H2S Removal with Sorbent Obtained from Sewage Sludges
Abstract
:1. Introduction
2. Material Methods
2.1. Char Production Test Bench
2.2. H2S Adsorption Capacity Test Bench
2.3. Adsorption Capacity Calculation
- Q = total inlet flow rate (m3/s)
- w = mass charge of the column (g)
- MW = molecular weight of Hydrogen Sulphide (34 g/mol)
- VM = molar volume (22.4 L/mol)
- c(t) = outlet H2S concentration (ppm(v))
- c0 = inlet H2S concentration (ppm(v))
- ts = time corresponding to breakthrough concentration (s)
2.4. Compositional Analysis—Chemical Characterization
- Carbon content was reduced when the sample was activated for 2 h with carbon dioxide. This result confirmed doubts on 1 h of activation procedure efficacy and explains worse performance of these samples. The elemental composition of the 1 h activated sample was very similar to the as-received sample.
- The specific content of other elements increased increasing the operating temperature for 2 h.
- Iron content increased more than six times for activated samples. This increase may play a role in hydrogen sulphide removal, as well as the increase in the presence of Calcium. This latter aspect is related to the alkalinity of the sample.
3. Results
3.1. Influence of Activation Temperature and Dwell Time on Sulphur Adsorption Capacity
3.2. Influence of Bed Height on Sulphur Adsorption Capacity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
c(t) | outlet H2S concentration (ppm(v)) |
c0 | inlet H2S concentration (ppm(v)) |
Cbt | breakthrough concentration time |
EDS | Energy Dispersive X-ray Spectrometry |
H2S | Hydrogen Sulphide |
S0 | means sample as received, while ST400_1h is referred to 400 °C operating temperature, and the reported time is referred to the duration of activation process with the activating agent (CO2). |
MFC | Mass Flow Controller |
MW | the molecular weight of Hydrogen Sulphide (34 g/mol) |
Q | total inlet flow rate (m3/s) |
S0 | sample as received |
SOFC | Solid Oxide Fuel Cell |
ST xx (400)_t (1h)_(CO2) | the sample treated in xx °C (Temperature), for 1 h (time) with carbon dioxide (activating agent) |
ts | a time corresponding to breakthrough concentration (s) |
VM | molar volume (22.4 L/mol) |
w | a mass charge of the column (g) |
We | electrical watt |
x/M | adsorption capacity (mg/g) |
References
- Abatzoglou, N.; Boivin, S. A review of biogas purification processes. Biofuels Bioprod. Biorefin. 2009, 6, 42–71. [Google Scholar] [CrossRef]
- Papurello, D.; Boschetti, A.; Silvestri, S.; Khomenko, I.; Biasioli, F. Real-Time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation. Renew. Energy 2018, 125. [Google Scholar] [CrossRef]
- Rasi, S.; Veijanen, A.; Rintala, J. Trace compounds of biogas from different biogas production plants. Energy 2007, 32, 1375–1380. [Google Scholar] [CrossRef]
- Rasi, S.; Seppälä, M.; Rintala, J. Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays. Energy 2013. [Google Scholar] [CrossRef]
- de Arespacochaga, N.; Valderrama, C.; Mesa, C.; Bouchy, L.; Cortina, J.L. Biogas deep clean-Up based on adsorption technologies for Solid Oxide Fuel Cell applications. Chem. Eng. J. 2014, 255, 593–603. [Google Scholar] [CrossRef]
- Kuo, J.; Dow, J. Biogas production from anaerobic digestion of food waste and relevant air quality implications. J. Air Waste Manag. Assoc. 2017, 67, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Kupecki, J.; Papurello, D.; Lanzini, A.; Naumovich, Y.; Motylinski, K.; Blesznowski, M.; Santarelli, M. Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC). Appl. Energy 2018, 230, 1573–1584. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valoriz. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Santarelli, M.; Briesemeister, L.; Gandiglio, M.; Herrmann, S.; Kuczynski, P.; Kupecki, J.; Vega, L.F. Carbon recovery and re-Utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): Analysis through a proof-Of-Concept. J. CO2 Util. 2017, 18. [Google Scholar] [CrossRef]
