Functionality of Special Beer Processes and Potential Health Benefits
Abstract
:1. Introduction
2. Nutritional Compounds and Health-Related Prospects of Special Beers
2.1. Nutritional Features
2.2. Proteins
2.3. Lipids
2.4. Carbohydrates
2.5. Energy Value
2.6. Safety Concerns for Beer Consumption
2.7. Raw Material Influence and Brewing Process Impact on Beer Functionality and Its Compounds
3. Health Features of Special Beers
3.1. Positive Action at Cardiovascular Level
3.2. Chemoprevention
3.3. Other Health Benefits of Beers Having Little to 0% ABV
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fox, G. The brewing industry and the opportunities for real-time quality analysis using infrared spectroscopy. Appl. Sci. 2020, 10, 616. [Google Scholar] [CrossRef] [Green Version]
- Meussdoerffer, F.G. A Comprehensive History of Beer Brewing; Wiley-VCH: Weinheim, Germany, 2009; pp. 1–42. [Google Scholar]
- Vieira Humia, B.; Silva Santos, K.; Mendonça Barbosa, A.; Sawata, M.; da Costa Mendonça, M.; Ferreira Padilha, F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Flores, M.; Serna-Saldivar, S.O. Technological and engineering trends for production of gluten-free beers. Food Eng. Rev. 2016, 8, 468–482. [Google Scholar] [CrossRef]
- Blanco, C.; Nimubona, D.; Fernández-Fernández, E.; Álvarez, I. Sensory characterization of commercial lager beers and their correlations with Iso-alfa-acid Concentrations. J. Food Nutr. Res. 2014, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muniz, F.J.; Macho-Gonzalez, A.; Garcimartín, A.; Santos-López, J.A.; Benedí, J.; Bastida, S.; González-Muñoz, M.J. The nutritional components of beer and its relationship with neurodegeneration and alzheimer’s disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo, N.; Nova, E.; Díaz-Prieto, L.E.; Marcos, A. Effects of moderate beer consumption on health. Nutr. Hosp. 2018, 35, 41–44. [Google Scholar] [CrossRef]
- Oliveira, N.J.R.; de Oliveira, T.S.; Ghedini, P.C.; Vaz, B.G.; de Souza Gil, E. Antioxidant and vasodilatory activity of commercial beers. J. Funct. Foods 2017, 34, 130–138. [Google Scholar] [CrossRef]
- De Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; et al. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef] [Green Version]
- Franco, L.; Galán, C.; Bravo, R.; Bejarano, I.; Peñas-Lledo, E.; Rodríguez, A.B.; Barriga, C.; Cubero, J. Effect of non-alcohol beer on anxiety: Relationship of 5-HIAA. Neurochem. J. 2015, 9, 149–152. [Google Scholar] [CrossRef]
- Oak, M.H.; Auger, C.; Belcastro, E.; Park, S.H.; Lee, H.H.; Schini-Kerth, V.B. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic. Biol. Med. 2018, 122, 161–170. [Google Scholar] [CrossRef]
- Spaggiari, G.; Cignarelli, A.; Sansone, A.; Baldi, M.; Santi, D. To beer or not to beer: A meta-analysis of the effects of beer consumption on cardiovascular health. PLoS ONE 2020, 15, e0233619. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic substances in beer: Structural diversity, reactive potential and relevance for brewing process and beer quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar] [CrossRef] [Green Version]
- Koren, D.; Kun, S.; Hegyesné Vecseri, B.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol. 2019, 56, 3801–3809. [Google Scholar] [CrossRef] [Green Version]
- Pilarski, D.W.; Gerogiorgis, D.I. Progress and modelling of cold contact fermentation for alcohol-free beer production: A review. J. Food Eng. 2020, 273. [Google Scholar] [CrossRef]
- Muller, C.; Neves, L.E.; Gomes, L.; Guimarães, M.; Ghesti, G. Processes for alcohol-free beer production: A review. Food Sci. Technol. 2020, 40, 273–281. [Google Scholar] [CrossRef] [Green Version]
