Okra-Thioglycolic Acid Conjugate—Synthesis, Characterization, and Evaluation as a Mucoadhesive Polymer
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis of Thiolated Okra Gum [TOG]
2.3. Characterization of TOG
2.3.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.2. Differential Scanning Calorimetry (DSC Studies)
2.3.3. Surface Morphology
2.3.4. X-Ray Diffraction (XRD) Analysis
2.3.5. Thiol Content Determination
2.4. Formulation of Gastro Retentive Mucoadhesion Tablets
2.5. Evaluation Tests
2.5.1. In-Process Quality Control Tests
2.5.2. Swelling Study
2.5.3. Ex Vivo Mucoadhesion Time
2.5.4. Measurement of Bioadhesion
2.5.5. Cytotoxicity Study
2.5.6. In Vitro drug release studies
2.6. In-Vivo Studies
2.6.1. In Vivo Mucoadhesion Study
2.6.2. Bioavailability Studies
2.6.3. In Vitro In Vivo Correlation (IVIVC)
2.7. Reproducibility of Thiolated Batches
3. Results and Discussion
3.1. Synthesis of TOG
3.2. Characterization of TOG
3.3. Thiol Content Determination
3.4. Formulation and In-Vitro Evaluations
3.5. Evaluation of Ex-Vivo Mucoadhesion Time and Mucoadhesion Strength
3.6. Cytotoxicity Studies
3.7. In Vitro Drug Release Studies
3.8. In Vivo Mucoadhesion Studies
3.9. Bioavailability Studies
3.10. IVIVC
3.11. Reproducibility of Thiolated Batches
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schnurch, A.B.; Hornof, M.; Zoidl, T. Thiolated polymers–thiomers: Synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm. 2003, 260, 229–237. [Google Scholar] [CrossRef]
- Clausen, A.E.; Kast, C.E.; Schnurch, A.B. The role of glutathione in the permeation enhancing effect of thiolated polymers. Pharm. Res. 2002, 19, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Ghori, M.U.; Alba, K.; Smith, A.M.; Conway, B.R.; Kontogiorgos, V. Okra extracts in pharmaceutical and food applications. Food Hydrocoll. 2014, 42, 342–347. [Google Scholar] [CrossRef]
- Kontogiorgos, V.; Margelou, I.; Georgiadis, N.; Ritzoulis, C. Rheological characterization of okra pectins. Food Hydrocoll. 2012, 29, 356–362. [Google Scholar] [CrossRef]
- Lorenzo, C.A.; Fernandez, B.B.; Puga, A.M.; Concheiro, A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1148–1171. [Google Scholar] [CrossRef]
- Ogaji, I.; Nnoli, O. Film coating potential of okra gum using paracetamol tablets as a model drug. Asian J. Pharm. 2010, 4, 130–134. [Google Scholar] [CrossRef]
- Sinha, P.; Ubaidulla, U.; Nayak, A.K. Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release. Int. J. Biol. Macromol. 2015, 72, 1069–1075. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, D.; Brar, V. Bioadhesive okra polymer based buccal patches as platform for controlled drug delivery. Int. J. Biol. Macromol. 2014, 70, 408–419. [Google Scholar] [CrossRef]
- Raghavendra Naveen, N.; Gopinath, C.; Subba Rao, D. Isolation and assessment of natural mucoadhesive agent isolated from Abelmoschus esculents. J. Pharm. Res. 2017, 11, 438–443. [Google Scholar]
- Sharma, R.; Ahuja, M. Thiolated pectin: Synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydr. Polym. 2011, 85, 658–663. [Google Scholar] [CrossRef]
- Iqbal, J.; Shahnaz, G.; Dunnhaupt, S.; Muller, C.; Hintzen, F.; Schnurch, A.B. Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials 2012, 33, 1528–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnurch, A.B. Thiomers: A new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 2005, 57, 1569–1582. [Google Scholar]
- Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials 2015, 52, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra Naveen, N.; Gopinath, C.; Subba Rao, D. A spotlight on thiolated natural polymers and their relevance in mucoadhesive drug delivery system. Fut. J. Pharm. Sci. 2018, 4, 47–52. [Google Scholar]
- Ijaz, M.; Matuszczak, B.; Rahmat, D.; Mahmood, A.; Bonengel, S.; Hussain, S.; Huck, C.W.; Schnurch, A.B. Synthesis and characterization of thiolated-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr. Polym. 2015, 132, 187–195. [Google Scholar] [CrossRef]
- Schnurch, A.B.; Krauland, A.H.; Leitner, V.M.; Palmberger, T. Thiomers: Potential excipients for non-invasive peptide delivery systems. Eur. J. Pharm. Biopharm. 2004, 58, 253–263. [Google Scholar] [CrossRef]
- Borchard, G.; Lueben, H.L.; De Boer, A.G.; Verhoef, J.C.; Lehr, C.M.; Junginger, H.R. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control Release 1996, 39, 131–138. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Ping, Q.; Xiao, Y.; Huang, X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J. Control. Release 2009, 137, 217–223. [Google Scholar] [CrossRef]
- Anitha, A.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydr. Polym. 2011, 83, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Sinha, V.R. Thiomer: A potential carrier for therapeutic delivery. React. Funct. Polym. 2013, 73, 1156–1166. [Google Scholar] [CrossRef]
- Naveen, N.R.; Gopinath, C.; Rao, D.S. Design expert supported mathematical optimization of repaglinide gastro retentive floating tablets: In vitro and in vivo evaluation. Fut. J. Pharm. Sci. 2017, 2, 140–147. [Google Scholar]
- Wei, H.; Mengmeng, W.; Shiqing, H.; Lifang, Y. Matrix tablets for sustained release of repaglinide: Preparation, pharmacokinetics and hypoglycemic activity in beagle dogs. Int. J. Pharm. 2015, 478, 297–307. [Google Scholar]
- Megha, S.; Seema, K.; Agnimitra, D. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. Saudi Pharm. J. 2015, 23, 675–682. [Google Scholar]
- Dicharry, R.M.; Ye, P.; Saha, G.; Waxman, E.; Asandei, A.D.; Parnas, R.S. Wheat gluten-thiolated poly(vinyl alcohol) blends with improved mechanical properties. Biomacromolecules 2006, 7, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.K.; Mandapalli, P.K.; Manthri, R.; Reddy, V.P. Development and in vivo evaluation of gastro retentive delivery systems for cefuroxime axetil. Saudi Pharm. J. 2013, 21, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Bahulkara, S.S.; Munota, N.M.; Surwaseba, S.S. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties. Carbohydr. Polym. 2015, 130, 183–190. [Google Scholar] [CrossRef]
- Mahajan, H.S.; Tyagi, V.K.; Patil, R.R.; Dusunge, S.B. Thiolated xyloglucan: Synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. Carbohydr. Polym. 2013, 19, 618–625. [Google Scholar] [CrossRef]
- Zaharuddin, N.D.; Noordin, M.I.; Kadivar, A. The Use of Hibiscus esculentus (Okra) Gum in Sustaining the Release of Propranolol Hydrochloride in a Solid Oral Dosage. BioMed Res. Int. 2014, 2014, 735891. [Google Scholar]
- Bernkop-Schnürch, A.; Schwarz, V.; Steininger, S. Polymers with thiol groups: A new generation of mucoadhesive polymers? Pharm. Res. 1999, 16, 876–881. [Google Scholar] [CrossRef]
