy to the characterisation and classification of wines, brandies and other distilled drinks. Talanta 2002, 58, 265–271. [Google Scholar] [CrossRef]
- Yang, Y.R.; Ren, Y.F.; Dong, G.M.; Yang, R.J.; Liu, H.X.; Du, Y.H.; Zhang, W.Y. Determination of methanol in alcoholic beverages by Two-Dimensional Near-Infrared Correlation Spectroscopy. Anal. Lett. 2016, 49, 2279–2289. [Google Scholar] [CrossRef]
- Nordon, A.; Mills, A.; Burn, R.T.; Cusick, F.M.; Littlejohn, D. Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits. Anal. Chim. Acta 2005, 548, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chem. 2007, 101, 825–832. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Fetea, F.; Ranga, F.; Pop, R.M.; Florea, M. Rapid quantitative analysis of ethanol and prediction of methanol content in traditional fruit brandies from romania, using FTIR spectroscopy and chemometrics. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Anjos, O.; Santos, A.J.A.; Estevinho, L.M.; Caldeira, I. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chem. 2016, 205, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Boyaci, I.H.; Genis, H.E.; Guven, B.; Tamer, U.; Alper, N. A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1171–1176. [Google Scholar] [CrossRef]
- De Góes, R.E.; Fabris, L.V.M.; Muller, M.; Fabris, J.L. Light-assisted detection of methanol in contaminated spirits. J. Light. Technol. 2016, 34, 4499–4505. [Google Scholar] [CrossRef]
- Song, L.M.; Liu, L.W.; Yang, Y.G.; Xi, J.T.; Guo, Q.H.; Zhu, X.J. Online detection of distilled spirit quality based on laser Raman spectroscopy. J. Inst. Brew. 2017, 123, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.I.; Muhamadali, H.; Xu, Y.; Eccles, R.; Goodall, I.; Goodacre, R. Rapid through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. Analyst 2019, 144, 324–330. [Google Scholar] [CrossRef] [PubMed]
Country or Organization | Maximum Limit of Methanol (g/L of 100% Vol. Alcohol) | Spirit Beverage Applied |
---|---|---|
European Union [5] | 2 | Wine spirit and brandy |
10 | Grape marc spirit | |
10 | Fruits spirits | |
12 | Fruits spirits produced from the following fruits: apricots (Prunus armeniaca L.), apple (Malus domestica Borkh.), plum (Prunus domestica L.), quetsch (Prunus domestica L.), peach (Prunus persica (L.) Batsch), mirabelle (Prunus domestica L. subsp. syriaca (Borkh.) Janch. ex Mansf.), pear (Pyrus communis L.), except for Williams pears (Pyrus communis L. cv ‘Williams’), raspberry (Rubus idaeus L.), blackberry (Rubus sect. Rubus) | |
13.5 | Fruit spirits produced from the following fruits: quince (Cydonia oblonga Mill.), blackcurrant (Ribes nigrum L.), juniper berry (Juniperus communis L. or Juniperus oxicedrus L.), Williams pear (Pyrus communis L. cv ‘Williams’), redcurrant (Ribes rubrum L.), elderberry (Sambucus nigra L.), rosehip (Rosa canina L.), sorb apple (Sorbus domestica L.), rowanberry (Sorbus aucuparia L.), wild service tree (Sorbus torminalis (L.) Crantz) | |