- Bona, D.; Papurello, D.; Flaim, G.; Cerasino, L.; Biasioli, F.; Silvestri, S. Management of Digestate and Exhausts from Solid Oxide Fuel Cells Produced in the Dry Anaerobic Digestion Pilot Plant: Microalgae Cultivation Approach. Waste Biomass Valoriz. 2020, 1–16. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Almås, Å.R.; Singh, B.R.; Brattebø, H. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy-A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Papurello, D.; Lanzini, A.; Ferrero, D.; Smeacetto, F.; Leone, P.; Biasioli, F.; Santarelli, M. Covapors influence on activated carbon filter performance removal from a biogenous fuel suitable for SOFC application using a rapid and online tool. In Proceedings of the 5th European Fuel Cell Piero Lunghi Conference, Rome, Italy, 11–13 December 2013. [Google Scholar]
- Papurello, D.; Tomasi, L.; Silvestri, S.; Santarelli, M. Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons. Fuel Process. Technol. 2016, 152, 93–101. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Desulfurization of Digester Gas on Catalytic Carbonaceous Adsorbents: Complexity of Interactions between the Surface and Components of the Gaseous Mixture. Ind. Eng. Chem. Res. 2006, 45, 3658–3665. [Google Scholar] [CrossRef]
- Wood, G.O. A review of the effects of covapors on adsorption rate coefficients of organic vapors adsorbed onto activated carbon from flowing gases. Carbon 2002, 40, 685–694. [Google Scholar] [CrossRef]
- Wood, G.O.; Snyder, J.L. Estimating service lives of organic vapor cartridges III: multiple vapors at all humidities. J. Occup. Environ. Hyg. 2007, 4, 363–374. [Google Scholar] [CrossRef]
- Papurello, D.; Gandiglio, M.; Kafashan, J.; Lanzini, A. Biogas Purification: A Comparison of Adsorption Wood-Derived Char Using Isotherm Equations. Processes 2019, 7, 774. [Google Scholar] [CrossRef] [Green Version]
- Peluso, A.; Gargiulo, N.; Aprea, P.; Pepe, F.; Caputo, D. Nanoporous Materials as H2S Adsorbents for Biogas Purification: A Review. Sep. Purif. Rev. 2019, 48, 78–89. [Google Scholar] [CrossRef]
- Rahman, A.; Habib, S.; Rahman, M.; Sajib, M.S.J.; Yousuf, A. A novel multi-Phase treatment scheme for odorous rubber effluent. Environ. Technol. (U.K.) 2019, 0, 1–7. [Google Scholar] [CrossRef]
- Surra, E.; Costa Nogueira, M.; Bernardo, M.; Lapa, N.; Esteves, I.; Fonseca, I. New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Manag. 2019, 94, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Papurello, D.; Lanzini, A.; Tognana, L.; Silvestri, S.; Santarelli, M. Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 2015, 85, 145–158. [Google Scholar] [CrossRef]
- Papurello, D.; Silvestri, S.; Tomasi, L.; Belcari, I.; Biasioli, F.; Santarelli, M. Biowaste for SOFCs. Energy Procedia 2016, 101, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Papurello, D. Biogas Cleaning: Activated Carbon Regeneration for H2S Removal. Clean Technol. 2018, 1, 40–57. [Google Scholar] [CrossRef] [Green Version]
- Papurello, D.; Santarelli, M.; Fiorilli, S. Physical Activation of Waste-Derived Materials for Biogas Cleaning. Energies 2018, 11, 2338. [Google Scholar] [CrossRef] [Green Version]
- Gabelman, A. Adsorption Basics: Part 1. Am. Inst. Chem. Eng. (AIChE) 2017, 113, 48–53. [Google Scholar]
- Yuan, W.; Bandosz, T.J. Removal of hydrogen sulfide from biogas on sludge-Derived adsorbents. Fuel 2007, 86, 2736–2746. [Google Scholar] [CrossRef]