- The European Parliament and the Council of the European Union EC. The European Parliament and the Council of the European Union Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2011, 20, 168–213. [Google Scholar]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida, E.; Silva, J.B. A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union EC. The European Parliament and the Council of the European Union EC (2006a) Regulation (EC) No 1924/2006 of the European Parliament and of the Council on nutrition and health claims made on foods L 404/9-24. Off. J. Eur. Union 2006, 18, 244–259. [Google Scholar]
- Liguori, L.; De Francesco, G.; Russo, P.; Peretti, G.; Albanese, D.; Di Matteo, M. Production and characterization of alcohol-free beer by membrane process. Food Bioprod. Process. 2015, 94, 158–168. [Google Scholar] [CrossRef]
- Salanță, L.C.; Uifălean, A.; Iuga, C.A.; Tofană, M.; Cropotova, J.; Pop, O.L.; Pop, C.R.; Rotar, M.A.; Bautista-Ávila, M.; Velázquez González, C. Valuable food molecules with potential benefits for human health. In The Health Benefits of Foods-Current Knowledge and Further Development; Salanță, L.C., Ed.; InTech: Rijeka, Croatia, 2020; pp. 1–45. [Google Scholar]
- Ignat, V.M.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borșa, A.; Pasqualone, A. Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef] [PubMed]
- Horincar, G.; Enachi, E.; Bolea, C.; Râpeanu, G.; Aprodu, I. Value-added lager beer enriched with eggplant (Solanum melongena L.) peel extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, I.M.C.; Matos Neto, J.D.; Figueiredo, R.W.; Carvalho, J.D.G.; de Figueiredo, E.A.T.; Santos de Menezes, N.V.; Gaban, S.V.F. Physicochemical characterization, antioxidant activity, and sensory analysis of beers brewed with cashew peduncle (anacardium occidentale) and orange peel (citrus sinensis). Food Sci. Technol. 2020, 40, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Đorđević, S.; Popović, D.; Despotović, S.; Veljović, M.; Atanacković, M.; Cvejić, J.; Nedović, V.; Lesko&šek-Č, I. Extracts of medicinal plants as funcional beer additives. Chem. Ind. Chem. Eng. Q. 2016, 22, 301–308. [Google Scholar] [CrossRef]
- Rošul, M.; Mandić, A.; Mišan, A.; Đerić, N.; Pejin, J. Review of trends in formulation of functional beer. Food Feed Res. 2019, 46, 23–35. [Google Scholar] [CrossRef]
- Habschied, K.; Živković, A.; Krstanović, V.; Mastanjević, K. Functional beer—A review on possibilities. Beverages 2020, 6, 51. [Google Scholar] [CrossRef]
- Sanguansri, L.; Ann, A.M. Microencapsulation in functional food product development. Funct. Food Prod. Dev. 2010, 1–23. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Ryan, L. Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Res. Int. 2011, 44, 3135–3148. [Google Scholar] [CrossRef]
- Callejo, M.J.; Tesfaye, W.; González, M.C.; Morata, A. Craft Beers: Current Situation and Future Trends. In New Advances on Fermentation Processes; Martínez-Espinosa, R.M., Ed.; IntechOpen: London, UK, 2019; pp. 1–18. [Google Scholar]
- Jackowski, M.; Trusek, A. Non-alcoholic beer production-an overview. Pol. J. Chem. Technol. 2018, 20, 32–38. [Google Scholar] [CrossRef] [Green Version]
- De Oliveria, D.M.; Falconi, D. The evolution of craft beer industry in Brazil. J. Econ. Bus. 2018, 1, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Punčochářová, L.; Pořízka, J.; Diviš, P.; Štursa, V. Study of the influence of brewing water on selected analytes in beer. Potravin. Slovak J. Food Sci. 2019, 13, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Okolo, B.N.; Amadi, O.C.; Moneke, A.N.; Nwagu, T.N.; Nnamchi, C.I. Influence of malted barley and exogenous enzymes on the glucose/maltose balance of worts with sorghum or barley as an adjunct. J. Inst. Brew. 2020, 126, 46–52. [Google Scholar] [CrossRef]
