Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study
Abstract
:1. Introduction
2. Pore Network Models
3. Model Description
3.1. Network Generation
3.2. Invasion Algorithm
3.3. Cluster Labeling
3.4. Model Assumptions
- Quasi-static drainage invasion in the capillary dominated regime.
- PN initially saturated with water.
- No phase transition occurs.
- Oxygen is injected at the top side and water is removed from the bottom side.
- There is no mixing or diffusion between the two phases.
- Viscous, gravity and liquid film flow are neglected.
- Piston type throat invasion computed based on the Young–Laplace equation.
- No further invasion occurs after breakthrough of the gas phase.
4. Pore Network Simulation of Microfluidic Experiments
5. Monte Carlo Simulations
5.1. Impact of Pore Size Distribution in Monomodal PNs
5.2. Bimodal Pore Size Distributions
5.3. Pore Network Simulations of Real Porous Structures
6. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Symbols
L | Distance between nodes |
Lt | Length of throat |
Pc | Capillary pressure |
Pl | Liquid pressure |
rp | Pore radius |
rt | Throat radius |
Mean radius | |
v | Velocity of invading menisci |
Vp | Volume of pore |
Vt | Volume of throat |
z | PTL space coordinate |
η | Viscosity of liquid phase |
θ | Contact angle |
σ | Surface tension |
σ0 | Standard deviation |
Abbreviations | |
Ca | Capillary number |
PN | Pore network |
PNM | Pore network model |
PSD | Pore size distribution |
PTL | Porous transport layer |
Ti | Titanium |
References
- Das, L.M. Hydrogen-fueled internal combustion engines. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 177–217. [Google Scholar]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Liu, J. Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes. Energies 2019, 12, 3031. [Google Scholar] [CrossRef] [Green Version]
- Elgowainy, A.; Gaines, L.; Wang, M. Fuel-cycle analysis of early market applications of fuel cells: Forklift propulsion systems and distributed power generation. Int. J. Hydrog. Energy 2009, 34, 3557–3570. [Google Scholar] [CrossRef]
- Felder, F.A.; Hajos, A. Using Restructured Electricity Markets in the Hydrogen Transition: The PJM Case. Proc. IEEE 2006, 94, 1864–1879. [Google Scholar] [CrossRef]
- Shaw, S.; Peteves, E. Exploiting synergies in European wind and hydrogen sectors: A cost-benefit assessment. Int. J. Hydrog. Energy 2008, 33, 3249–3263. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Zoulias, E.I.; Glockner, R.; Lymberopoulos, N.; Tsoutsos, T.; Vosseler, I.; Gavalda, O.; Mydske, H.J.; Taylor, P. Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications. Renew. Sustain. Energy Rev. 2006, 10, 432–462. [Google Scholar] [CrossRef]
- Degiorgis, L.; Santarelli, M.; Calì, M. Hydrogen from renewable energy: A pilot plant for thermal production and mobility. J. Power Sources 2007, 171, 237–246. [Google Scholar] [CrossRef]
- Kosonen, A.; Koponen, J.; Huoman, K.; Ahola, J.; Ruuskanen, V.; Ahonen, T.; Graf, T. Optimization strategies of PEM electrolyser as part of solar PV system. In Proceedings of the IEEE 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar]
- Dedigama, I.; Angeli, P.; Ayers, K.; Robinson, J.B.; Shearing, P.R.; Tsaoulidis, D.; Brett, D.J.L. In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers—Flow visualisation and electrochemical impedance spectroscopy. Int. J. Hydrog. Energy 2014, 39, 4468–4482. [Google Scholar] [CrossRef]
- Nieminen, J.; Dincer, I.; Naterer, G. Comparative performance analysis of PEM and solid oxide steam electrolysers. Int. J. Hydrog. Energy 2010, 35, 10842–10850. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Millet, P.; Volobuev, S.A.; Fateev, V.N. Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrog. Energy 2009, 34, 4968–4973. [Google Scholar] [CrossRef]