- Habeeb, A. A sensitive method for localization of disulfide containing peptides in column effluents. Anal. Biochem. 1973, 56, 56,60–65. [Google Scholar]
- Vaithiyalingam, S.R.; Sayeed, V.A. Critical factors in manufacturing multi-layer tablets assessing material attributes in-process controls, manufacturing process and product performance. Int. J. Pharm. 2010, 398, 9–13. [Google Scholar]
- Kaur, H.; Yadav, S.; Ahuja, M.; Dilbaghi, N. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer. Carbohydr. Polym. 2012, 90, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Han, R.Y.; Fang, Y.J.; Sung, K.C.; Hu, O.Y.P. Mucoadhesive buccal disks for novel nalbuphine prodrug controlled delivery: Effect of formulation variables on drug release and mucoadhesive performance. Int. J. Pharm. 1999, 171, 201–209. [Google Scholar] [CrossRef]
- Patel, V.M.; Prajapati, B.G.; Patel, M.M. Formulation, evaluation, and comparison of bilayered and multilayered mucoadhesive buccal devices of propranolol hydrochloride. AAPS PharmSciTech. 2017, 8, E1–E8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafedjiiski, K.; Krauland, A.H.; Hoffer, M.H.; Schnürch, A.B. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 2005, 26, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Sarti, F.; Staaf, A.; Sakloetsakun, D.; Bernkop-Schnürch, A. Thiolated hydroxy ethylcellulose: Synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 2010, 76, 421–427. [Google Scholar] [CrossRef]
- Abou Auda, H.S.; Najjar, T.A.; Al Khamis, K.I.; Al Hadiya, B.M.; Ghilzai, N.M.; Al Fawzan, N.F. Liquid chromatographic assay of nifedipine in human plasma and its application to pharmacokinetic studies. J. Pharm. Biomed. Anal. 2000, 22, 241–249. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- Ghosh, A.; Choudhury, G.K. In vitro-In vivo Correlation (IVIVC): A Review. J. Pharm. Res. 2009, 2, 1255–1260. [Google Scholar]
- Rahmat, D.; Sakloetsakun, D.; Shahnaz, G.; Perera, G.; Kaindl, R.; Schnurch, A.B. Design and synthesis of a novel cationic thiolated polymer. Int. J. Pharm. 2011, 411, 10–17. [Google Scholar] [CrossRef]
- Raval, J.A.; Patel, M.M. Formulation and characterization of gastroretentive discs containing famotidine. Braz. Arch. Biol. Technol. 2011, 54, 293–300. [Google Scholar] [CrossRef]
- Ramanjireddy, T.; Dhachinamoorthi, D.; Chandrasekhar, K.B. Pharmacokinetic study of repaglinide floating drug delivery system in rabbits by RPHPLC method. J. Chin. Pharm. Sci. 2012, 21, 162–168. [Google Scholar] [CrossRef]
RGM-1 | RGM-2 | RGM-3 | RGM-4 | RGM-5 | RGM-6 | |
---|---|---|---|---|---|---|
OG | 37.5 | 60 | -- | -- | -- | -- |
SA | -- | -- | 37.5 | 60 | -- | -- |
TOG | -- | -- | -- | -- | 37.5 | 60 |
Ex-Vivo Residence Time | Mucoadhesion Strength | ||
---|---|---|---|
Glass Slide Method | Modified Basket Method | (N) | |
RGM-1 | 360 min | 328 min | 0.1481 |
RGM-2 | 410 min | 375 min | 0.1655 |
RGM-3 | 455 min | 439 min | 0.2381 |
RGM-4 | 525 min | 514 min | 0.2756 |
RGM-5 | >12 h | >12 h | 0.3895 |
RGM-6 | >12 h | >12 h | 0.4018 |
Formulation | f1 | f2 |
---|---|---|
RGM-1 | 8.30 | 70.37 |
RGM-2 | 8.89 | 68.57 |
RGM-3 | 10.63 | 64.28 |
RGM-4 | 8.02 | 69.12 |
RGM-5 | 9.79 | 64.05 |
RGM-6 | 7.08 | 69.89 |
Zero-Order Release Model Parameters | Higuchi Release Model Parameters | Korsmeyer-Peppas Release Model Parameters | ||||||