- Buratti, S.; Benedetti, S. Alcoholic Fermentation Using Electronic Nose and Electronic Tongue. In Electronic Noses and Tongues in Food Science. In Electronic Noses and Tongues in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 291–299. [Google Scholar]
- Cela, N.; Condelli, N.; Caruso, M.C.; Perretti, G.; Di Cairano, M.; Tolve, R.; Galgano, F. Gluten-free brewing: Issues and perspectives. Fermentation 2020, 6, 53. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of saccharomyces cerevisiae var. boulardii in co-fermentations with s. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Soldevila-Domenech, N.; Rodríguez-Morató, J.; Martínez-Huélamo, M.; Lamuela-Raventós, R.M.; de la Torre, R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 2020, 25, 2582. [Google Scholar] [CrossRef] [PubMed]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Haifeng, Z. Non-alcoholic and craft beer production and challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Sun, G.; Yang, B.; Zhao, M. Assessment of endogenous antioxidative compounds and antioxidant activities of lager beers. J. Sci. Food Agric. 2013, 93, 910–917. [Google Scholar] [CrossRef]
- Padro, T.; Muñoz-García, N.; Vilahur, G.; Chagas, P.; Deyà, A.; Antonijoan, R.M.; Badimon, L. Moderate beer intake and cardiovascular health in overweight individuals. Nutrients 2018, 10, 1237. [Google Scholar] [CrossRef] [Green Version]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef]
- Vieira Humia, B.; Silva Santos, K.; Schneider, J.K.; Leal, I.L.; de Abreu, B.G.; Batista, T.; Machado, B.A.S.; Druzian, J.I.; Krause, L.C.; da Costa Mendonça, M.; et al. Physicochemical and sensory profile of beauregard sweet potato beer. Food Chem. 2020, 312, 126087. [Google Scholar] [CrossRef]
- Parkin, E.; Shellhammer, T. Toward understanding the bitterness of dry-hopped beer. J. Am. Soc. Brew. Chem. 2017, 75, 363–368. [Google Scholar] [CrossRef]
- Salanță, L.C.; Tofană, M.; Socaci, S.; Pop, A.; Odagiu, A.N.M.; Cuceu, A. Evaluation of volatile compounds from hüller bitterer variety grown in Romania by chemometric methods. J. Agroaliment. Process. Technol. 2015, 21, 231–236. [Google Scholar]
- Mudura, E.; Coldea, T. Hop-derived prenylflavonoids and their importance in brewing technology: A Review. Bull. Uasvm Food Sci. Technol. 2015, 72, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Michiu, D.; Socaci, S.A.; Jimborean, M.A.; Mudura, E.; Fărcaş, A.C.; Biriş-Dorhoi, S.E.; Tofană, M. Determination of volatile markers from magnum hops in beer by in-tube extraction—Gas chromatography—Mass spectrometry. Anal. Lett. 2018, 51, 2967–2980. [Google Scholar] [CrossRef]
- Salanță, L.C.; Socaci, S.A.; Tofană, M.; Mudura, E.; Pop, C.R.; Nagy, M.; Odagiu, A. Characterization of volatile components in hop pellets using in-tube extraction GC-MS analysis. Rom. Biotechnol. Lett. 2018, 23, 13541–13550. [Google Scholar]
- Hrnčič, M.K.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Salanţă, L.C.; Tofană, M.; Socaci, S.; Mudura, E.; Fărcaş, A.; Pop, C.; Pop, A.; Odagiu, A. Characterisation of hop varieties grown in romania based on their contents of bitter acids by HPLC in combination with chemometrics approach. Czech J. Food Sci. 2015, 33, 148–155. [Google Scholar] [CrossRef] [Green Version]
- De Francesco, G.; Marconi, O.; Sileoni, V.; Freeman, G.; Lee, E.G.; Floridi, S.; Perretti, G. Influence of the dealcoholisation by osmotic distillation on the sensory properties of different beer types. J. Food Sci. Technol. 2020. Available online: https://link.springer.com/article/10.1007%2Fs13197-020-04662-5 (accessed on 9 September 2020). [CrossRef]