- | Honey spirit | |
United States (Bindler et al., 1998) [39] | 7 | Grape white brandy |
7 | Pear brandy | |
7 | Plum brandy | |
Australia and New Zealand (Pang et al., 2017) [40] | 7 | Other spirits, fruit wine, vegetable wine, and mead |
Fermented Product | g/L of 100 % vol. Alcohol | % | g/L | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | min | max | avg | min | max | min | max | avg | ||
Plum | 18 | 4.5 | 12.7 | Coldea et al., 2011 [42] | ||||||
4 | 0.13 | 0.54 | Tešević et al., 2005 [43] | |||||||
6 | 7.6 | 8.7 | Satora et al., 2010 [44] | |||||||
29 | 2.9 | 11.4 | Winterova et al., 2008 [45] | |||||||
5 | 1.0 | 5.5 | 0.55 | 4.17 | Jung et al., 2010 [46] | |||||
30 | 2.5 | 19.0 | Kostik et al., 2013 [47] | |||||||
12 | 6.7 | 9.4 | Popovic et al., 2019 [48] | |||||||
11 | 0.0 | 1.1 | Balcerek et al., 2013 [49] | |||||||
24 | 0.19 | 2.39 | Croitoru et al., 2013 [50] | |||||||
Apple | 4 | 6.0 | 11.9 | Coldea et al., 2011 [42] | ||||||
13 | 6.8 | 10.1 | Versini et al., 2009 [13] | |||||||
12 | 1.8 | 9.2 | Winterova et al., 2008 [45] | |||||||
3 | 0.25 | 0.78 | Croitoru et al., 2013 [50] | |||||||
10 | 4.6 | 9.9 | Januszek et al., 2020 [51] | |||||||
12 | 4.3 | 11.5 | Hang and Woodams, 2010 [52] | |||||||
Pear | 44 | 0.9 | 10.8 | Winterova et al., 2008 [45] | ||||||
4 | 8.2 | 12.9 | Coldea et al., 2011 [42] | |||||||
6 | 0.2 | 0.3 | Garcia-Llobodanin et al., 2007 [53] | |||||||
9 | 4.3 | 10.4 | Versini et al., 2012 [54] | |||||||
2 | 0.39 | 0.44 | Croitoru et al., 2013 [50] | |||||||
10 | 0.61 | 0.96 | Nikićević, 2005 [55] | |||||||
Melon-juice | 6 | 0.3 | 1.5 | Hernandez et al., 2003, 2005, 2008 [56,57,58] | ||||||
Melon-paste without skin | 6 | 0.6 | 2.9 | Hernandez et al., 2003, 2005, 2008 [56,57,58] | ||||||
Melon-paste | 6 | 1.0 | 4.7 | Hernandez et al., 2003, 2005, 2008 [56,57,58] | ||||||
Sweet cherry | 31 | 4.5 | 10.7 | Winterova et al., 2008 [45] | ||||||
Sour cherry | 21 | 4.4 | 8.8 | Winterova et al., 2008 [45] | ||||||
Apricot | 16 | 6.7 | 12.1 | 0.00 | Winterova et al., 2008 [45] | |||||
Jabuticaba | 1 | - | 0.04 | Asquieri et al., 2009 [59] | ||||||
Red raspberry | 1 | 1.14 | Alonso et al., 2015 [60] | |||||||
1 | 1.14 | Alonso et al., 2011 [61] | ||||||||
1 | 3.50 | Alonso et al., 2015 [60] | ||||||||
Blueberry (pulp) | 1 | 2.61 | Alonso et al., 2016 [62] | |||||||
Black currant | 1 | 1.67 | Alonso et al., 2015 [60] | |||||||
Black and red currant | 5 | 2.7 | 6.0 | Vulić et al., 2012 [63] | ||||||
Orange | 1 | Croitoru et al., 2013 [50] | ||||||||
Cornelian cherry | 5 | 2.4 | 7.7 | Tešević et al., 2009 [64] | ||||||
Passion fruit (pulp) | 1 | 0.05 | Viana et al., 2020 [65] | |||||||
Arbutus unedo fruits | 1 | 3.21 | Alonso et al., 2011 [61] | |||||||
1 | 3.21 | Alonso et al., 2015 [60] | ||||||||
15 | 4.9 | 9.0 | Caldeira et al., 2019 [16] | |||||||
2 | 8.1 | 10.2 | Versini et al., 2011 [66] | |||||||
2.7 | 11.5 | Soufleros et al., 2005 [18] | ||||||||
4 | 8.3 | 10.2 | Botelho et al., 2015 [67] | |||||||