---|---|---|---|---|---|---|---|---|
r2 | K0 | r2 | KH | r2 | n | KKP | ||
Paddle method | RGM-1P | 0.9983 | 1.6733 | 0.9879 | 41.67 | 0.9979 | 1.1633 | 1.001 |
RGM-2P | 0.9884 | 0.4838 | 0.9758 | 39.72 | 0.9916 | 1.0200 | 0.9916 | |
RGM-3P | 0.9963 | 10.421 | 0.9883 | 25.13 | 0.9944 | 1.2331 | 0.7546 | |
RGM-4P | 0.9775 | 8.7054 | 0.9942 | 26.332 | 0.9937 | 1.0682 | 0.8594 | |
RGM-5P | 0.9901 | 10.144 | 0.9883 | 21.748 | 0.9965 | 1.0945 | 0.7548 | |
RGM-6P | 0.9898 | 9.2165 | 0.9947 | 21.943 | 0.9931 | 0.9852 | 0.8109 | |
Modified basket method | RGM-1B | 0.9987 | 3.2923 | 0.9868 | 47.357 | 0.9935 | 1.0212 | 1.1750 |
RGM-2B | 0.9878 | 3.9692 | 0.9740 | 44.380 | 0.9865 | 0.8404 | 1.1775 | |
RGM-3B | 0.9921 | 5.2986 | 0.9903 | 30.225 | 0.9921 | 1.0861 | 0.8933 | |
RGM-4B | 0.9759 | 4.8364 | 0.9892 | 29.931 | 0.9870 | 0.9300 | 0.9820 | |
RGM-5B | 0.9879 | 5.4727 | 0.9879 | 26.226 | 0.9951 | 0.9314 | 0.8844 | |
RGM-6B | 0.9905 | 5.0463 | 0.9899 | 26.317 | 0.9918 | 0.8510 | 0.9118 |
Pharmacokinetic Parameter | REPIDETM | RGM-6 | Repaglinide (IV) |
---|---|---|---|
Cmax (μg mL−1 h) | 0.207 ± 0.012 | 0.211 ± 0.012 | 0.313 ± 0.020 |
t max (h) | 1 ± 0.000 | 7.000 ± 0.000 | 1 ± 0.000 |
AUC0-t (μg mL−1 h) | 0.403 ± 0.016 | 2.664 ± 0.150 | 0.395 ± 0.251 |
AUMC0-t (μg mL−1 h) | 0.631 ± 0.027 | 24.892 ± 1.327 | 0.49 ± 0.321 |
MRTt (h) | 1.564 ± 0.007 | 9.346 ± 0.159 | 1.25 ± 0.268 |
t1/2 (h) | 0.78 ± 0.044 | 2.657 ± 0.358 | 0.41 ± 0.084 |
AUC0-i (μg mL−1 h) | 0.423 ± 0.019 | 2.720 ± 0.153 | 0.396 ± 0.0.324 |
AUMC0-i (μg mL−1 h) | 0.733 ± 0.043 | 26.336 ± 1.640 | 0.496 ± 0.415 |
CL/F (L/h) | 2.362 ± 0.212 | 0.737 ± 0.041 | 2.52 ± 0.159 |
Vd/F (L) | 2.66 ± 0.176 | 2.825 ± 0.412 | 1.48 ± 0.098 |
Ke (1/h) | 0.888 | 0.261 | 1.690 |
Ka (1/h) | 1.94 | 0.88 | ---- |
Ex-Vivo Residence Time | Mucoadhesion Strength (N) | Drug Release at the End of 16 h (%) | In Vivo Mucoadhesion Study | ||
---|---|---|---|---|---|
Glass Slide Method | Modified Basket Method | ||||
RGM-5 | >12 h | >12 h | 0.3895 | 98.96 | Swelling was observed and tablets were found to be in adhesion with mucus up to 6 h |
RGM-5R | >12 h | >12 h | 0.3725 | 99.24 | |
RGM-5S | >12 h | >12 h | 0.3814 | 98.71 | |
RGM-6 | >12 h | >12 h | 0.4018 | 90.18 | Swelling was observed and tablets were found to be in adhesion with mucus up to 6 h |
RGM-6R | >12 h | >12 h | 0.4121 | 89.64 | |
RGM-6S | >12 h | >12 h | 0.3954 | 91.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveen, N.R.; Gopinath, C.; Kurakula, M. Okra-Thioglycolic Acid Conjugate—Synthesis, Characterization, and Evaluation as a Mucoadhesive Polymer. Processes 2020, 8, 316. https://doi.org/10.3390/pr8030316
Naveen NR, Gopinath C, Kurakula M. Okra-Thioglycolic Acid Conjugate—Synthesis, Characterization, and Evaluation as a Mucoadhesive Polymer. Processes. 2020; 8(3):316. https://doi.org/10.3390/pr8030316
Chicago/Turabian StyleNaveen, N. Raghavendra, Chakka Gopinath, and Mallesh Kurakula. 2020. "Okra-Thioglycolic Acid Conjugate—Synthesis, Characterization, and Evaluation as a Mucoadhesive Polymer" Processes 8, no. 3: 316. https://doi.org/10.3390/pr8030316
APA StyleNaveen, N. R., Gopinath, C., & Kurakula, M. (2020). Okra-Thioglycolic Acid Conjugate—Synthesis, Characterization, and Evaluation as a Mucoadhesive Polymer. Processes, 8(3), 316. https://doi.org/10.3390/pr8030316