- Ito, H.; Maeda, T.; Nakano, A.; Hwang, C.M.; Ishida, M.; Kato, A.; Yoshida, T. Experimental study on porous current collectors of PEM electrolyzers. Int. J. Hydrog. Energy 2012, 37, 7418–7428. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Kang, Z.; Yang, G.; Li, Y.; Retterer, S.T.; Cullen, D.A.; Toops, T.J.; Bender, G.; Pivovar, B.S.; Green, J.B., Jr.; et al. In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells. J. Mater. Chem. A 2017, 5, 18469–18475. [Google Scholar] [CrossRef]
- Lee, C.H.; Banerjee, R.; Arbabi, F.; Hinebaugh, J.; Bazylak, A. Porous Transport Layer Related Mass Transport Losses in Polymer Electrolyte Membrane Electrolysis: A Review. In Proceedings of the ASME 14th International Conference on Nanochannels, Microchannels, and Minichannels, Washington, DC, USA, 10–14 July 2016. [Google Scholar] [CrossRef]
- Ito, H.; Maeda, T.; Nakano, A.; Kato, A.; Yoshida, T. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim. Acta 2013, 100, 242–248. [Google Scholar] [CrossRef]
- Lee, C.; Hinebaugh, J.; Banerjee, R.; Chevalier, S.; Abouatallah, R.; Wang, R.; Bazylak, A. Influence of limiting throat and flow regime on oxygen bubble saturation of polymer electrolyte membrane electrolyzer porous transport layers. Int. J. Hydrog. Energy 2017, 42, 2724–2735. [Google Scholar] [CrossRef]
- Arbabi, F.; Kalantarian, A.; Abouatallah, R.; Wang, R.; Wallace, J.S.; Bazylak, A. Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers. J. Power Sour. 2014, 258, 142–149. [Google Scholar] [CrossRef]
- Nie, J.; Chen, Y. Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell. Int. J. Hydrog. Energy 2010, 35, 3183–3197. [Google Scholar] [CrossRef]
- Ito, H.; Maeda, T.; Nakano, A.; Hasegawa, Y.; Yokoi, N.; Hwang, C.M.; Ishida, M.; Kato, A.; Yoshida, T. Effect of flow regime of circulating water on a proton exchange membrane electrolyzer. Int. J. Hydrog. Energy 2010, 35, 9550–9560. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Giddey, S.; Munnings, C. Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production. WIRE Energy Environ. 2018, 7, e286. [Google Scholar] [CrossRef]
- Babic, U.; Suermann, M.; Büchi, F.N.; Gubler, L.; Schmidt, T.J. Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development. J. Electrochem. Soc. 2017, 164, F387–F399. [Google Scholar] [CrossRef] [Green Version]
- Yigit, T.; Selamet, O.F. Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system. Int. J. Hydrog. Energy 2016, 41, 13901–13914. [Google Scholar] [CrossRef]
- Kang, Z.; Mo, J.; Yang, G.; Retterer, S.T.; Cullen, D.A.; Toops, T.J.; Green, J.B., Jr.; Mench, M.M.; Zhang, F.-Y. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy Environ. Sci. 2017, 10, 166–175. [Google Scholar] [CrossRef]
- Sadeghi Lafmejani, S.; Olesen, A.C.; Kaer, S.K. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels. ECS Trans. 2016, 75, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Selamet, O.F.; Pasaogullari, U.; Spernjak, D.; Hussey, D.S.; Jacobson, D.L.; Mat, M. In Situ Two-Phase Flow Investigation of Proton Exchange Membrane (PEM) Electrolyzer by Simultaneous Optical and Neutron Imaging. ECS Trans. 2011, 41, 349–362. [Google Scholar]
- Ojong, E.T.; Kwan, J.T.H.; Nouri-Khorasani, A.; Bonakdarpour, A.; Wilkinson, D.P.; Smolinka, T. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer. Int. J. Hydrog. Energy 2017, 42, 25831–25847. [Google Scholar] [CrossRef]
- Abdol Rahim, A.H.; Tijani, A.S.; Kamarudin, S.K.; Hanapi, S. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport. J. Power Sour. 2016, 309, 56–65. [Google Scholar] [CrossRef]
- Aubras, F.; Deseure, J.; Kadjo, J.-J.A.; Dedigama, I.; Majasan, J.; Grondin-Perez, B.; Chabriat, J.-P.; Brett, D.J.L. Two-dimensional model of low-pressure PEM electrolyser: Two-phase flow regime, electrochemical modelling and experimental validation. Int. J. Hydrog. Energy 2017, 42, 26203–26216. [Google Scholar] [CrossRef]