- Lawton, M.R.; Alcaine, S.D. Leveraging endogenous barley enzymes to turn lactose-containing dairy by-products into fermentable adjuncts for saccharomyces cerevisiae-based ethanol fermentations. J. Dairy Sci. 2019, 102, 2044–2050. [Google Scholar] [CrossRef]
- Bamforth, C.W. Beer styles and recipe development: What should I brew? In The Craft Brewing Handbook: A Practical Guide to Running a Successful Craft Brewery; Smart, C., Ed.; Woodhead Publishing: Duxford, UK, 2020; pp. 47–63. [Google Scholar]
- Facioni, M.S.; Raspini, B.; Pivari, F.; Dogliotti, E.; Cena, H. Nutritional management of lactose intolerance: The importance of diet and food labelling. J. Transl. Med. 2020, 1–9. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-rygielska, J.; Kucharska, A.Z. Characteristics of cornelian cherry sour non-alcoholic beers brewed with the special yeast saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef]
- Ricci, A.; Cirlini, M.; Guido, A.; Liberatore, C.M.; Ganino, T.; Lazzi, C.; Chiancone, B. From byproduct to resource: Fermented apple pomace as beer flavoring. Foods 2019, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Gasiński, A.; Kawa-Rygielska, J.; Szumny, A.; Gąsior, J.; Głowacki, A. Assessment of volatiles and polyphenol content, physicochemical parameters and antioxidant activity in beers with dotted hawthorn (crataegus punctata). Foods 2020, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Gasiński, A.; Kawa-Rygielska, J.; Szumny, A.; Czubaszek, A.; Gąsior, J.; Pietrzak, W. Volatile compounds content, physicochemical parameters, and antioxidant activity of beers with addition of mango fruit (mangifera indica). Molecules 2020, 25, 3033. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef]
- Carvalho, F.R.; Moors, P.; Wagemans, J.; Spence, C. The influence of color on the consumer’s experience of beer. Front. Psychol. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Reinoso-Carvalho, F.; Dakduk, S.; Wagemans, J.; Spence, C. Dark vs. light drinks: The influence of visual appearance on the consumer’s experience of beer. Food Qual. Prefer. 2019, 74, 21–29. [Google Scholar] [CrossRef]
- Stachová, I.; Lhotská, I.; Solich, P.; Šatínský, D. Determination of green, blue and yellow artificial food colorants and their abuse in herb-coloured green easter beers on tap. Food Addit. Contam. Part A 2016, 33, 1139–1146. [Google Scholar] [CrossRef]
- Jahn, A.; Kim, J.; Bashir, K.M.I.; Cho, M. Antioxidant content of aronia infused beer. Fermentation 2020, 6, 71. [Google Scholar] [CrossRef]
- Romero-Medina, A.; Estarrón-Espinosa, M.; Verde-Calvo, J.R.; Lelièvre-Desmas, M.; Escalona-Buendía, H.B. Renewing traditions: A sensory and chemical characterisation of mexican pigmented corn beers. Foods 2020, 9, 886. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging-a critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Krebs, G.; Müller, M.; Becker, T.; Gastl, M. Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Res. Int. 2019, 116, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Devolli, A.; Dara, F.; Stafasani, M.; Shahinasi, E.; Kodra, M. The influence of protein content on beer quality and colloidal stability. Int. J. Innov. Approaches Agric. Res. 2018, 2, 391–407. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zemser, M.; Vargas-Albores, F.; Ochoa, J.L.; Paredes-Lopez, O.; Scheler, C.; Salnikow, J.; Martin-Belloso, O.; Trakhtenberg, S. Proteins and amino acids in beers, their contents and relationships with other analytical data. Food Chem. 1999, 67, 71–78. [Google Scholar] [CrossRef]