- Marchelli, F.; Cordioli, E.; Patuzzi, F.; Sisani, E.; Barelli, L.; Baratieri, M.; Arato, E.; Bosio, B. Biomass and Bioenergy Experimental study on H2S adsorption on gasification char under different operative conditions. Biomass Bioenergy 2019, 106–116. [Google Scholar] [CrossRef]
- Papurello, D.; Tomasi, L.; Silvestri, S.; Belcari, I.; Santarelli, M.; Smeacetto, F.; Biasioli, F. Biogas trace compound removal with ashes using proton transfer reaction time-of-flight mass spectrometry as innovative detection tool. Fuel Process. Technol. 2016, 145, 62–75. [Google Scholar] [CrossRef]
- Finocchio, E.; Montanari, T.; Garuti, G.; Pistarino, C.; Federici, F.; Cugino, M.; Busca, G. Purification of biogases from siloxanes by adsorption: On the regenerability of activated carbon sorbents. Energy Fuels 2009. [Google Scholar] [CrossRef]
- Lombardi, L.; Costa, G.; Spagnuolo, R. Accelerated carbonation of wood combustion ash for CO2 removal from gaseous streams and storage in solid form. Environ. Sci. Pollut. Res. 2018, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, Y.; Bian, S.; Ko, J.H.; Li, S.; Xu, Q. H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization. Chemosphere 2018, 195, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A. Disposal and Recycling Routes for Sewage Sludge Part 1-Sludge Use Acceptance Report; European Communities: Luxembourg, 2001; ISBN 92-894-1798-6. [Google Scholar]
- Bonfiglioli, L.; Bianchini, A.; Pellegrini, M.; Saccani, C. Sewage Sludge: Characteristics and Recovery Options; Università di Bologna: Bologna, Italy, 2017. [Google Scholar]
Carbon Dioxide (NmL/min) | 73 |
Methane (NmL/min) | 100 |
Methane + 1000 ppm(v) H2S (NmL/min) | 10 |
Total (NmL/min) | 183 |
H2S Concentration (ppm(v)) | 55 |
%C | %O | Si (mg/g) | Fe (mg/g) | Al (mg/g) | Ca (mg/g) | Mg (mg/g) | S (mg/g) | K (mg/g) | |
---|---|---|---|---|---|---|---|---|---|
S0 | 51 | 42 | 13 | 14 | 10 | 11 | 4 | 7 | 2 |
ST400_1h_CO2 | 51 | 40 | 25 | 23 | 16 | 19 | 7 | 4 | 3 |
ST400_2h_CO2 | 34 | 41 | 58 | 82 | 34 | 39 | 14 | 10 | 5 |
ST600_2h_CO2 | 36 | 37 | 62 | 88 | 37 | 52 | 16 | 9 | 7 |
Sample Label | SBET (m2/g) | St-plot ext (m2/g) | Vpores (d<1.308 nm) (cm3/g) | Vpores (d<44.9 nm) (cm3/g) | Stot.pores (m2/g) |
---|---|---|---|---|---|
S0 | 0.323 | 0.377 | 0.00002 | 0.00122 | 0.111 |
ST400_1h_CO2 | 2.655 | 3.270 | 0.00038 | 0.01386 | 2.064 |
ST400_2h_CO2 | 3.289 | 3.822 | 0.00024 | 0.01913 | 3.485 |
ST6002hN2 | 4.825 | 4.901 | 0.00094 | 0.04263 | 3.52 |
Bed Height (cm) | Mass (g) | x/M (mg/g) | Cbt (ppmv) | |
---|---|---|---|---|
s0 | 5 | 20 | 0.0007 | 1 |
s0_higher length | 8 | 50 | 0.0066 | 1 |
ST400_1h_CO2 | 5 | 20 | 0.015 | 1 |
ST400_2h_CO2_a | 2.5 | 10 | 1.3 | 3 |
ST400_2h_CO2_b | 5 | 20 | 2.2 | 3 |
ST400_2h_CO2_c | 8 | 40 | 5.9 | 3 |
Test Number | bt (s) | x/M (mg/g) ± σ |
---|---|---|
1 | 179,570 | 2.265 +/− 0.091 |
2 | 174,820 | 2.205 +/− 0.102 |
3 | 176,770 | 2.230 +/− 0.11 |
mean value | - | 2.234 +/− 0.101 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papurello, D.; Lanzini, A.; Bressan, M.; Santarelli, M. H2S Removal with Sorbent Obtained from Sewage Sludges. Processes 2020, 8, 130. https://doi.org/10.3390/pr8020130
Papurello D, Lanzini A, Bressan M, Santarelli M. H2S Removal with Sorbent Obtained from Sewage Sludges. Processes. 2020; 8(2):130. https://doi.org/10.3390/pr8020130
Chicago/Turabian StylePapurello, Davide, Andrea Lanzini, Maurizio Bressan, and Massimo Santarelli. 2020. "H2S Removal with Sorbent Obtained from Sewage Sludges" Processes 8, no. 2: 130. https://doi.org/10.3390/pr8020130
APA StylePapurello, D., Lanzini, A., Bressan, M., & Santarelli, M. (2020). H2S Removal with Sorbent Obtained from Sewage Sludges. Processes, 8(2), 130. https://doi.org/10.3390/pr8020130