- Olesen, A.C.; Rømer, C.; Kær, S.K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. Int. J. Hydrog. Energy 2016, 41, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Lee, C.; Bazylak, A. Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers. J. Power Sour. 2019, 437, 226910. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, G.; Chen, J. Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production. Int. J. Hydrog. Energy 2010, 35, 10851–10858. [Google Scholar] [CrossRef]
- Hwang, C.M.; Ishida, M.; Ito, H.; Maeda, T.; Nakano, A.; Hasegawa, Y.; Yokoi, N.; Kato, A.; Yoshida, T. Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells. Int. J. Hydrog. Energy 2011, 36, 1740–1753. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Mo, J.; Kang, Z.; Yang, G.; Barnhill, W.; Zhang, F.-Y. Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy. Int. J. Hydrog. Energy 2017, 42, 4478–4489. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Zhao, B.; Abouatallah, R.; Wang, R.; Bazylak, A. Compressible-Gas Invasion into Liquid-Saturated Porous Media: Application to Polymer-Electrolyte-Membrane Electrolyzers. Phys. Rev. Appl. 2019, 11, 054029. [Google Scholar] [CrossRef]
- Mo, J.; Dehoff, R.R.; Peter, W.H.; Toops, T.J.; Green, J.B.; Zhang, F.-Y. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production. Int. J. Hydrog. Energy 2016, 41, 3128–3135. [Google Scholar] [CrossRef] [Green Version]
- Lettenmeier, P.; Kolb, S.; Sata, N.; Fallisch, A.; Zielke, L.; Thiele, S.; Gago, A.S.; Friedrich, K.A. Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers. Energy Environ. Sci. 2017, 10, 2521–2533. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Mo, J.; Yang, G.; Li, Y.; Talley, D.A.; Retterer, S.T.; Cullen, D.A.; Toops, T.J.; Brady, M.P.; Bender, G.; et al. Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells. Appl. Energy 2017, 206, 983–990. [Google Scholar] [CrossRef]
- Schuler, T.; Schmidt, T.J.; Büchi, F.N. Polymer Electrolyte Water Electrolysis: Correlating Performance and Porous Transport Layer Structure: Part II. Electrochemical Performance Analysis. J. Electrochem. Soc. 2019, 166, F555–F565. [Google Scholar] [CrossRef]
- Prat, M.; Agaësse, T. Thin Porous Media. In Handbook of Porous Media, 3rd ed.; Vafai, K., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 89–112. [Google Scholar]
- Raeini, A.Q.; Yang, J.; Bondino, I.; Bultreys, T.; Blunt, M.J.; Bijeljic, B. Validating the Generalized Pore Network Model Using Micro-CT Images of Two-Phase Flow. Transp. Porous. Med. 2019, 130, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Tranter, T.G.; Gostick, J.T.; Burns, A.D.; Gale, W.F. Pore Network Modeling of Compressed Fuel Cell Components with OpenPNM. Fuel Cells 2016, 16, 504–515. [Google Scholar] [CrossRef]
- Metzger, T. A personal view on pore network models in drying technology. Dry. Technol. 2019, 37, 497–512. [Google Scholar] [CrossRef]
- Vorhauer, N.; Altaf, H.; Tsotsas, E.; Vidakovic-Koch, T. Pore Network Simulation of Gas-Liquid Distribution in Porous Transport Layers. Processes 2019, 7, 558. [Google Scholar] [CrossRef] [Green Version]
- Joekar-Niasar, V.; Hassanizadeh, S.M. Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1895–1976. [Google Scholar] [CrossRef]
- Sinha, P.K.; Wang, C.-Y. Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell. Electrochim. Acta 2007, 52, 7936–7945. [Google Scholar] [CrossRef]
- Sinha, P.K.; Wang, C.-Y. Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell. Chem. Eng. Sci. 2008, 63, 1081–1091. [Google Scholar] [CrossRef]
- Lee, K.-J.; Nam, J.H.; Kim, C.-J. Pore-network analysis of two-phase water transport in gas diffusion layers of polymer electrolyte membrane fuel cells. Electrochim. Acta 2009, 54, 1166–1176. [Google Scholar] [CrossRef]