- Silva, A.P.; Jager, G.; Voss, H.P.; van Zyl, H.; Hogg, T.; Pintado, M.; de Graaf, C. What’s in a name? The effect of congruent and incongruent product names on liking and emotions when consuming beer or non-alcoholic beer in a bar. Food Qual. Prefer. 2017, 55, 58–66. [Google Scholar] [CrossRef]
- Sohrabvandi, S.; Mortazavian, A.M.; Rezaei, K. Health-related aspects of beer: A review. Int. J. Food Prop. 2012, 15, 350–373. [Google Scholar] [CrossRef]
- Decloedt, A.I.; van Landschoot, A.; Watson, H.; Vanderputten, D.; Vanhaecke, L. Plant-based beverages as good sources of free and glycosidic plant sterols. Nutrients 2018, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. A review on the source of lipids and their interactions during beer fermentation that affect beer quality. Fermentation 2018, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Bravi, E.; Marconi, O.; Sileoni, V.; Perretti, G. Determination of free fatty acids in beer. Food Chem. 2017, 215, 341–346. [Google Scholar] [CrossRef]
- Bogdan, P.; Kordialik-Bogacka, E.; Czyżowska, A.; Oracz, J.; Żyżelewicz, D. The profiles of low molecular nitrogen compounds and fatty acids in wort and beer obtained with the addition of quinoa (chenopodium quinoa willd.), amaranth (Amaranthus cruentus L.) or maltose syrup. Foods 2020, 9, 1626. [Google Scholar] [CrossRef]
- Lordan, R.; O’Keeffe, E.; Tsoupras, A.; Zabetakis, I. Total, neutral, and polar lipids of brewing ingredients, by-products and beer: Evaluation of antithrombotic activities. Foods 2019, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Lordan, R.; O’Keeffe, E.; Dowling, D.; Mullally, M.; Heffernan, H.; Tsoupras, A.; Zabetakis, I. The in vitro antithrombotic properties of ale, lager, and stout beers. Food Biosci. 2019, 28, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Bamforth, C.W. Nutritional aspects of beer-a review. Nutr. Res. 2002, 22, 227–237. [Google Scholar] [CrossRef]
- Díaz-Rubio, M.E.; Saura-Calixto, F. Dietary fiber complex in beer. J. Am. Soc. Brew. Chem. 2009, 67, 38–43. [Google Scholar] [CrossRef]
- Bustos, L.; Soto, E.; Parra, F.; Echiburu-Chau, C.; Parra, C. Brewing of a porter craft beer enriched with the plant parastrephia lucida: A promising source of antioxidant compounds. J. Am. Soc. Brew. Chem. 2019, 77, 261–266. [Google Scholar] [CrossRef]
- Johnson, S.R.; Soprano, S.E.; Wickham, L.M.; Fitzgerald, N.; Edwards, J.C. Nuclear magnetic resonance and headspace solid-phase microextraction gas chromatography as complementary methods for the analysis of beer samples. Beverages 2017, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Osorio-Paz, I.; Brunauer, R.; Alavez, S. Beer and its non-alcoholic compounds in health and disease. Crit. Rev. Food Sci. Nutr. 2019, 1–14. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). In Summary of Dietary Reference Values, version 4; EFSA: Parma, Italy, 2017; pp. 1–15. [Google Scholar]
- Olšovská, J.; Štěrba, K.; Pavlovič, M.; Čejka, P. Determination of the energy value of beer. J. Am. Soc. Brew. Chem. 2015, 73, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Peralonso, M.J. European Food Safety Authority (EFSA) Scientific Opinion on Dietary Reference Values for energy. EFSA J. 2013, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Moreira, S.; Vives, A.E.S.; Zucchi, O.L.A.D.; de Jesus, E.F.O.; Nascimento Filho, V.F.; Brienza, S.M.B. Analysis of beers from Brazil with synchrotron radiation total reflection X-ray fluorescence. J. Radioanal. Nucl. Chem. 2006, 270, 167–171. [Google Scholar] [CrossRef]