6 | 7.6 | 8.6 | Santo, 2010 [68] |
Spirit Type | Fermented Product | g/L of 100% vol. Alcohol | % | g/L | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Min | Max | Avg | Min | Max | Min | Max | Avg | |||
Wine spirits | Grape juice | 38 | 0.3 | 1.2 | Luis et al., 2011 [37] | ||||||
15 | 0.2 | 1.8 | Belchior et al., 2015 [36] | ||||||||
50 | 0.2 | Garreau, 2008 [69] | |||||||||
Brandy | Grape juice | 45 | 0.0 | 12.1 | Kostik et al., 2013 [47] | ||||||
35 | 0.4 | 12.8 | Kostik et al., 2013 [47] | ||||||||
20 | 0.4 | 2.2 | Kostik et al., 2013 [47] | ||||||||
Grape marc spirit or grape marc | Red grape marc | 14 | 5.6 | 9.6 | Geroyiannaki et al., 2007 [70] | ||||||
28 | 4.54 | Cortés and Fernández, 2011 [71] | |||||||||
Grape marc | 15 | 0.4 | 7.2 | Hang et al., 2008 [72] | |||||||
4 | 25.3 | 39.4 | Da Porto et al., 2003 [73] | ||||||||
8 | 2.2 | 6.3 | Gerogiannaki-Chrisopoulou et al., 2004 [74] | ||||||||
19 | 4.3 | 7.5 | 1.9 | 3.2 | Diéguez et al., 2005 [75] | ||||||
11 | 7.5 | 3.4 | Silva et al., 2000 [76] | ||||||||
25 | 4 | 6.4 | López-Vázquez et al., 2010 [77] | ||||||||
4 | 5.8 | 7.9 | López-Vázquez et al., 2010 [78] | ||||||||
5 | 4.3 | 7.5 | 1.9 | 3.2 | Diéguez et al., 2005 [75] | ||||||
6 | 1.7 | 14.9 | Diéguez et al., 2001 [79] | ||||||||
6 | 5.9 | 9.2 | 3.1 | 5.2 | Orriols et al., 1991 [80] | ||||||
10 | 0.6 | 1.4 | Apostolopoulou et al., 2005 [81] | ||||||||
12.2 | 8.9 | Silva et al., 2000 [76] | |||||||||
48 | 3.4 | 23.7 | Luis et al., 2011 [37] | ||||||||
7 | 2.0 | 8.8 | Rodríguez-Solana et al., 2012 [82] | ||||||||
51 | 0.12 | 0.92 | Da Porto, 2012 [9] | ||||||||
6 | 0.9 | 4.5 | Lukić et al., 2011 [83] | ||||||||
38 | 7.4 | 7.9 | Orriols et al., 2008 [84] | ||||||||
13 | 0.7 | 2.4 | Borsa et al., 2008 [85] | ||||||||
24 | 4.3 | 6.2 | Arrieta-Garay et al., 2014 [86] | ||||||||
4 | 3.3 | 6.9 | Cortés et al., 2010 [87] | ||||||||
3 | 2.9 | 3.4 | Lukić et al., 2011 [88] | ||||||||
White grape marc | 14 | 1.7 | 4.5 | Geroyiannaki et al., 2007 [70] | |||||||
33 | 6.39 | Cortés and Fernández, 2011 [71] | |||||||||
Honey spirit | Mead | 2 | 0.16 | 0.18 | 0.17 | Anjos et al., 2020 [15] | |||||
Mead | 6 | 0.0 | 0.14 | 0.0 | 0.06 | Anjos et al., 2020 [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botelho, G.; Anjos, O.; Estevinho, L.M.; Caldeira, I. Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits. Processes 2020, 8, 1609. https://doi.org/10.3390/pr8121609
Botelho G, Anjos O, Estevinho LM, Caldeira I. Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits. Processes. 2020; 8(12):1609. https://doi.org/10.3390/pr8121609
Chicago/Turabian StyleBotelho, Goreti, Ofélia Anjos, Letícia M. Estevinho, and Ilda Caldeira. 2020. "Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits" Processes 8, no. 12: 1609. https://doi.org/10.3390/pr8121609
APA StyleBotelho, G., Anjos, O., Estevinho, L. M., & Caldeira, I. (2020). Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits. Processes, 8(12), 1609. https://doi.org/10.3390/pr8121609