- Bultreys, T.; Singh, K.; Raeini, A.Q.; Ruspini, L.C.; Øren, P.-E.; Berg, S.; Rücker, M.; Bijeljic, B.; Blunt, M.J. Verifying pore network models of imbibition in rocks using time-resolved synchrotron imaging. EarthArXiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Vorhauer, N.; Tran, Q.T.; Metzger, T.; Tsotsas, E.; Prat, M. Experimental Investigation of Drying in a Model Porous Medium: Influence of Thermal Gradients. Dry. Technol. 2013, 31, 920–929. [Google Scholar] [CrossRef]
- Metzger, T.; Irawan, A.; Tsotsas, E. Influence of pore structure on drying kinetics: A pore network study. AIChE J. 2007, 53, 3029–3041. [Google Scholar] [CrossRef]
- Al-Futaisi, A.; Patzek, T.W. Extension of Hoshen–Kopelman algorithm to non-lattice environments. Phys. A Stat. Mech. Appl. 2003, 321, 665–678. [Google Scholar] [CrossRef]
- Hoshen, J. On the application of the enhanced Hoshen–Kopelman algorithm for image analysis. Pattern Recognit. Lett. 1998, 19, 575–584. [Google Scholar] [CrossRef]
- Xu, B.; Yortsos, Y.C.; Salin, D. Invasion percolation with viscous forces. Phys. Rev. E 1998, 57, 739–751. [Google Scholar] [CrossRef]
- Lenormand, R. Liquids in porous media. J. Fluid Mech. 1990, 2, SA79–SA88. [Google Scholar] [CrossRef]
- Metzger, T.; Tsotsas, E.; Prat, M. Pore-Network Models: A Powerful Tool to Study Drying at the Pore Level and Understand the Influence of Structure on Drying Kinetics. In Modern Drying Technology: Tools at Different Scales; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley: Weinheim, Germany, 2007; pp. 57–102. [Google Scholar]
- Lenormand, R.; Touboul, E.; Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 1988, 189, 165–187. [Google Scholar] [CrossRef]
- Prat, M.; Bouleux, F. Drying of capillary porous media with a stabilized front in two dimensions. Phys. Rev. E 1999, 60, 5647–5656. [Google Scholar] [CrossRef]
- Vorhauer, N.; Tsotsas, E.; Prat, M. Temperature gradient induced double stabilization of the evaporation front within a drying porous medium. Phys. Rev. Fluids 2018, 3, 217. [Google Scholar] [CrossRef] [Green Version]
Reference No. | Type of Material | Technique Used to Study | Estimated Optimum Pore Size | Estimated Optimum Porosity | Operated Current Density |
---|---|---|---|---|---|
[14] | Ti-sintered | Experimental | 12–13 µm | 30–50% | 0–1.0 A/cm2 |
[15] | Ti (felt + sintered) | Experimental | 10 µm | <50% | 0–2.0 A/cm2 |
[26] | Thin/well-tunable Ti | Experimental | 400 µm | 70% | 0–2.0 A/cm2 |
[29] | Ti | Semi-empirical model | 5–11 µm | 60% | 0–5.0 A/cm2 |
Parameter | Value |
---|---|
Network size (columns and rows) | 80 × 30 |
Temperature | 80 °C |
Contact Angle | 60° |
Surface Tension of water | 0.0627 N/m |
Avg. pore diameter | 23 µm |
Avg. throat diameter | 17 µm |
Lattice spacing | 50 µm |
Avg. throat length | 27 µm |
Porosity | 63% |
Standard Deviation | 0.5 µm | 1.0 µm | 1.5 µm | 2.0 µm | 2.5 µm | 3.0 µm |
---|---|---|---|---|---|---|
Breakthrough gas saturation (%) | 22.9 | 24.3 | 24.6 | 26.4 | 25.6 | 29 |
Porosity (%) | 63.01 | 63.05 | 63.06 | 63.13 | 63.14 | 63.21 |
Total Void Volume (µL) | 0.0178 | 0.0179 | 0.0180 | 0.0185 | 0.0191 | 0.0194 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaf, H.; Vorhauer, N.; Tsotsas, E.; Vidaković-Koch, T. Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes 2020, 8, 362. https://doi.org/10.3390/pr8030362
Altaf H, Vorhauer N, Tsotsas E, Vidaković-Koch T. Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes. 2020; 8(3):362. https://doi.org/10.3390/pr8030362
Chicago/Turabian StyleAltaf, Haashir, Nicole Vorhauer, Evangelos Tsotsas, and Tanja Vidaković-Koch. 2020. "Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study" Processes 8, no. 3: 362. https://doi.org/10.3390/pr8030362
APA StyleAltaf, H., Vorhauer, N., Tsotsas, E., & Vidaković-Koch, T. (2020). Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes, 8(3), 362. https://doi.org/10.3390/pr8030362