- Fernández-Solà, J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 2015, 12, 576–587. [Google Scholar] [CrossRef]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, L.C.; do Rio, R.F.; Lollo, P.C.B.; Ferreira, I.M.P.L.V.O. Moderate alcoholic beer consumption: The effects on the lipid profile and insulin sensitivity of adult men. J. Food Sci. 2017, 82, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Molina, M.; Muñoz-Garach, A.; Tinahones, F.J.; Moreno-Indias, I. A new perspective on the health benefits of moderate beer consumption: Involvement of the gut microbiota. Metabolites 2019, 9, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deželak, M.; Zarnkow, M.; Becker, T.; Košir, I.J. Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. J. Inst. Brew. 2014, 120, 360–370. [Google Scholar] [CrossRef]
- Gorinstein, S.; Caspi, A.; Libman, I.; Leontowicz, H.; Leontowicz, M.; Tashma, Z.; Katrich, E.; Jastrzebski, Z.; Trakhtenberg, S. Bioactivity of beer and its influence on human metabolism. Int. J. Food Sci. Nutr. 2007, 58, 94–107. [Google Scholar] [CrossRef]
- Gorjanović, S.Ž.; Novaković, M.M.; Potkonjak, N.I.; Ida, L.Č.; Sužnievič, D.Ž. Application of a novel antioxidative assay in beer analysis and brewing process monitoring. J. Agric. Food Chem. 2010, 58, 744–751. [Google Scholar] [CrossRef]
- Gasior, J.; Kawa-Rygielska, J.; Kucharska, A.Z. Carbohydrates profile, polyphenols content and antioxidative properties of beer worts produced with different dark malts varieties or roasted barley grains. Molecules 2020, 25, 3882. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Pérez-Jiménez, J. What contribution is beer to the intake of antioxidants in the diet? In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2008; pp. 441–448. [Google Scholar]
- Schwarz, K.J.; Boitz, L.I.; Methner, F.J. Release of phenolic acids and amino acids during mashing dependent on temperature, ph, time, and raw materials. J. Am. Soc. Brew. Chem. 2012, 70, 290–295. [Google Scholar] [CrossRef]
- Zhao, H. Effects of Processing Stages on the Profile of Phenolic Compounds in Beer; Elsevier: Amsterdam, The Netherlands, 2015; pp. 533–539. [Google Scholar]
- Pascoe, H.M.; Ames, J.M.; Chandra, S. Critical stages of the brewing process for changes in antioxidant activity and levels of phenolic compounds in ale. J. Am. Soc. Brew. Chem. 2004, 61, 203–209. [Google Scholar] [CrossRef]
- Fumi, M.D.; Galli, R.; Lambri, M.; Donadini, G.; De Faveri, D.M. Effect of full-scale brewing process on polyphenols in Italian all-malt and maize adjunct lager beers. J. Food Compos. Anal. 2011, 24, 568–573. [Google Scholar] [CrossRef]
- Ambrož, M.; Lněničková, K.; Matoušková, P.; Skálová, L.; Boušová, I. Antiproliferative effects of hop-derived prenylflavonoids and their influence on the efficacy of oxaliplatine, 5-fluorouracil and irinotecan in human colorectalC cells. Nutrients 2019, 11, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leskošek-Čukalović, I.; Despotović, S.; Nedović, V.; Lakić, N.; Nikšić, M. New type of beer-Beer with improved functionality and defined pharmacodynamic properties. Food Technol. Biotechnol. 2010, 48, 384–391. [Google Scholar]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries-The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Cumaoglu, A.; Bekci, H.; Ozturk, E.; Yerer, M.B.; Baldemir, A.; Bishayee, A. Goji berry fruit extracts suppress proliferation of triple-negative breast cancer cells by inhibiting EGFR-Mediated ERK/MAPK and PI3K/Akt signaling pathways. Nat. Prod. Commun. 2018, 13, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Lim, J.; Nguyen, T.T.H.; Mok, I.K.; Piao, M.; Kim, D. Composition and biochemical properties of ale beer enriched with lignans from schisandra chinensis baillon (omija) fruits. Food Sci. Biotechnol. 2020, 29, 609–617. [Google Scholar] [CrossRef]
- Gumienna, M.; Górna, B. Gluten hypersensitivities and their impact on the production of gluten-free beer. Eur. Food Res. Technol. 2020, 246, 2147–2160. [Google Scholar] [CrossRef]
- Holasova, M.; Fiedlerova, V.; Smrcinova, H.; Orsak, M.; Lachman, J.; Vavreinova, S. Buckwheat-the source of antioxidant activity in functional foods. Food Res. Int. 2002, 35, 207–211. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Zou, L.; Fu, C.; Li, P.; Zhao, G. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from chenopodium quinoa seeds. Int. J. Biol. Macromol. 2017, 99, 622–629. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M.F.; Liu, R.; Tsao, R. Characterisation of Fatty Acid, Carotenoid, Tocopherol/Tocotrienol Compositions and Antioxidant Activities in Seeds of Three Chenopodium Quinoa Willd. Genotypes; Elsevier: Amsterdam, The Netherlands, 2015; pp. 502–508. [Google Scholar]
- Eggum, B.O.; Kreft, I.; Javornik, B. Chemical composition and protein quality of buckwheat (fagopyrum esculentum moench). Qual. Plant. Plant. Foods Hum. Nutr. 1980, 30, 175–179. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the nutritional composition of quinoa (chenopodium quinoa willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Dlamini, B.C.; Kruger, J. 125th anniversary review: The science of the tropical cereals sorghum, maize and rice in relation to lager beer brewing. J. Inst. Brew. 2013, 119, 1–14. [Google Scholar] [CrossRef]
- Kerpes, R.; Fischer, S.; Becker, T. The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends Food Sci. Technol. 2017, 67, 129–138. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Zhang, K.; Dong, Z.; Li, Y.; An, X.; Chen, J.; Chen, Q.; Jiao, Z.; Liu, X.; et al. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Appl. Genet. 2013, 127, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Guerdrum, L.J.; Bamforth, C.W. Prolamin levels through brewing and the impact of prolyl endoproteinase. J. Am. Soc. Brew. Chem. 2012, 70, 35–38. [Google Scholar] [CrossRef]
- Yeo, H.Q.; Liu, S.Q. An overview of selected specialty beers: Developments, challenges and prospects. Int. J. Food Sci. Technol. 2014, 49, 1607–1618. [Google Scholar] [CrossRef]
- Vinson, J.A.; Mandarano, M.; Hirst, M.; Trevithick, J.R.; Bose, P. Phenol antioxidant quantity and quality in foods: Beers and the effect of two types of beer on an animal model of atherosclerosis. J. Agric. Food Chem. 2003, 51, 5528–5533. [Google Scholar] [CrossRef] [PubMed]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Sterczyńska, M.; Stachnik, M.; Poreda, A.; Pużyńska, K.; Piepiórka-Stepuk, J.; Fiutak, G.; Jakubowski, M. Ionic composition of beer worts produced with selected unmalted grains. LWT 2020, 110348. [Google Scholar] [CrossRef]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef]
- Anderson, H.E.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal. Chim. Acta 2019, 1085, 1–20. [Google Scholar] [CrossRef]
- Gerhauser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 2005, 41, 1941–1954. [Google Scholar] [CrossRef] [PubMed]
- Habschied, K.; Loncarić, A.; Mastanjević, K. Screening of polyphenols and antioxidative activity in industrial beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Styburski, D.; Janda, K.; Baranowska-Bosiacka, I.; Łukomska, A.; Dec, K.; Goschorska, M.; Michalkiewicz, B.; Ziętek, P.; Gutowska, I. Beer as a potential source of macroelements in a diet: The analysis of calcium, chlorine, potassium, and phosphorus content in a popular low-alcoholic drink. Eur. Food Res. Technol. 2018, 244, 1853–1860. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Alkhaldy, A.A.; Alamri, R.S.; Magadmi, R.K.; Elshini, N.Y.; Hussein, R.A.E.H.; Alghalayini, K.W. Dietary adherence of saudi males to the saudi dietary guidelines and its relation to cardiovascular diseases: A preliminary cross-sectional study. JCDD 2019, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassus, S.; Mahnel, R.; Scholz, T.; Wegert, W.; Westrup, D.; Kirchmaier, C.M. Effect of dealcoholized beer (bitburger drive) consumption on hemostasis in humans. Alcohol Clin. Exp. Res. 2004, 28, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Magraner, E.; Condines, X.; Valderas-Martínez, P.; Roth, I.; Arranz, S.; Casas, R.; Navarro, M.; Hervas, A.; Sisó, A.; et al. Effects of alcohol and polyphenols from beer on atherosclerotic biomarkers in high cardiovascular risk men: A randomized feeding trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 36–45. [Google Scholar] [CrossRef]
- Alvarez, J.R.M.; Bellés, V.V.; López-Jaén, A.B.; Marín, A.V.; Codoñer-Franch, P. Effects of alcohol-free beer on lipid profile and parameters of oxidative stress and inflammation in elderly women. Nutrition 2009, 25, 182–187. [Google Scholar] [CrossRef]
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem. 2017, 45, 1–14. [Google Scholar] [CrossRef]
- Vanhoecke, B.; Derycke, L.; Van Marck, V.; Depypere, H.; De Keukeleire, D.; Bracke, M. Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer 2005, 117, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Modak, S.; Kushner, B.H.; Kramer, K.; Vickers, A.; Cheung, I.Y.; Cheung, N.K.V. Anti-GD2 antibody 3F8 and barley-derived (1 → 3),(1 → 4)-β-D-glucan: A phase i study in patients with chemoresistant neuroblastoma. Oncoimmunology 2013, 2, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Quiroz, F.; Nirmalkar, K.; Villalobos-Flores, L.E.; Murugesan, S.; Cruz-Narváez, Y.; Rico-Arzate, E.; Hoyo-Vadillo, C.; Chavez-Carbajal, A.; Pizano-Zárate, M.L.; García-Mena, J. Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol 2020, 85, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Merino, P.; Santos-López, J.A.; Mateos, C.J.; Meseguer, I.; Garcimartín, A.; Bastida, S.; Sánchez-Muniz, F.J.; Benedí, J.; González-Muñoz, M.J. Can nonalcoholic beer, silicon and hops reduce the brain damage and behavioral changes induced by aluminum nitrate in young male Wistar rats? Food Chem. Toxicol. 2018, 118, 784–794. [Google Scholar] [CrossRef]
- Castro-Sepulveda, M.; Johannsen, N.; Astudillo, S.; Jorquera, C.; Álvarez, C.; Zbinden-Foncea, H.; Ramírez-Campillo, R. Effects of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis in athletes. Nutrients 2016, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Mahli, A.; Seitz, T.; Freese, K.; Frank, J.; Weiskirchen, R.; Abdel-Tawab, M.; Behnam, D.; Hellerbrand, C. Therapeutic application of micellar solubilized liver disease. Cells 2019, 8, 359. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Zhao, H. Functionality of Special Beer Processes and Potential Health Benefits. Processes 2020, 8, 1613. https://doi.org/10.3390/pr8121613
Salanță LC, Coldea TE, Ignat MV, Pop CR, Tofană M, Mudura E, Borșa A, Pasqualone A, Anjos O, Zhao H. Functionality of Special Beer Processes and Potential Health Benefits. Processes. 2020; 8(12):1613. https://doi.org/10.3390/pr8121613
Chicago/Turabian StyleSalanță, Liana Claudia, Teodora Emilia Coldea, Maria Valentina Ignat, Carmen Rodica Pop, Maria Tofană, Elena Mudura, Andrei Borșa, Antonella Pasqualone, Ofélia Anjos, and Haifeng Zhao. 2020. "Functionality of Special Beer Processes and Potential Health Benefits" Processes 8, no. 12: 1613. https://doi.org/10.3390/pr8121613
APA StyleSalanță, L. C., Coldea, T. E., Ignat, M. V., Pop, C. R., Tofană, M., Mudura, E., Borșa, A., Pasqualone, A., Anjos, O., & Zhao, H. (2020). Functionality of Special Beer Processes and Potential Health Benefits. Processes, 8(12), 1613. https://doi.org/10.3390/pr8121613